带有基于磁阻磁头的热阻信号的冲击检测的磁盘驱动器的制作方法

文档序号:6745862阅读:193来源:国知局
专利名称:带有基于磁阻磁头的热阻信号的冲击检测的磁盘驱动器的制作方法
技术领域
本发明一般涉及用磁阻(MR)读传感器或磁头读数据的磁记录磁盘驱动器,更详细地说,涉及用冲击或震动检测来改善某些驱动器操作,如禁止数据的读或写的那些磁盘驱动器。
磁盘驱动器,也叫作磁盘文件,是使用一个可转动磁盘、一个磁头或传感器和一个启动器的信息存储设备。可转动磁盘带有容纳信息的同心数据磁道,磁头或传感器用来在不同的磁道上读和/或写数据,而启动器连接到一个用于磁头的托架上,以便在读和写操作期间,把磁头移到希望的磁道上并保持在磁道中心线上方。最普通形式的启动器是一种旋转式音圈电机(VCM)启动器,它使磁头托架非线性地、一般以弧形路径移过磁盘。一般有多个磁盘安装在由磁盘驱动电机转动的一个轴上,并且有多个磁头托架连接到启动器上以便访问磁盘表面。一个外壳支撑着驱动电机和磁头启动器,并罩住磁头和磁盘以提供一个基本上密封的环境。在常规的磁记录磁盘驱动器中,磁头托架是一个空气轴承滑块,当磁盘以其操作速度转动时,该滑块依靠空气轴承悬在磁盘上方。该滑块由来自一个悬架的偏置力保持在磁盘表面附近,该悬架把滑块连接到启动器上。已经提出了接触式和靠近接触式或“接近式”磁盘驱动器,其中,在读和写操作期间,磁头托架可以仅由空气轴承部分地支承着,并且可以经常或偶尔与磁盘或磁盘上的润滑膜相接触。这些类型的磁盘驱动器例子在IBM的美国专利5,200,867、授予Conner、Peripheralis的美国专利5,097,368、和授予Censtor Corporation的美国专利5,041,932中进行了描述。
用来读和写数据的最普通类型的磁盘驱动器磁头是双功能感应读/写磁头。最近,可以采用磁阻(MR)磁盘驱动器,这种磁盘驱动器使用与感应只写磁头相组合的MR读传感器或磁头。MR磁头由于记录在磁盘上的磁场导致的电阻变化而产生一个读信号。作为例子,IBM的美国专利3,908,194描述了一种“组合式”(“piggyback”)薄膜磁头,这种磁头把MR读磁头与感应写磁头相组合。第一种带有MR读磁头和感应写磁头的商业空气轴承硬磁盘驱动器是由IBM在1991年提出的。
已经发现,由于在低悬浮或接近接触的MR磁盘驱动器中非常靠近的磁头一磁盘间隔,磁盘基片的波动和滑块悬浮高度的变化会在MR磁头读回数据信号的基线信号上引起变化。在MR磁头中的检测元件需要由一个检测电流或偏置电流偏置,以便能够在电阻变化时检测磁场。这一偏置电流把磁头加热到环境温度以上。因而,MR信号的基线变化是由磁盘对温度升高的MR元件的冷却所造成的,而温度变化与磁头一磁盘间隔变化有直接关系。IBM的美国专利5,455,730描述了一种MR磁盘驱动器,这种磁盘驱动器包括几个用来减小这种基线变化对MR读回数据信号的影响的装置。
磁盘驱动器,特别是用于便携式或膝上型计算机的那些磁盘驱动器,对外部冲击或震动很敏感,冲击和震动能在磁道访问或“检索”期间使磁头移到错误的磁道上,或者在读或写操作期间使磁头脱离磁道。数据在错误磁道上的写是不容许的,因为这通常会导致在被重写磁道上的数据损失。随着磁盘驱动器变得越来越小并且其磁道密度(即,每径向英寸的数据磁道数目)升高,外部冲击和震动的影响变得更加明显。已经提出了各种技术,通过检测外部力并且或者补偿该力或者停止磁盘驱动器的某些操作直到去除该力,来解决这一问题。这些技术一般包括使用独立的机电冲击检测设备,如常规的加速度仪,安装在磁盘驱动器外壳上或在包含磁盘驱动器电子器件的印刷电路板上。