波束形成网络的制作方法

文档序号:6876628阅读:257来源:国知局
专利名称:波束形成网络的制作方法
本申请是发明名称为“天线系统申请日为1995年3月30日,申请号为95193168.7的申请的分案申请。
本发明涉及一种天线系统,具体地但不是排他地说,是涉及一种用于卫星移动通信系统的多波束形成器。
这种系统在诸如WO93/09029、WO93/09577、WO93/09578、WO93/09613、WO93/09614、WO93/09624、EP-A-0510789、EP-A-035885、EP-A-421722中得到了一般的描述。所提出的Inmarsat(TM)(国际航海卫星(地面站))P21系统由若干个地面站组成,这些站可以是移动站,并具有用于与一组按一定方式布局的通信卫星进行通信的天线。各个卫星带有用于发送和接收多波束阵列的天线系统,每一个波束都指向地球表面上的一部分,这些波束一起覆盖了地球的整个表面。
各个波束携带若干频分多路信道;例如,各个束的带宽可以是5MHz,使得每个波束能够承载大量的用户信道(通常承载语音通信)。卫星通常还携带有用于与固定的地面站进行联络的天线,与例如公共通信网络进行通信。
为了合成远场波束形式中的多个波束,如果发送和接收天线是由辐射元件的大型阵列组成的直接辐射天线(即没有反射器),传统的波束形成网络在原理上对于每一个辐射元件和每一个波束位置都要求一个移相器,且对于每一个波束都要求一个功率分配器。因此,对于一百个元件和一百个波束,需要10,000个移相器和100个功率分配器,且对于大量的波束和元件,部件的数目大体成指数增加。
这使RF(射频)部件的重量很大,且供电系统的功率损失也变高。重量和电力消耗在卫星中都是非常重要的。
另一种用于阵列天线的波束形成器,是US3255450(Butler)中描述的“Butler矩阵”,它由四端口功率分配器与有关的移相器的碟形级联设置组成,用于接收N个输入RF信号并向N个分开的元件组成的线性阵列提供输入。每一个分配器都接收两个输入的模拟RF信号,其中一个得到移相,并输出带有90度相差的三个RF信号。该分配器和移相器阵列的效果,是以相移逐步递增的形式,把提供给每一个输入端的RF信号馈送给阵列的每一个元件。因此,该阵列起着相阵列的作用,以取决于相移增量(它取决于辐射元件的数目)和元件间隔,产生出波束。
通过有选择地依次激发各个输入端,可以产生增量扫描的波束,该波束可被用于雷达应用。或者,该波束形成器可被用来从一个公共孔径产生多个固定的网格式波束。通过提供排列成行和列的若干个这种线性矩阵,可以沿着两个正交方向之一进行波束扫描,其中行矩阵的输出供给列矩阵的输入端,而列矩阵的输出供给辐射器的二维阵列。
Butler矩阵几乎是无损耗的,这就是一般采用它们的理由。
JP-A-59-44105公开了一种二维波束形成网络,它包括Butler矩阵组成的两个正交排列,以形成沿着矩形阵列的角对准的波束。EP-A-0056205公布了一种大型Butler矩阵,它是由Butler矩阵的两个正交组组成的。
WO88/04837公开了用在通信卫星上的可调整波束反射器天线,其中Butler矩阵被用于波束调整。
EP-A-0468662公开了一种天线(它可以是直接辐射天线),其中Butler矩阵被用作功率分配器,以在天线阵列元件之间分配功率,以形成单个的单向复合波束,矩阵提供的逐步递增的相移被移相器元件所抵消。
线性Butler矩阵阵列天线的一个特征,是相邻波束之间的交叉点被降低了3dB以上,从而使波束之间的功率降低到最大波束电平的一半。对于正方形阵列,4个相邻波束之间的功率最小值低8dB,这本身将使传统的正方形Butler矩阵不适合于形成多重卫星通信波束,因为所希望的是提供对地球表面的均匀覆盖。
根据本发明,提供了一种天线系统,它利用无源功率分配矩阵(例如Butler矩阵)作为六角形阵列天线的波束形成器,以产生六角的波束方向阵列。
六角形阵列的采用,给地球表面提供了比相应的正方形阵列所能够提供的更好的覆盖,因为其相邻波束之间的功率没有降低那么多。
