热保护器的制作方法

文档序号:7112788阅读:211来源:国知局
专利名称:热保护器的制作方法
技术领域
本发明涉及热保护器,适合于保护用在封闭式电力压缩机的马达,特别是三相马达,防止它们被烧坏。
背景技术
常规热保护器包括如JP-B-16-34532说明的具有三对触头的保护器,以及如JP-A-1-105435和JP-A-10-21808说明的具有二对触头的保护器。
在这种热保护器中,活动触头和固定触头的数目是6个,具有三对触头,这种数目是不经济的。另外,三个活动触头固定于用作加热电阻的金属板,该金属板的中心部分由热响应板支承。该金属板的中心部分受到按压,使得三个活动触头均匀地受到压力,因此达到稳定地接触。然而金属板由铆接等固定在热响应板中心部分形成的通孔中,该热响应板形成为盘形形状。简言之,该金属板支承在热响应板的中心部分,在该部分,应力最集中。因此作用在热响应板上的应力随金属板对热响应板被铆接的程度的不同而不同,由此热保护器的特性容易变化。即产生很难稳定热保护器特性这样的问题。
另一方面,在具有两对触头的热保护器中,活动触头固定于热响应板本身上。使电流流过热响应板,板上产生的热量使热响应板反转,从而打开触头。这种类型的热保护器称为直热式保护器。因为在这种直热式热保护器中,用电流加热热响应板,所以可以有利地增加热响应板对过电流的响应速度。
然而,因为产生热量的部件只限于热响应板,所以周围的部件很难被加热。因此,当热保护器操作时,电流路径被切断,由热响应板产生的热量便由温度相当低的周围部件吸收,因此触头打开的时间不能加长。结果,已经由过电流加热的马达的温度不能在电流断开期间充分地降低,因而在热保护器重复其反转和复位时,马达线圈达到的温度仍然处于较高的温度。在这种情况下,便产生这样的问题,即升高的温度降低了马达绕组绝缘层的绝缘性能,从而造成短路,发生烧坏的可能性。
另外,当选择分别具有适当曲率和操作温度的双金属或者三金属作为热响应板的材料时,热响应板的电阻率不能总是取得适当的值。即产生很难设计既具有适当操作电流值又具有适当操作温度值的热保护器这样的问题。
本申请人发明了一种热保护器,该保护器可以克服上述问题,并在日本提出发明的专利申请(公开号JP-A-2000-229795)。这种热保护器是间接加热式的保护器,在这种保护器中利用加热电阻产生的热量使热响应板反转。在这种保护器中,当电流增加加热电阻的温度时,利用加热电阻的热辐射增加热响应板的温度。当过电流等过分增加加热电阻的温度,使得热响应板达到设定的操作温度时,该电响应板迅速反转,切断电流路径。在这种间接加热式热保护器中,加热电阻不仅增加热响应板的温度,而且还增加周围部件的温度。因为热量很难从热响应板传到周围部件,所以热响应板温度的降低需要更长的时间。结果,热响应板的温度需要更长时间才能降低,因而触头打开的时间变长。因此在触头打开的时间中,马达绕组的温度可以充分降低,由此可以可靠地保护该绕组不被烧坏。另外,可以容易地设计热响应板,因为在热响应板的设计中,只需要考虑反转温度。
然而当保护器装配成用于电流超过200A的大操作电流时,便发生这样的问题,即大电流除流过加热电阻外,还流过在电流路径上的部件。例如,在上述热保护器中,大电流还流过支承加热电阻的弹性部件。结果,弹性部件本身或多或少地受到加热。当弹性部件在长时间内重复地被加热时,该弹性部件将会失去其弹性,因此触头不能被打开。作为此问题的防范措施,可以增加弹性部件的厚度,降低其电阻值,由此降低产生的热量。然而,弹性部件的厚度不能增加到可以进行弹性形变的值以上。这样便形成热保护操作电流的上限,由此不能装配操作电流大的热保护器。
因此本发明的目的是提供一种热保护器,这种保护器可以对付大的操作电流,装配成热响应板响应加热电阻的加热而反转,由此切断电流路径。

发明内容