例如,授予Hewlett-Packard的美国专利5,299,075描述了一种磁盘驱动器,这种磁盘驱动器把转动式加速度仪的输出用作输入启动器跟踪控制或伺服系统的反馈,以补偿冲击或震动引起的跟踪误差。IBM的美国专利5,227,929描述了一种带有一个三轴加速度仪的膝上型计算机,该加速度仪的输出用来把磁头移到停放区域,并停止磁盘驱动电机的转动。授予MagneticPeripherals的美国专利4,862,298和授予Ministor Peripherals的美国专利5,333,138描述了带有机电冲击传感器的磁盘驱动器,用来在有过大的外部冲击力时禁止数据的写。
在磁盘驱动器中使用冲击传感器有几个缺点。传感器及其有关的电子器件值好几个美元。如果把传感器及其电子器件安装在印刷电路板上,就必须有附加板的永久空间。大多数冲击传感器是振杆式压电陶瓷设备,安装在位于磁盘驱动器外壳后侧的驱动器印刷电路板上。这样安装布置的局限性在于,磁盘驱动器的冲击或震动对传感器的影响,将不同于对所关心的磁头托架的影响,即,不同于对支撑冲击时正在进行写的磁头的托架的影响。由于写磁头对冲击的响应由磁头悬架和磁盘的振动模式来支配,而冲击传感器的响应由磁盘驱动器底座的振动模式来支配,所以有可能在冲击期间出现写时会产生软或硬数据误差的一些冲击,没有被传感器检测到。这些常规冲击传感器的另外的局限性在于,因为振动杆的极限共振频率约为30kHz,所以它们仅能准确测量在远低于这一共振频率的,即在约5kHz范围内的冲击。
所需要的是一种具有冲击检测能力的磁盘驱动器,这种驱动器没有使用常规冲击传感器的磁盘驱动器的任何缺点。
本发明是一种带有一个磁阻(MR)读磁头的磁记录磁盘驱动器,该驱动器利用MR磁头信号中的热阻效应来检测外都冲击和禁止写操作。MR磁头由偏置电流加热,并支撑在靠近磁盘表面的磁头托架上。对于磁盘驱动器的外部冲击或震动改变托架与磁盘之间的间隔,这会由于磁盘对加热磁头的冷却而使磁头温度波动。这些温度波动作为包括基线电压电平变化的热阻信号反映到来自MR磁头的信号中。磁盘驱动器包括冲击检测电路,该电路把这个热阻信号的正负偏移与预定阈值电压电平相比较。当超过该阈值时,表示外部冲击或震动超过了允许极限,就禁止数据的写。
为了更充分地理解本发明的本质和优点,应该参阅与附图一起进行的如下详细描述。


图1是一种包括本发明基线变化冲击检测电路的磁记录磁盘驱动器的方块图。
图2是磁头托架端部和磁盘的放大剖视图表明MR传感器与磁盘之间的间隔变化。
图3是组成基线变化冲击检测电路的各元件的方块图。
图4是在垂直于磁盘方向施加外部冲击的情况下,基线变化冲击探测器的响应与加速度仪的响应相比较的曲线图。
图5是在磁盘平面内在侧向施加外部冲击的情况下,基线变化冲击探测器的响应与加速度仪的响应相比较的曲线图。
图6是在磁盘平面内仅仅在转动方向施加外部冲击的情况下,基线变化冲击探测器的响应与加速度仪的响应相比较的曲线图。
一种包括本发明的磁盘驱动器示意地表示在图1中。
一个带有“上”11和“下”12磁记录表面的磁记录磁盘10支撑在一个主轴6上;并由驱动或主轴电机8转动。在每个磁盘表面11、12上的磁记录媒体具有同心数据磁道的环形图案形式(未表示)。
一个磁头托架13位于磁盘10的上表面11上。托架13是一个空气轴承滑块,该滑块带有一个面向磁盘的空气轴承表面(或磁盘侧20),和一个尾端22。磁头托架13把一个读/写传感器21支撑在其尾端22上,以便对磁盘表面11上的磁媒体读写数据。传感器21是一个带有一个感应写元件70和一个MR读元件或传感器60的双元件磁头。托架13是一个空气轴承滑块,传感器21位于滑块的尾端22上。托架13通过一个悬架15连接到一个启动器臂14上。悬架15提供了一个很小的弹簧力,使托架13偏向磁盘表面11。一个也支撑有一个读/写传感器的第二托架17,位于磁盘10的下表面12上,并通过一个悬架19连接到启动器臂14上。