阵列周围的孔径最好是平滑的,这样在远场分布中减小了相邻波束之间的功率降低。
矩阵最好是冗余的,且只有某些输出端口与辐射元件相连;其他的输出端口是终接的。
本发明的这一方面使Butler矩阵不再实现通常的无损耗的优点。然而,我们发现这种损失对于交叉点处的功率降低的改进来说,是可以允许的。
在一个最佳实施例中,至辐射元件的通路中的放大或损失,在阵列的整个孔径上,是有所不同的,以提供馈送到阵列的边缘的功率的平缓渐减。本发明的这一方面提高了波束之间的交叉电平,并减小了远场辐射分布的旁瓣电平。
该矩阵最好包括两个正交连接的功率分配器矩阵组。
在另一方面,本发明提供了用于阵列天线系统的波束形成网络,该阵列天线系统包括第一和第二正交连接的功率分配器矩阵组,其中至少一个组的矩阵的数目少于该组中的矩阵的阶。因此,“过大”的矩阵可被用来形成非矩形的天线阵列,而不需要使矩阵的数目为各个矩阵的阶的两倍。
在另一方面,本发明提供了一种天线系统,其中提供了几种不同的功率分配器矩阵,且各个矩阵的相应输出端口与阵列天线的元件共同相连,从而使单个的阵列天线能够产生多个波束栅。通过使矩阵的输出具有不同的相位,不同的栅能够调整到抵消位置,从而使一个栅能够在另一个的波束的最小值处得到插值。
在另一个方面,本发明提供了一种通信收发器站(例如卫星),它具有用于进行信道化(即多路调制和去多路调制)的数字处理器,该数字处理器经过一个包括无源功率分配网络(例如Butler矩阵)的模拟波束形成器而连接。这使得处理装置的负载得到了大大的降低,而又不用采用高度复杂的波束形成结构,并因而减小了信号处理系统的质量、功率消耗和体积,并使得它更适合于在卫星中使用。
在另一个方面,本发明提供了一种天线系统,其中若干不同的Butler矩阵装置与同一阵列天线并联,每一个装置都得到适当的设置以产生一个波束方向阵列,这些阵列彼此抵消以产生具有较小的角分布的组合波束方向阵列。
因此,可用单个的天线产生大量的波束,与可以用单个的Butler矩阵装置产生的波束阵列相比,波束的覆盖得到改进且波束之间的下降得到了减小。
在以下的说明和权利要求书中,描述了本发明的其他方面和实施例。
现在结合附图并仅作为例子,描述本发明的最佳实施例。在附图中

图1示意显示了一个卫星移动通信系统;图2是根据本发明的一个实施例的空间飞行器的透视图;图3是框图,显示了图1的空间飞行器的通信系统的电部件;图4是框图,示意显示显示了图3的实施例中采用的Butler矩阵;图5是示意透视图,显示图4的Butler矩阵的设置,用于提供根据图3的实施例的波束形成器;图6a显示了图2至5的实施例的接收天线的辐射分布;图6b是根据该实施例的发送天线的辐射分布的相应绘制图;图7a显示了接收天线中的阵列元件的物理设置,并表示了与各个元件相连的放大器的相对增益;图7b显示了该发送天线中的阵列元件的物理设置,并表示了与各个元件相连的放大器的相对增益;图8显示了图5所示的相应波束形成器的发送和接收波束端口的连接;图9a显示了接收天线与图5的波束形成器的元件之间的相应连接;图9b显示了图5的波束形成器与发送天线的元件之间的相应连接;图10显示了根据本发明的另一实施例的波束形成器和天线设置;图11示意显示了可用图10的实施例获得的辐射分布。
图1显示了已知推荐的卫星移动通信系统。该系统包括至少一个在围绕地球(E)的轨道上的卫星(S1和S2),在地球上有多个终端站;例如移动通信终端站(M1和M2)和固定通信终端站(F1)。后者可以包括例如与通信网络(例如PSTN)相连的地面站。
这些卫星最好位于在地球上方大约例如10,000km高度的中间圆形轨道(ICO)上。可以设置12个卫星,例如,可以在三个彼此垂直的轨道的每一个中,提供沿着角度方向分布的四个卫星,从而使各个终端站在任何时刻都处于几个卫星的视场中。