本发明提供一种热保护器,包括热响应板,该响应板在达到设定温度时反转,而在低于设定温度时返回到其原来状态,由此闭合和断开电流路径,该热保护器的特征在于一个盒子,该盒子包括用金属做的具有开口的外壳、关闭该开口的具有两个通孔的金属板以及穿过该金属板相应通孔的导电端子,在金属板和端子之间具有绝缘填充部件;两个固定触头,固定在导电端子的端部,该导电端子分别突出于该盒子的内部;支承件,包括主要部分、形成在主要部分上的腿部分以及形成在该腿部分上的支承孔,该腿部分固定在金属板上,该支承件配置在该盒子中;加热电阻,配置在金属板和支承件的主要部分之间,使得基本上平行于该金属板,该加热电阻的一端具有插入支承孔的突出部,该加热电阻可以绕该突出部摆动,由此可以靠近或者离开该金属板;两个活动触头,固定于对着固定触头的那部分加热电阻上;连接件,配置在加热电阻的另一端部,用于将热响应板的反转和复位传送到加热电阻;电导体,电连接于支承件和加热电阻,该热保护器的特征在于,热响应板配置在加热电阻和支承板之间,使得该热响应板基本上平行于加热电阻,该热响应板两个端部中的一个端部固定于支承件,而另一端部通过连接件连接于加热电阻。
在上述结构中,活动触头正常情况下与固定触头接触,使得通过在金属板和各个导电端子之间的加热电阻形成两条电流电路,同时,所述导电端子之间形成带有加热电阻的一条电流电路。另外,当过电流使热响应板受热,并且热响应板的温度增加到各个设定的温度时,该热响应板反转。该热响应板的反转动作通过连接件传送到加热电阻。结果,加热电阻便摆动,使得活动触头脱离相应的固定触头,将电流电路断开。由于电路断开,加热电阻的温度下降,因而热响应板的温度降到设定温度或者降到低于该温度,热响应板恢复原位。随后,该加热电阻摆动,返回其先前的状态,由此活动触头分别于固定触头接触接通电路。
在上述结构中,热响应板的反转和复位动作通过连接件传送到加热电阻。另外,用于支承热响应板和加热电阻的弹性部件不包含在电路部件中。因为除加热电阻外,流过过电流而产生热量的部件数目降低,所以操作电流可以调节到很大的值。在上述结构中,特别是在使用电阻相当小的电导体时,由导体产生的热量只限于很小的值,因此上述结构是特别有效的。
附图的简要说明

图1是作为本发明第一实施例热保护器的三相内置保护器的纵向截面图;图2是内置保护器的分解透视图,示出其内部结构;图3是分解图,示出内置保护器的内部结构,图中一部分部件被省去了;图4是纵向截面图,示出内置保护器的操作;图5是沿图1的5-5线截取的纵向截面图,用于说明加热电阻器的操作,该电阻器处于触头闭合状态,图中一部分加热电阻被挡住;图6是类似于图5的截面图,示出加热电阻稍微倾斜的状态;图7是类似于图5的视图,示出触头打开的状态;图8是沿图1的8-8线截取的横截面图;图9是类似于图8的截面图,示出第二实施例;图10是本发明第三实施例加热电阻的透视图。
实施本发明的最好模式下面参考附图进一步详细说明本发明。
首先参考图1-8说明本发明的第一实施例。图1是作为本发明实施例热保护器的三相内置保护器的纵向截面图。图2和3是该内置保护器的分解透视图,示出该内置保护器的部件。图4是该内置保护器在操作时的纵向截面图。图5-7是具有外壳的内置保护器的侧视图,图中为了说明加热电阻的运动,该外壳和热响应板已被省去。图8是沿图1的8-8线截取的横截面图。
如图1所示,作为实施例的内部热保护器1具有耐压性能高的密封容器100(相当于一个盒子),该容器包括用金属做的圆拱形外壳2和端板3,该端板通过环形突焊法等焊接于该外壳的开口端部。
该端板3包括具有两个通孔4A和4B的圆形金属板4(见图5)。导电端子5A和5B穿过相应的孔4A和4B,并用玻璃等电绝缘填充件4C与端板4绝缘,并密封地固定于该端板4。陶瓷板14固定于金属板4的上表面,从而保护填充件4,以防接触起弧。固定触头13A和13B分别用银合金制造,并用焊接等方法固定于端子5A和5B的上端表面上,该端子分别露在陶瓷板14的上表面上。
支承件6配置在密封容器100内。如图2所示,该支承件6具有起主要部分作用的主表面6A、从该主表面6A的外周部分向下延伸的3个腿部分6B、6C和6D以及配置在主表面6A一侧的臂形部分6G和6H。该主表面6A具有3个狭缝6I。中间狭缝6I具有插入螺钉的部分6E。螺钉16穿过该螺钉插入部分6E。腿部分6D、6C和6D的下端部用点焊法点焊,固定于金属板4。主表面6A平行于金属板4。