启动器臂14连接到一个转动式启动器27上。启动器一般是一个转动式音圈电机(VCM)该音圈电机包括一个可在固定磁场中运动的线圈,线圈运动的方向和速度受一个控制器29供给的电机电流信号控制。当磁盘10转动时,转动式启动器27通常以弧形路径在托架13、17的各自磁盘表面11、12上径向来回移动托架13、17,从而使读/写传感器可以访问需要读或记录数据的磁盘表面不同部分。启动器27和主轴电机8都安装到磁盘驱动器外壳9的一部分上。
磁盘10的转动在托架13与其有关的磁盘表面11之间产生一个空气轴承。在磁盘驱动器的操作期间,该空气轴承平衡悬架15的很小弹簧力,并支承托架13离开和稍微远离磁盘表面11一段很小的、基本上不变的间隔。本发明适用于磁头-磁盘间隔足够小以致于发生MR信号基线变化的空气轴承磁盘驱动器,而且适用于在读写操作期间磁头托架与磁盘接触或临时接触的接触和接近接触的记录磁盘驱动器。
磁盘驱动器的各个元件在操作中受微控制器29产生的控制信号控制。例如,控制器29包括逻辑控制电路、存储器、和一个微处理器。控制器29产生用于各种驱动操作的控制信号,如在线23上的主轴电机控制信号、和在线28上用于启动器27的磁道跟随和查找控制信号。
在线23上的主轴电机控制信号被送到一个控制至主轴电机8的电枢电流的主轴控制器30,以便在驱动操作期间以恒定的转速转动电机。主轴控制器30还向微控制器29提供状态信号,例如,指示主轴电机8已达到操作速度的速度信号。
MR传感器60读来自磁盘表面11的数据。MR信号由高通滤波器36滤波,并由放大器37放大。滤波器36、放大器37和其他的读信号处理电路、以及用来产生至MR传感器60的检测或偏置电流的电路,一般是位于臂14上的一个集成电路模块18的一部分。这个模块靠近读/写传感器21放置以保持连线尽可能短,并因而被称作臂电子(AE)模块。AE模块18被连接到多个读/写传感器上,例如,在图1中仅有两个,并且因而包括一个多路转换器,以选择把哪个MR传感器信号送到其包括滤波器36和放大器37的处理电路。来自MR放大器37的输出被送到读/写数据通道25,在这里来自MR传感器60的模拟信号被处理成代表记录在磁盘上的数据的数字信号。通道25一般包括用于自动增益控制、模数转换、和数字数据检测的电路。通过使写信号经读/写数据通道25和写放大器39送给感应写磁头70,把数据写到磁盘表面11上。写放大器39一般位于AE模块18中。
在线28上的磁道跟随和查找控制信号,由微控制器29产生,微控制器29响应输入的磁头位置误差信号(PES)运行一种伺服控制算法。MR传感器60读记录在磁盘上、一般处于嵌在数据扇区之间以等角度隔开的伺服扇区的磁头位置伺服信息。来自MR放大器36的这一模拟伺服输出由解调器38解调,并由模数(A/D)转换器40转换成数字PES。在线28上的磁道跟随和查找控制信号被送到数模转换器(DAC)32,数模转换器32把他们转换成输出给VCM驱动器34的模拟电压信号。然后,VCM驱动器34把对应的电流脉冲送给VCM启动器27的线圈,以便径向向内和向外转动臂14,从而最佳地把托架13、17移动和定位到各自磁盘表面11,12上的希望数据磁道。
以上描述了图1的元件及其常规先有技术的MR磁盘驱动器的操作形式部分的模式。本发明体现在基线变化(BLM)冲击检测电路55及其以后要描述的有关控制逻辑线路的一种常规MR磁盘驱动器中。然而,参照图2首先解释由磁头-磁盘间隔变化引起的MR信号基线的变化。