每一个卫星产生多个在空间上分开(但重叠)的辐射(例如射频)波束,从而形成覆盖地球表面的一个邻接区域的波束阵列(T1-TN);一般地,是以将在下面详细描述的方式覆盖地球的整个表面。各个卫星还具有一个辐射接收方向阵列(R1-RN),这些接收方向截听地球表面;一般地,该接收方向与波束重合。因此,波束和接收方向组成了卫星与终端站之间的在空间上分开的通信信道。由于卫星不是同步的,且由于终端站是移动,一个给定的终端站可能随着时间通过多个这样的信道,并可能还需要停止与一个卫星的通信并切换到另一个卫星上(交接)。
以已知的方式,一个终端站能够通过与卫星建立接触,而与另一个进行通信,或者与通信网络进行通信;其中该卫星随后与该另一个终端建立接触并在这两个终端站之间输送消息。
现在参见图2,根据本实施例的卫星包括外壳5,它包括一对可展开的太阳能电池板4a、4b(在图中是折叠着的);至少一个可调整高增益点波束天线3,它提供了用于与同通信网络相连的一或多个固定地面站进行通信的馈送线路;接收阵列天线1,用于在多个接收方向R1-RN进行接收;以及,发送阵列天线2,用于产生多个波束B1-BN。天线1-3被设置在卫星保持面对地球的一侧上。
现在简要描述所采用的调制。馈送线路天线3在Ka波段中以20GHz的发送频率和30GHz的接收频率,在50MHz的带宽上运行。接收天线在2GHz的频率运行,且发送阵列天线以2.2GHz的频率运行,二者的带宽都是30MHz。各个波束(在此实施例中有121个)在该频谱中被分配有一个5MHz的区段,分配给相邻的波束的这些区段是不同的,从而减小了相邻的波束之间的干扰。各个区段包括多至25个带宽为200kHz的频隙(FDM和/或TDM)。各个频隙被分成48个用户信道。每一个用户可用的带宽因而是4kHz,这对于语音是足够的。各个波束能够提供1200个用户同时进行通信。
参见图3,设置在卫星中的电装置包括用于从地面站至终端的通信的前向线路和用于从终端至地面站的通信的返回线路。前向线路包括馈送线路天线3,来自它的信号由相应的滤波器6a-6d进行带通滤波并由相应的低噪声放大器7a-7d进行放大。放大的信号由合并器/IF降频转换器电路8合并和降频转换至中频(IF)。该IF信号被互补滤波器9a、9b分成两个25MHz的频带,每一个都被相应的模拟-数字转换器(ADC)10a、10b量化。量化的IF信号每一个都随后被分频多路器11a、11b去分频多路到125个频隙中,从而给出总共250个频隙,每一个的带宽都是200kHz。
在数字控制电路13的控制下,一个开关或路由网络12将250个频隙的每一个都路由到121个(或者一般地说是N个,其中N是波束的数目)倍频多路器14a-14N个之一的25个输入端口之一,这些倍频多路器14a-14N将这些频隙多路倍频到5MHz的基带信号中,而该基带信号将在波束B1-BN之一上得到发送。控制电路选定的倍频多路器14(因而波束B)确定了频隙所要发送到的地球上地理位置,且该倍频多路器的输入端口(因而调制频率)确定了将接收该频隙的用户终端。
121个倍频的数字基带信号的每一个,随后都由相应的数字—模拟转换器(DAC)15a-15N转换成模拟信号,这些转换器的输出都由16个IF/S频带转换器组成的阵列增频转换至2.2GHz频带中30MHz范围内的波束频率。如上所述,为相邻的波束选择的频率是不同的。调制的信号随后被提供到模拟波束形成器20的相应输入端口,该形成器产生M个(例如109个)激励信号,用于激励发送阵列天线2的相应辐射元件200a-200M。该激励信号由一组M个RF功率放大器17a-17M进行放大,并由一组滤波器18a-18M进行带通滤波,并随后被提供到相应的辐射元件200a-200M。
返回线路的部件一般与前向线路的相反。P(例如151)个辐射元件118a-118P从地球上的终端站接收2GHz频带中的进入无线电信号。来自各个元件的信号由相应的滤波器118a-118P和低噪声放大器进行滤波和放大,并被馈送到模拟波束形成器120的输入端口。在波束形成器120的N个输出端口的每一个上的信号,被116个S/IF转换器组成的阵列降频转换至一个5MHz基带信号,并由相应的ADC 115a-115N量化。