基本上圆形的热响应板10支承在支承件6的下部分,如图1、2和4所示。这样支承该热响应板10,使其一个端部保持在连接件7的中心部分7A和压板17之间。连接片7的端部7B利用突焊法等焊接于主表面6A的下侧,使得该热响应板10由支承件6支承。在这种情况下,螺钉16的端部与连接片7的中心部分7A对接。该加压板17分散作用在热响应板10固定部分上的应力,由此可以防止该响应板10破裂,因此该加压板17的作用是提高热响应板10的耐用性。该热响应板10的制造方法是将双金属或者三金属材料加工成浅盘形的形状,该热响应板10在预定的温度下可以迅速反转和恢复原状。
将基本上圆形的加热电阻8装在热响应板10和端板3之间,如图1-3所示。该加热电阻8用电阻材料例如铁铬合金制造,并具有加热部分,该部分的面积基本上等于热响应板10的面积。突出部分8A形成在加热电阻8的右手端,如图2所示。切口8B形成在对着突出部分8A的那部分加热电阻8上。一对弯曲的突出部8P和8Q形成在与切口8B对称的那些部分的加热电阻8上。
活动触头9A和9B分别固定于对着固定触头13A和13B的加热电阻8的部分8C和8E的下侧表面上。另外,导体11的中心部分11A固定在加热电阻8的部分8D的下侧表面上。该导体11的两端11B和11C分别固定于支承件6的腿部分6B和6C。该导体11具有相当低的电阻值,因而不会被加热,并具有弹性,从而不会阻止加热电阻8的断开和接通操作。该导体11包括例如用许多铜丝铰合的铰合线。另外,还这样设计加热电阻8,使得8C-8D之间、8C-8E之间和8D-8E之间部分的电阻值基本上彼此相对,因而由这些部分产生的热量是均匀的。
另外,在加热电阻8的8C-8E之间、8C-8D之间以及8D-8E之间分别形成T形狭缝8F、8G和8H,如图2、3和8所示。为了使加热器8的电路变窄,增加电阻值,以得到要求的热量,形成狭缝8F、8G和8H。此实施例例示出操作电流约为200A的保护器。在例如操作电流约为250A的情况下,可以不需要任何狭缝,因为不用狭缝也可以得到相当大的热量。
作为一种增加加热电阻电阻值的方法,还提出降低加热电阻厚度的方法,然而在这种方法中,降低了加热电阻的机械强度。因此在一个长时间内重复进行加热电阻的加热操作、断开操作和闭合操作时,该加热电阻将会发生形变,而使操作电流发生变化。然而在本实施例中,为了使其电路变窄,增加电阻值,在加热电阻8上形成T形狭缝8F、8G和8H。结果不需要增加加热电阻8的厚度,因而可以将机械强度降低减小到最小。另外,因为需要将加热电阻器的辐射热将充分地传送到热响应板,所以不能在很大程度上减少对着热响应板的那部分加热电阻的面积。在此实施例中,各个狭缝形成为T形狭缝,所以可以增加电阻值,同时可以将对着热响应板的那部分加热电阻的面积限制到一个较小值。
支承件6的腿部6D具有大体长方形的通孔6F(对应于支承孔),该孔形成在其大体中心部分,如图1-3和5所示。突出部8A插入到该通孔6F中。固定片15用焊接等方法焊接于该突出片8A的远端,由此可以防止突出片8A脱离该孔6F。孔6F的短边做成为其尺寸(图5中的宽度)大于突出片8A的厚度。另外,孔6F的上边缘形成为弧形形状,在对着突出片8A的那部分加热电阻上形成切口8B。将连接件12固定于切口8B。该连接件12具有突出部12A和两个臂形部分12B。热响应板10插在突出部12A和该臂形部分12B之间。该臂形部分12B对应于本发明中第一对接位置,而突出部12A对应于本发明中的第二对接位置。
突出部12A和臂形部分12B之间的缝隙大于热响应板10的厚度。因此,热响应板10连接于加热电阻8,形成游隙。
热响应板10通常与连接件12的突出部分12A接触,从而将加热电阻8向下压,如图1所示。结果,触头闭合。该突出部12A位于穿过活动触头9A和9B之间中心线的中心轴上,并且其部分与热响应板10接触。因此热响应板10的压力均匀作用在该触头上。