图2表明磁盘10的一部分和托架13的放大部分,托架13带有形成尾端22上一个薄膜磁头的MR读/感应写磁头21。MR读传感器60和感应写磁头70都是作为托架13的后端或尾端22上的薄膜而形成的,托架13用作薄膜沉积的基片。MR读传感器60带有一个端部61,并且MR读传感器60位于隔开的屏蔽板6、63之间。MR传感器60通常称作具有一定厚度(在平行于托架13的磁盘侧20的平面内测量)和高度(在垂直于磁盘侧20的方向上测量)的磁阻材料“条”。感应写磁头70带有一个线圈73(以剖面表示)和一个记录间隙75。记录间隙75由两个极尖确定,其中一个是极尖76,而另一个还用作MR屏蔽板63。MR读传感器60的端部61和感应写磁头70的间隙75都指向磁盘10的表面11以便读写数据,并且从托架13的磁盘侧20凹入。MR传感器60的端部61具有离磁盘表面11的一个名义间隔Xo。然而,这一间隔随托架13悬浮高度及磁盘表面11中的固有起伏程度和表面凹凸程度的变化而变化。
如图2中所示,MR传感器60处于名义温度Ts,因为供给MR传感器60的偏置电流引起焦耳加热,所以温度Ts大于磁盘10的温度Tα。温度Ts由MR传感器60中消耗的功率I2R(I是偏置电流,而R是MR传感器60的电阻)和由从MR传感器60至其周围的热传导确定。大部分热量从MR传感器60内部地传导到托架13的本体。然而,如果MR传感器60与磁盘10的间隔小,则热量还将经磁头-磁盘间隔,即,分开MR传感器60和磁盘10的间隔Xo传导到磁盘10上。磁头-磁盘间隔的变化改变了MR传感器60与磁盘10之间的热传导。这又改变了磁盘对MR传感器的冷却程度,因此改变了MR传感器的温度。MR传感器的温度波动导致电阻的对应波动,这就引起来自处于恒定偏置电流的MR传感器的基线信号变化。与来自MR传感器的读回数据信号(该信号是由磁阻效应产生的)不同,这一基线信号变化是由热阻效应产生的。因而,来自MR传感器的信号既包括磁阻信号又包括热阻信号。
在本发明中,由于磁头-磁盘间隔响应外部冲击的迅速变化,而使MR传感器的基线信号发生变化,把该变化用作一个外部冲击传感器。如在图1中所示,把来自MR传感器60的DC耦合信号供给一个基线变化(BLM)检测电路55。对磁盘驱动器的冲击或震动将使用于读/写磁头21(写磁头70和MR读传感器60)的托架13改变其离开磁盘10的间隔。这种磁头-磁盘间隔变化可能造成影响一个或多个磁盘驱动器元件;例如,悬架15、磁盘10或主轴6,的冲击或震动。间隔变化的结果是当MR传感器60接近和离开磁盘10时,其温度发生变化(图2)。这就导致MR传感器60的电阻变化并由此引起电压变化,电压变化由BLM冲击检测电路55来检测。
BLM冲击检测电路55处理来自MR传感器60的输入信号,并且当处理信号超过预定的阈值时,在线57上提供一个输出。因而,电路55的敏感度由这一阈值确定。如图1中所示,电路55对冲击的敏感度受来自控制器29的一个阈值控制信号的控制。DAC90把这一信号转换成供给BLM电路55的阈值控制输入端的一个模拟BLM阈值控制电压信号56。来自DAC90的阈值控制信号56,控制BLM冲击检测电路55将反应的冲击大小。来自控制器29的阈值控制信号的值对应于一定的加速度值,在组装磁盘驱动器时,对该加速度值进行标定。当BLM冲击检测电路55检测到冲击时,就通过把其输出线57的状态,由低变高而产生一个冲击信号。控制器29监视BLM冲击检测电路55的输出线57,并且一检测到冲击信号,就向通道25发送一个写禁止信号58,以便停止写磁头70在磁盘11上写数据。结果是在线57上的来自BLM检测电路55的冲击信号为高时,或者在某个预定时间段内,控制器29就使读/写通道25禁止经写磁头70记录数据。可以展望其他的方法,其中,保持写禁止在一个预定时间长度内有效,接着查询冲击传感器输出的状态,以便延长或者结束写禁止。