量化的基带信号由分频多路器114a-114N多路分频到200kHz带宽的25个频隙中,且这些频隙在控制电路13的控制下,通过开关112而被路由到一对倍频多路器111a、111b之一的预定输入端(对应于特定的频率)上;该倍频多路器产生25MHz的输出信号,且该输出信号被一对DAC110a、110b转换成模拟信号。这些模拟信号随后由一对调制器119a、119b和滤波器119c合并成一个50MHz信号,并由IF/Ka转换器和RF分频器网络118增频转换成20GHz信号。
各个RF信号由RF功率放大器(例如行波器件)117a-117d放大,由带通滤波器116a-116d滤波;并被提供到馈送线路天线3,以发送至相应的地面站。
因此,图3所示的系统由以下部分组成馈送线路通信子系统,它包括元件3、6-9和16-19;信道分离和合并子系统,包括元件11-14和111-114;以及,移动线路通信子系统,包括元件16-18、116-118和天线1和2。在此实施例中,由于信道分离和合并(即处理)子系统是数字的,因而提供了ADC和DAC 10、15、110、115。
数字信道处理子系统的采用是所希望的,并便利了本发明,因为由于波束形成由较宽的带宽模拟波束形成器20、120进行,不需要由数字硬件进行,因而不需要在整个30MHz的移动线路频谱上进行,因而能够用容易获得的部件实现。
另外,数字信号处理的功率消耗大体上与信号带宽成正比。因此,由于在本发明中数字处理器是在各个波束端口处在5MHz的带宽信号上运行的,而用于阵列元件的30MHz的带宽信号由模拟波束形成器处理,所以数字处理器所需的功率消耗与全数字系统相比被大大减小了。
参见图4和5,现在更详细地描述模拟波束形成器20、120。各个模拟波束形成器20、120由两个正交连接的Butler矩阵50组30a、30b组成,如图5所示。
每一个组由相同的Butler矩阵装置50组成,如图4所示,其每一个都包括16个输入端、16个输出端(即16×16)装置,该装置包括基底51、带有多个第一端口的第一侧X、带有多个第二端口的第二侧Y、多个相同的4端口耦合器或混合电路52、以及多个移相器53,它们都通过带状线相互连接。
本文件中,术语“侧”是在拓扑学的意义上使用的,而与矩阵的实际几何设置无关;端口和部件的物理位置是无关的(只要信号的相位没有过度地失真)。
两个波束形成器20、120都采用了如图4所示的矩阵装置,但构成图5所示各组的这种矩阵的数目对于波束形成器20、120来说是不同的。
Butler矩阵的结构是现有技术中众所周知的,只需说各个混合电路(它可以具有EP-A-0056205中所示的结构,该文献在此被整个地引作参考文献)将其两个输入端口处的功率输入相等地分配到其两个输出端口,且这些输出的相位被分离了90度。其中有K个第一和第二端口,且K是2的幂,矩阵由各由k/2个混合电路组成的(log2K)个行和设置在混合电路之间的((log2K)-1)个行的K/4个移相器组成,每一个混合电路与下一行中的两个相连,混合电路与之相连的两个之间的距离在各个相继的行中以二的幂增大。移相器53所加的相移以180/N度增加,且第一行的移相器施加180/N的奇数倍的相移;下一个行中的施加180/2N的奇数倍的相移;等等。虽然在图4中显示了K/2((log2K)-1)个移相器53,只有它们的一半施加非零相移,且其他的在实际中因而可以被省略。
这些结构的效果,是在各个第一端口X的信号被分成具有相等的振幅的N个信号,其每一个都出现在第二端口Y之一,且每一个都具有逐步递增的相移。例如,加在第一端口的第一个上并带有振幅A的信号,在第二端口的第一上出现为带有振幅A/N的第一信号;在第二端口的第二个上,出现了具有相同振幅但相位移动了(360/N=Δ)的第二信号;在第三端口上出现了振幅相同但相位从第二个信号移动了Δ的第三信号;……且在第二端口的第十六个上出现了相位从第十五个信号移动了Δ但与第一信号同相的第十六信号。