另一方面,如图4所示,在反转时,该热响应板将接触连接件12的两个臂形部分12B,使加热电阻8升高。结果,触头断开。该两个臂形部分12B对穿过活动触头9A和9B之间中心的中心轴线是对称的。所以热响应板10的反转力基本上均匀作用在各个臂形部分12B上。因为活动触头9A和9B与相应的固定触头13A和13B是分开的,而没有倾斜,所以可以防止两对触头触头不同时地断开。另外,弯曲的突出部8P和8Q分别接触支承件6的臂形部分6G和6H,所以可以保持预定的触头的开距。
在此实施例中,可以通过连接件7的端部调节16压在热响应板10上的力,因而可以校正热响应板反转时的温度。另外,这样组装内置保护器1,即将部件固定在端板3和支承件6上之后,将支承件6的腿部分6B、6C和6D焊接在端板上,然后进一步将端板3的外周圆焊接在外壳2的开口端上。
下面参考图1、4、5、6和7,说明内置保护器1的操作。
当受保护的马达正常操作时,热响应板10的温度不超过操作温度。因此如图1所示,加热电阻8通热响应板10的压力而会向下压,此时活动触头9A和9B分别与固定触头13A和13B接触。在触头闭合的状态下,内置保护器1包括在金属板4和分别与端子5A和5B之间的电流路径,即电流从金属板4经支承件6、导体11、加热电阻8、活动触头9A(9B)和固定触头13A(13B)流到端子5A(5B)。内置保护器1还包括在端子5A和5B之间的电流路径,即电流从端子5A经固定触头13A、活动触头9A、加热电阻8、活动触头9B和固定触头13B流到端子5B。
另外,加热电阻8可以倾斜小角度,因为围绕通孔6A中的突出片8A形成空间。因此,例如既使在两个固定触头13A和13B的高度之间有差别时,也可以平衡作用在固定触13A和13B上的活动触头9A和9B的压力。
另外,当触头闭合时,热响应板10将加热电阻8向下压,此时活动触头9A和9B起支点作用,而连接件12的突出部12A则起重要作用。结果,加热电阻8的突出片8A正常情况下便压在通孔6的上侧(见图5)。而且通孔6A的上边缘形成为弧形形状,所以可以使加热电阻8的突出片8A接触位于孔6F中心部分的孔的上边缘。因此加热电阻8趋向于进一步倾斜。
另一方面,在加热电阻8产生的热量随马达过载,或者马达卡住的情况下形成的电流增加而增加时,或者由于热响应板10在电力压缩机温度增加而使热响应板10达到预定的操作温度时,该热响应板10将发生反转。随后如图5所示,该加热电阻8将由热响应板10升高,使得活动触头9A和9B分别与固定触头13A和13B分开。结果,上述电流路径断开。
在上述结构中,因为连接件12的突出部12A与热响应板10接触,所以在电流路径中该旁通电流路径形成在从支承件6径导体11到加热电阻8的电流路径中。该旁通电路从支承件6级经响应板10和连接件12延伸到加热电阻8。因为连接件12的突出部12A与热响应板10形成点接触,所以电阻大于通过导体11的电流路径电阻。因此,由旁通电路产生的加热不是太大的问题。具体在加热电阻8的电阻值需要设定大的电阻值时,虽然旁路电流增加,但是可以在连接件12和热响应板10之间插入绝缘片。结果,可以消除旁通电流。
图9示出本发明第二实施例。下面说明第二实施例与第一实施例的差别。图9示出操作电流设定在例如约100A小电流情况下的加热电阻18的结构。该加热电阻18除T形狭缝18F、18G和18H外,还具有狭缝18K、18L和18M。加热电阻18的电流电路可以通过附加的狭缝18K、18L和18M进一步变窄,由此可以增加电阻值。由于这种结构,可以防止大大降低加热电阻18的机械强度和对着该热响应板10的那部分加热电阻18的面积,同时可以增加由加热电阻18产生的热量。
图10示出本发明的第三实施例。下面说明第三实施例与第一实施例的差别。在第三实施例中,加热电阻28与连接件形成一个整体。具体是,连接件包括形成在加热电阻28端部上的接触部分28A(对应于第一对接部分)和一对臂形部分28B(对应于第二对接部分),该对臂形部分形成在对对接部分28A对称的两部分加热电阻上。上述结构也可以达到与第一实施例相同的效果。