一个单一的阈值能用于所有的磁头托架。然而,在标定期间,可以计算出磁盘驱动器中不同的磁头托架和MR传感器在冲击敏感度方面的差别,并且对于每一个MR传感器可以使用一个独立的阈值控制信号值,这些独立的值存储在可由控制器29访问的存储器中。根据AE模块18中的多路转换器选择了哪个MR传感器,把适当的阈值控制信号值送给检测电路55。
在磁记录磁盘驱动器中,与外部冲击和震动有主要关系的是脱离磁道的写,即,冲击或震动能把写磁头移离磁道,以致于把数据置于数据磁道上的错误位置或者置于错误的数据磁道上。本发明能以两种方式检测冲击。在最佳实施例中,冲击由在相同托架上的MR传感器来检测,该托架支撑着正在进行写的写磁头。例如,MR传感器60充当用于写磁头70的冲击传感器。在带有多个读/写磁头和磁头托架的常规MR磁盘的操作中,当写磁头正在进行写时,对于位于支撑着正在进行写的写磁头托架上的对应MR传感器,把偏置电流保持在读电平。因而,在本发明的这个最佳实施例中,来自AE模块的MR传感器信号可直接用于BLM检测电路55的输入端。本发明另外一个实施例是用一个在不同于支撑正在写的写磁头的托架上的MR传感器来检测冲击。例如,当托架13上的写磁头70正在写时,托架17上的MR传感器可以起冲击传感器的作用。这种方法的优点在于,在连接到托架17的MR传感器与托架13上的写磁头70之间没有串音。在这个另外的实施例中,需要改进AE模块中的多路转换器,以便提供一根第二引出线,从而能把来自用作冲击传感器的MR传感器的信号送给BLM检测电路55。
图3表示BLM冲击检测电路55的诸元件。来自MR传感器60的DC耦合输入首先由一个一般具有10kHz截断频率的低通滤波器滤波。这就去除了高频磁数据信号(在名义MR传感器基线电压电平附近的频率约为20MHz的一系列正负模拟电压脉冲)和由磁盘外形的小范围变化产生的任何高频分量。低通滤波器50还防止了由从写磁头70至MR传感器60的串音所产生的放大器52的饱和。然后,该信号由一个一般具有100Hz左右的截断频率的高通滤波器51滤波。这就去除了DC分量和由大范围磁盘表面波动或电机噪声产生的任何分量。高通滤波器51的输出发送给一个放大器52。放大器52的输出仅包含MR传感器基线信号的变化,这就是MR传感器对外部冲击和震动的响应。来自放大器52的放大信号发送给比较器53。比较器53测试输入信号,以便审查信号的正负偏移是否都超过了由控制器29设置的阈值。如果超过了该阈值,那么比较器53的输出就改变状态,并且把线57上的冲击信号送给控制器29的写禁止输入端。当线57为高时,控制器29就发送信号58,以便禁止读/写通道25把数据记录在磁盘表面11上。一旦线57变高,信号58就禁止读/写通道25一段预定的禁止时间,此后控制器29将结束信号58。这段禁止时间是根据磁头托架震动停止或恢复到能安全进行写的程度所用的时间,用试验方法确定的。一旦禁止了写,在能恢复写之前,读/写通道25必须等磁盘至少转一圈。比较器53由控制器29或一个内部时钟来复位,如在本技术领域所熟知的那样。作为另外的安全因素,控制器29可以在结束信号58之前,检查确定线57上的冲击信号是否为低。
图1和3表示由控制器29经DAC90设置比较器53的阈值。然而,可以直接把来自电压源,如磁盘驱动器电源,的一个预定的固定阈值电压供给比较器53。这就消除了对DAC90的需要,并且使所有磁头托架具有由这个固定阈值电压值确定的冲击敏感度。
图3所示的电路可以包含在臂14上或在包含控制器29的磁盘驱动器电路板上的AE模块18中。