加在第一端口X的第二个上的信号类似地将被相等地分配在各第二端口Y之间,但相移增量为2×Δ;第三输入端口的相移增量为3×Δ等等。
显然,如果第二端口与间隔相等的辐射元件阵列相连,其结果是一个相控阵天线,波束偏离角取决于阵列间隔、信号频率和相位增量,而相位增量本身取决于第一端口的数目和提供信号的第一端口的身份。如果多个第一端口同时得到激励,就产生对准角增量移动的一系列波束,其每一个都唯一地对应于第一端口之一处的信号。
图4的各个矩阵装置都是可逆的,因而上述的描述可被反向;换言之,加在第二端口Y上的具有一定的递增相位关系的多个信号,将在第一端口X中的一个或多个上产生一个信号,从而使矩阵装置与阵列天线的结合能够提供接收阵列天线。
如果图4的结构的N个Butler矩阵组以图5所示的方式并联设置,且该组的所有矩阵的输出端口的各一对准行都与第二组的N个Butler矩阵的单个Butler矩阵的输入端口相连(换言之,这两组彼此正交地互连,其中在此文件中“正交”指的是连接拓扑学而不是装置的物理或几何设置),则第二组的N2个输出端口组成的二维阵列可以与辐射元件组成的正方形二维阵列的相应辐射元件相连,从而提供二维的网格式波束。
然而,在该最佳实施例中,产生了六角形的网格式波束。参见图6,图6a显示了接收天线1的波束图形,且图6b显示了发送天线的波束图形。显然,这两种天线包括相同数目的波束(121),且图6b的波束与图6a的接收方向相对应,但后者更宽(因而呈现更大的重叠,以及波束之间强度降低的减小)。
为了提供这些波束图形,天线1、2都包括辐射元件100a-100P、200a-200M的六角阵列,例如印刷在公共基底上的微条形偶极子(未显示)。参见图7,图7a显示了发送阵列天线2的辐射元件200a的设置,且图7b显示了接收阵列天线1的辐射元件100的设置。
接收天线1由P=151个元件100组成,这些元件如所示地设置,并相距间隔s,其中s/L=1.04,且L是天线波长(2GHz)。总天线直径为2.2m。发送天线2由M=109个元件200组成;这些元件如图所示地设置,并相距间隔s,其中s/L=1.04,且L在此情况下为2.2GHz。总天线直径为1.7m。
在此实施例中,发送天线的109个放大器18a-18M的放大率并不是都一样的。各个放大器增益,相对于与天线的中心元件相连的放大器的增益,在图7b中由表示各个元件的位置的圆圈里的数字显示;从其可见,通过设置元件200的三个最外环—其增益相对于所有的内部元件低-3、-6和-9dB,增益在阵列的边缘处逐渐减弱。
通过使最外的三个六角环上的元件100具有相对于内部的元件逐渐减小的增益(同样是-3、-6和-9dB),可使图7a的接收天线具有完全相同的情况。
现在结合图5、8和9,描述模拟波束形成器20、120和天线1、2的互连。参见图5,矩阵装置50的组30a的第一端口X构成了二维的端口阵列,每一个端口由坐标(i,j)表示,其中0<i,j<15。指标i表示沿着第一组30a的矩阵装置的边X的端口数,且指标j表示沿着连接着第一组的矩阵装置的第二组30b的矩阵的边X的端口数。
图8表示从增频转换器的阵列16的N=121个调制波束输出端至波束形成器20的连接。如所示,如果轴i=10,j=10沿着60度且i,j的值彼此互换,连接的六角对称性将是显而易见的。波束形成器120与降频转换器的阵列116之间的情况也是完全相同的。为了容纳所有的121个束,需要最多13个i值;因此,可以在波束形成器20和120的第一组30a中只提供13个矩阵装置;除去的矩阵在图8中用虚线表示。未连接的那些端口最好用匹配负载终接。
图9a显示了接收阵列天线1的P=151个元件100a-100P(经过滤波器118和放大器117)与模拟波束形成器120中的矩阵装置50的第二组30b的第二端口Y的连接。所示的元件100的设置对应于图7a中的设置,从而使所示的外三环元件为上述具有逐渐减弱的增益的元件。
参见图5,矩阵装置50的第二组30b的第二端口Y形成了二维的端口阵列,每一个端口都用坐标(k,l)表示,其中0<k,l<15。指标i表示沿着第二组30b的矩阵装置的边Y的端口数,且指标k表示沿着与第二组的矩阵装置相连的第一组30a的矩阵的边Y的端口数。