本发明不限于上述实施例,而可以进行如下改变。
连接件12可形成为一种结构,使得在热响应板反转时,该连接件可以在其两个部分接触热响应板,而在其复位时,则在其一个部分接触热响应板,此时,连接件12可以形成为各种形状,而不限于如图2所示的臂形部分12B、突出部12A等的形状。
连接件中第一或者第二接触部分中的任一部分均可与加热电阻形成整体,而另一个与加热电阻分离。
导体11不限于铜线铰合线,例如可以将薄的铜板叠合起来。
可以根据满足热保护器特性所产生的热量和高温下的刚性,适当选择加热电阻的材料和尺寸。
工业应用如前所述,本发明的热保护器适用于防止三相马达被烧坏,特别是可以有效地应用于大操作电流的保护器。
权利要求
1.一种热保护器,包括热响应板,该热响应板在达到设定温度时反转,而低于设定温度时复位,由此可以接通或断开电流电路,所述热保护器的特征在于盒子,该盒子包括用金属做的具有开口的外壳、封闭该开口并具有两个通孔的金属板以及两个导电端子,该端子穿过金属板的相应通孔,在金属板和端子之间插入绝缘的填充部件;两个固定触头,固定于导电端子的端部,该端子分别伸入到盒子的内部;支承件,包括主要部分、形成在主要部分上的腿部分以及形成在该腿部上的支承孔,该腿部分固定在金属板上,使得支承件配置在盒子内;加热电阻,配置在金属板和支承件的主要部分之间,使其基本上平行于该金属板,该加热电阻的一端具有插入支承孔的突出部,该加热电阻可以绕该突出部摆动,从而可以接近和离开该金属板;两个活动触头,固定于对着固定触头的那部分加热电阻上;连接件,配置在加热电阻的另一端部,用于将热响应板的反转和复位动作传送到加热电阻;导电导体,该导体电连接于支承件和加热电阻;其中,所述热响应板配置在加热电阻和支承件主要部分之间,基本上平行于加热电阻,该热响应板两个端部中一个端部固定于支承件,而另一端部通过连接件连接于加热电阻。
2.如权利要求1所述的热保护器,其特征在于,该热响应板的面积基本上等于加热电阻加热部分的面积,并包括一中心部分,加工得使该热响应板形成为浅盘形状。
3.如权利要求1所述的热保护器,其特征在于,支承件的支承孔形成为大体长方形,在加热电阻摆动方向上具有较短的边,而在垂直于加热电阻摆动方向的方向具有较长的边,所述加热电阻的突出部的宽度尺寸与所述支承孔的长边尺寸大致相同,所述加热电阻的突出部的厚度尺寸小于所述支承孔的短边尺寸。
4.如权利要求3所述的热保护器,其特征在于,当活动触头接触相应的固定触头时,该突出部和支承孔的长边彼此形成点接触。
5.如权利要求4所述的热保护器,其特征在于,支承孔与突出部形成接触的长边形成为弧形形状,该弧伸向支承孔的内部。
6.如权利要求1所述的热保护器,其特征在于,该连接件包括第一和第二对接部分,当热响应板反转时,该第一对接部分在对两个活动触头之间中心线对称的两个位置接触热响应板,而第二对接部分在热响应板复位时,在位于两个活动触头之间的中心线上的一个位置接触热响应板。
全文摘要
热保护器(1)包括形成在导电端子(5A、5B)上的两个固定触头(13A,13B),该端子伸入到封闭的金属容器(100)内;支承件(6)配置在盒子中;摆动的加热电阻(8),该加热电阻由支承件支承,具有两个面对固定触头的活动触头(9A,9B);热响应部件(10),插放在加热电阻和支承件之间,并通过连接件(12)连接于该加热电阻。当过电流流过加热电阻产生热量,而热响应部件温度达到设定温度时,该热响应部件发生反转。该热响应部件的反转动作可以经连接件传送到加热电阻,使电流电路断开。
文档编号H01H1/12GK1659669SQ0381346
公开日2005年8月24日 申请日期2003年3月31日 优先权日2002年5月7日
发明者山田卓矢 申请人:株式会社生方制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1