图4表示,在放大器52的输出端取出的基线MR信号对于在垂直于磁盘10的平面的方向上施加的外部冲击的响应,把它与安装在磁盘驱动器外壳(图1中的底座9)上的常规加速度仪的对应信号的比较。在这个例子中,以及在图5和6的以后例子中,至MR传感器60的偏置电流恒定在11.25毫安。加速度仪的刻度是每个竖直刻度为1/2G(1G等于重力加加速度或9.8m/sec2)。因而,正负峰间冲击大约为1G。图4表示,BLM冲击探测器对外部冲击的响应是非常敏感的,并且甚至在加速度仪的输出已经停止之后也继续振荡。这表示了BLM冲击探测器的一个关键优点,即,甚至在常规的加速度仪停止提供响应之后,仍继续监视磁头托架的运动。这一点很重要,因为希望监视的是写磁头的实际运动,以防止脱离磁道的写操作。
图5表示对磁盘10的平面内的侧向冲击的响应。在垂直于磁盘的方向测得的正负峰间冲击接近1.75G。至于在垂直于磁盘10的方向的冲击情形,在加速度仪指示冲击已经衰减很久之后,磁头托架仍继续运动。
图6表示对单纯的转动冲击的响应。在这个例子中,把磁盘驱动器安装在一个转动式支架中,从而仅在磁盘10的平面内能自由转动。然后,把外部冲击施加到驱动器上,形成图6中所示的响应。在平面内测得的正负峰间的冲击是2G,并且BLM冲击探测器的响应是一个很强的信号,与对于垂直冲击(图4)和侧向冲击(图5)的响应非常相似。即使冲击仅仅是转动方向的,也仍然引起BLM冲击探测器的响应。理论上,如果转动冲击仅导致MR传感器侧至侧的运动,则BLM冲击探测器不应该产生输出,因为信号变化仅是由高频的磁头-磁盘间隔波动产生的。然而,图6表明,单纯的转动冲击与MR传感器的上下磁头-磁盘间隔变化耦合得很好。这归因于如下事实磁盘驱动器具有复杂的机械结构,其中,外部转动冲击将激发把转动能量耦合到磁头托架的垂直运动中的振动模式。
基线MR信号对各种方向外部冲击的三种响应,通过来自BLM检测电路55的放大器52的信号输出表示在图4-6中,清楚地证实所有类型的外部冲击都耦合到磁头-磁盘间隔波动中。BLM探测器可以利用加速度仪的输出用试验方法标定,如图4-6所示。因而,由试验数据可以知道,对于具体的磁盘驱动器,多大G值的冲击可能会导致脱离磁道的写。利用图4-6,能把对应于这个G值的放大器52的输出(以0.1mV的单位表示),用来选择要加到至比较器53的线56上的阈值信号电平。另一方面,能通过由试验直接标定BLM冲击探测器,来选择阈值电平,在这些试验中,施加已知的外部冲击,并且测量和比较来自伺服控制系统的位置误差信号(PES)和放大器52的输出。此外,如以前描述的那样还可以对应于磁盘驱动器中的每个磁头而存储独立的诸阈值。
虽然已经详细说明了本发明的最佳实施例,但应该明白,对本发明可以进行各种变更和改进,而不脱离如下列权利要求书中所描述的本发明的精神和范围。
权利要求
1.一种磁记录磁盘驱动器,包括一个磁记录磁盘,用来存储磁记录的数据;一个与磁盘连接的电机,用来转动磁盘;一个在靠近磁盘表面中的一个表面处保持的磁阻传感器用来根据在磁盘上磁记录的数据而产生一个信号,并由电偏置电流加热,该传感器的温度及与此有关的电阻都随着传感器与磁盘之间的间隔变化而变化;耦合到传感器上的数据通道电路,用来把来自传感器的信号处理成代表在磁盘上磁记录的数据的数字信号;及耦合到传感器上的冲击检测电路,用来根据对磁盘驱动器的外部冲击,把来自传感器的信号处理成代表传感器与磁盘之间间隔变化的信号。
2.根据权利要求1所述的磁盘驱动器,其特征在于包括一个连接到数据通道上的写磁头,用来把数据记录在磁盘上;并且冲击检测电路包括这样的电路,当代表传感器与磁盘之间间隔变化的检测信号超过一个预定冲击阈值时,用来产生一个冲击信号,以便禁止写磁头把数据记录在磁盘上。
3.根据权利要求2所述的磁盘驱动器,其特征在于还包括一个耦合到冲击检测电路和数据通道上的控制器,该控制器根据从冲击检测电路接收的一个冲击信号,产生一个到数据通道的写禁止信号。