如果如图9a所示地沿着60度画出轴k=0,l=0,则六角对称性是显而易见的。为了容纳所有151个元件,k最多需要有15个值;因此,在第二组30b中可以只提供15个矩阵装置。那些未连接的端口可用匹配负载终接。因此,接收天线的波束形成器120需要28个矩阵装置50。
图9b对应于图9a和7b,并显示了发送天线2的元件200a-200M与波束形成器20之间的连接(经过放大器17和滤波器18)。由于只提供了M=109个元件200,第二组中需要的矩阵装置数为13和矩阵装置50的总数为26。未用的端口用匹配负载终接。
在操作中,在模拟波束形成器20的端口处的波束信号输入被分成第一组30a的矩阵装置的输出端口处的16个相等的输出,这些输出端口中的三个被终接了(由于第二组30b只包括13个矩阵装置)。输入到第二组30b的相应矩阵的其余13个信号的每一个,都被分成各个矩阵的输出端口处的16个相等的输出,总共有13×16=208个输出,其中的101个被终接。其余的109个输出信号经过放大器而被送到阵列元件200。它们的相位彼此具有适当的关系,从而使它们结合产生出图6b所示的六角形网格式波束中的一条波束。至第一组30a的不同端口的其他各个波束输入的情况也是这样。
由于采用输入端多于波束数和元件数所需的过大矩阵装置50而终接一些端口,改变着各个波束的模式。较少的元件数,使得各个波束较宽,而给周边元件提供不同的放大率则给天线孔径加上了平滑窗口,这使各个波束进一步加宽,从而使三个相邻波束之间的点处的功率下降只有-2dB,而对于全部连接的正方形Butler矩阵阵列天线为-7.8dB。相对于这种正方形阵列(它基本上是无损耗的),终接和不同的放大率产生了一些损耗,但这是相当低的。
这些天线都具有大体对称(大体上为圆形或六角形)的孔径,且其中不是所有元件都得到连接的过大Butler矩阵装置的采用,使得能够产生未失真的六角形波束图形。当然,如果图8、9a或9b中所示的所有点都得到连接,则结果将是梯形阵列,尽管它将呈现六角对称但具有失真的波束图形。
在操作中,接收天线1和波束形成器120以基本上与上述方式相反的方式运行,从而使沿着图6a的网格式接收方向之一的接收信号被送到波束形成器120的第一组30a的第一端口中的一个。由于提供了更多数目的元件100,且终接的端口较少,波束图形更为尖锐,但部分地由于采用过大的矩阵装置50且部分由于放大器117的振幅逐渐减小,相邻的三个接收方向之间的功率下降仍然只有-3dB。
现在结合图10和11描述本发明的另一个方面。
参见图10,在此实施例中阵列天线1(或2)的各个元件与第一Butler矩阵波束形成器120a和第二波束形成器120b的相应输出端口相连。波束形成器120a、120b均基本上具有如图5所示的结构,其中采用了图4所示的类型的N输入、N输出矩阵装置,组30a、30b每一个都由N个Butler矩阵组成,且天线1包括正方形阵列中的N2个辐射元件100。
因此每一个Butler矩阵装置120a、120b都具有N2个波束端口。显然,如果不加修正而采用该装置,这两个Butler矩阵产生的波束阵列将彼此重合。然而,通过在一个Butler矩阵装置120b与天线1之间提供移相器装置300,可以使一个阵列相对于另一阵列发生偏离。为了沿着一个方向对准这些束,只需要移相器装置300提供逐步递增的相移,该相移从天线1一侧的元件至另一侧的元件线性增大。如果波束阵列要得到二维对准,显然需要在天线1上施加二维的(即“纵向”和“水平”)相移。
移相器装置300可由在阵列的不同距离处抽头的微波传输线路(例如微波带状线路)而简单地得到提供。
参见图11,在一个最佳实施例中,移相器300沿着仰角和方位角方向都与一个网格式波束系列成角度NΔ/2,其中N是整数,从而使由于与第二矩阵装置120b相连的波束的峰值波束位置位于与第一Butler矩阵装置120a的四个相邻波束之间的最小值处。
在图11中,只显示了束的中心;由于第一矩阵装置120a的波束的波束中心被显示为点,且由于第二矩阵装置120b的那些被显示为叉。
该阵列将呈现为正方形阵列,以45°角倾斜,并具有较高程度的交叉。
因此,在该实施例中,可以用单个的天线产生大量的波束,并能够从正方形阵列天线产生正方形或非正方形的波束阵列,且波束的覆盖性得到改进且波束之间的下降有所减小。在图3所示的实施例中,模拟波束形成器20、120每一个都能够由两或多个Butler矩阵装置120a、120b和一或多个增量移相器300代替。
一般地,根据该实施例还可以组合成几个非正方形(例如六角)阵列。例如,利用三个得到适当设置以产生三个彼此偏离的六角波束阵列的Butler矩阵装置,能够产生六角形的网格。
该实施例可被用于卫星通信以外的应用中;例如其他的通信应用或雷达应用。
显然,前述实施例只是例子,且其他实施例或对上述实施例的各种修正都是可能的。以下只是这些各种修正的例子。
虽然前述中讨论了2×2混合电路提供的装置,但也可以提供采用三乘三耦合器其他结构的非二进的矩阵,如在诸如“Multiplebeams fromlinear arrays”,Shelton and Kelleher,IRE Transactions onAntennas and Propagation,Vol AP-9,pp.155-161,March 1961中教导的。
虽然在前述中提到了带状传输线结构,本发明也可以采用其他的技术(例如MMIC)实现。类似地,可以象偶极子那样采用诸如喇叭形或板形辐射元件。
虽然以上描述了频分多路,显然也可以采用其他的系统(例如时分多路或码分多路)。虽然讨论了中间圆形轨道,显然本发明也可以应用于低地球轨道(LEO)或其他轨道。虽然讨论了移动通信卫星通信,显然本发明也能够被应用于经过卫星的固定通信;同样地,本发明的方面可以被用于卫星通信以外的通信领域。
应该理解的是,本发明不仅限于上述例子,而是包含了对于本领域的技术人员来说显而易见的其他变化、替换或修正。
权利要求
1.一种波束形成网络,用于从一个阵列天线产生在波束方向的角阵列的至少一个方向上产生至少一个辐射波束,该网络包括由N1-输入、N1-输出无源功率分配器矩阵装置组成的第一组;以及,由N2-输入、N2-输出无源功率分配器矩阵装置组成的第二组;矩阵装置的总数小于N1+N2;其中第一组的装置少于N12个的第一端口被设置为波束端口,且第二组装置少于N22个的第二端口被设置为天线端口;且其中第二组的装置的各个第一端口与第一组的不同装置的第二端口相连,从而使各个波束端口与所有天线端口相连。
2.根据权利要求1的波束形成网络,其中在第一组中有M1个装置,其中M1小于N1。
3.根据权利要求2的波束形成网络,其中波束端口的数目少于M1×N1。
4.根据权利要求3的波束形成网络,其中在第二组中有M2个装置,其中M2小于N2。
5.根据权利要求2的波束形成网络,其中天线端口的数目少于M2×N2。
全文摘要
用于产生或接收角分散辐射波束的阵列的通信站,包括确定阵列天线(1)的辐射元件阵列(100);以及,波束形成器(120),该波束形成器包括具有第一边和第二边(Y)的无源网络,该第一边具有用于与波束对应的电信号的多个波束端口,且该第二边具有多个对应于辐射元件的天线端口,各个波束端口经过功率分配器(52)和移相器(53)部件组成的网络(50)而与多个天线端口相连,该移相器的相移是一个预定常数的整数倍,从而产生出波束阵列;其中阵列天线(1)具有三角或六角对称性,且波束阵列具有三角或六角对称性。
文档编号H01Q3/40GK1392681SQ01135938
公开日2003年1月22日 申请日期2001年10月29日 优先权日1994年4月18日
发明者萨缪尔·莫农-加西亚, 野本进一, 彼德·波斯凯特, 丹尼斯·穆林, 本·哈琴森, 帕特里克·科莫 申请人:英马尔塞特有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1