4.根据权利要求3所述的磁盘驱动器,其特征在于还包括耦合到控制器上的存储存储器,用来存储代表预定冲击阈值的一个值。
5.根据权利要求4所述的磁盘驱动器,其特征在于磁盘驱动器至少包括两个磁阻传感器,并且存储存储器存储两个阈值,每一个存储值都与两个传感器中的一个有关。
6.根据权利要求1所述的磁盘存储器,其特征在于还包括一个第一托架,用来支撑靠近磁盘的一个表面的磁阻传感器;一个第二托架,用来支撑靠近磁盘另一个表的写磁头;及一个连接到第一和第二托架上的启动器,用来把托架移过其各自磁盘表面。
7.一种磁记录磁盘驱动器,包括一个磁记录磁盘,用来存储磁记录的数据;一个与磁盘连接的电机,用来转动磁盘;一个在靠近磁盘的一个表面处保持的磁阻传感器,用来产生一个包括一个基线电压电平的信号,该信号具有在所述基线周围的通常固定幅值的模拟正负电压脉冲的信号,所述脉冲代表在磁盘上磁记录的数据,所述基线电压电平随传感器与磁盘之间的间隔变化而变化。一个在靠近磁盘的一个表面处保持的写磁头,用来把数据记录在磁盘上;读/写数据通道电路,耦合到传感器上,用来把来自该传感器的信号中的所述模拟脉冲,处理成代表在磁盘上磁记录的数据的数字信号,并且耦合到写磁头上,用来把要在磁盘上记录的数字数据引到写磁头;耦合到传感器上的冲击检测电路,用来检测由于磁盘驱动器的外部冲击在传感器与磁盘之间产生间隔变化而引起所述信号基线电压的变化,当该基线电压变化超过一个预定冲击阈值时,该冲击检测电路产生一个冲击信号;及一个控制器,耦合到冲击检测电路和读/写数据通道上,该控制器根据从冲击检测电路接收的一个冲击信号,产生一个到数据通道的写禁止信号,借此在有磁盘驱动器的外部冲击存在时,防止把数据写在磁盘上。
8.根据权利要求7所述的磁盘驱动器,其特征在于包括一个耦合到控制器上的存储存储器,用来存储代表预定冲击阈值的一个值,并且该控制器把代表所述存储的冲击阈值的一个冲击阈值控制信号提供给冲击检测电路。
9.根据权利要求8所述的磁盘驱动器,其特征在于冲击检测电路包括一个带有一个阈值控制输入端的比较器,该输入端用来接收来自控制器的冲击阈值控制信号,该比较器把所述基线变化信号的正负偏移与所述冲击阈值相比较。
10.根据权利要求8所述的磁盘驱动器,其特征在于磁盘驱动器至少包括两个磁阻传感器,并且存储存储器存储两个阈值,每一个存储值都与两个传感器中的一个有关。
11.根据权利要求7所述的磁盘驱动器,其特征在于冲击检测电路包括一个滤波器,用来滤波代表磁记录数据的所述模拟脉冲;及一个放大器,用来放大来自所述滤波器的信号。
12.根据权利要求7所述的磁盘驱动器,其特征在于还包括一个第一托架,用来支撑靠近磁盘的一个表面的磁阻传感器;一个第二托架,用来支撑靠近磁盘的另一个表面的写磁头;及一个连接到第一和第二托架上的启动器,用来把托架移过其各自的磁盘表面。
全文摘要
一种带有磁阻(MR)读传感器或磁头的磁记录磁盘驱动器,具有响应来自磁头信号中所包含的热阻信号的冲击和震动检测电路。MR磁头由电偏置电流加热,并且支撑在靠近磁盘表面的磁头托架上。磁盘驱动器的外部冲击或震动,改变托架与磁盘之间的间隔,这就导致磁头温度波动。冲击检测电路把反映波动的磁阻信号的正负偏移与一个预定阈值电压电平相比较。当超过该阈值时,表示外部冲击或震动超过了允许极限,就禁止数据的写。
文档编号G11B5/55GK1173691SQ9711035
公开日1998年2月18日 申请日期1997年4月9日 优先权日1996年6月13日
发明者普拉卡什·卡西拉, 史蒂文·米克斯·韦恩, 蒂莫西·赖雷·克拉里 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1