燃料电池发电装置的制作方法

文档序号:7114942阅读:242来源:国知局
专利名称:燃料电池发电装置的制作方法
技术领域
本发明涉及在燃料电池发电装置中水冻结的防止。
背景技术
燃料电池通过在氢和氧之间的电化学反应产生能量,同时产生水蒸汽。此外,在提供燃料电池所采用的氢或空气之前要对氢或空气进行加湿。因此,在燃料电池发电装置中通常含有水,当燃料电池发电装置在低温状态下停止工作时,此水将在燃料电池发电装置不工作时冻结,当发电装置再一次启动时会影响它的重启。
日本专利局1988年公开的JP10-223249A提出了在从发电装置停止工作时起经过了特定时间之后在燃料电池发电装置中排放冷凝水以避免水冻结在燃料电池发电装置中。
具体而言,打开在发电装置中特定位置设置的排水设备,从而排出在内部通道中存留的水。在从发电装置停止工作时起的特定时间之后打开排水装置的原因在于,由在停止工作后温度下降所引起的水蒸汽冷凝需要预定时间。

发明内容
在设置有通过重整碳氢燃料提取氢的重整装置的燃料电池发电装置中,水蒸汽用于燃料的重整并用于从重整气体中去除一氧化碳。
并且,在固体聚合物电解质燃料电池(PEFC)中,在发电过程中电解质膜必须持续保持湿润状态。换句话说,此燃料电池发电装置不仅产生水,而且消耗水。
当燃料电池发电装置安装在难以从外部供应水的车辆中时,需要使水输入/输出平衡。但根据原有技术,发电装置每次停止工作时,打开排水装置从而把水排放到发电装置的外部,很可能打乱在该装置中的水输入/输出平衡,不利地造成水的缺乏。
因此,本发明的目的是在没有造成水缺乏的条件下防止在燃料电池发电装置中的水冻结。
为了达到以上目的,本发明提供一种采用水进行工作的燃料电池发电装置,包括用于防止在燃料电池发电装置中的水冻结的防冻机构;检测用于估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率的参数的传感器;以及可编程控制器。
对控制器进行编程以根据该参数估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水冻结的概率、根据冻结概率估计从发电装置停止工作时起的等待时间、以及延缓防冻机构的工作直至从燃料电池发电装置停止工作时起经过了该等待时间。
本发明还提供一种用于燃料电池发电装置的防冻方法,该燃料电池发电装置采用水进行工作并包括用于防止在燃料电池发电装置中水冻结的防冻机构。
本方法包括检测用于估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率的参数;根据该参数估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率;根据冻结概率估计从发电装置停止工作时起的等待时间;以及延缓防冻机构的工作直至从燃料电池发电装置停止工作时起经过了该等待时间。
本发明的细节以及其它特点和优点将在说明书的剩余部分说明并在附图中列出。


图1A和1B是根据本发明的燃料电池发电装置的示意图。
图2A和2B是描述由根据本发明的控制器进行的防冻程序的流程图。
图3表示在日本东京每月最低室外温度模式。
图4表示该地区在2月份典型的平均每天大气温度变化模式。
图5描述说明在由控制器存储的预估最低温度和冻结概率之间关系的图表特性。
图6描述说明在由控制器存储的水温、冻结概率和等待时间之间的关系的图表特性。
图7是描述由控制器执行的冷启动控制程序的流程图。
图8是描述由控制器执行的普通启动控制程序的流程图。
图9A和9B是描述由根据本发明第二实施例的控制器执行的防冻程序的流程图。
图10描述由根据本发明第二实施例的控制器实施的修正冻结概率的方法。
具体实施例方式
参见附图1A,车用燃料电池发电装置包括基于固体聚合物电解质燃料电池(PEFC)的燃料电池堆1。
各燃料电池包括分别设置在电解质膜1C两侧上的阳极1A和阴极1B,并通过在提供给阳极1A的氢和提供给阴极1B的氧之间的电化学反应产生电能。为了简化示图,仅示出了一个燃料电池,但燃料电池堆1包括大量串联设置的这些燃料电池的叠层。
由加湿器4加湿的富氢气体通过氢供应通道3供应给阳极1A。由加湿器4加湿的空气通过空气供应通道7供应给阴极1B。在重整装置(未示出)中由碳氢燃料如汽油或甲醇生成富氢气体。
在燃料电池堆1中的电化学反应之后,分别从阳极1A和阴极1B排放出阳极废气和阴极废气。阳极废气送入燃烧炉5,与从空气进口6引入的空气混合并在燃烧炉5中燃烧,并以无毒燃烧气的方式排放到大气中。
阴极废气含有大量的水蒸汽,这些水蒸气是由在燃料电池中的氢和氧之间的反应所产生的。将阴极废气送入冷凝器8,通过在冷凝器8的热交换部分26中进行冷却的方式冷凝在阴极废气中的水,然后将废气排放到大气中。经冷凝器8冷却过的水通过水通道9A流入水箱10。根据本实施例,采用水冷式冷凝器作为冷凝器8,但也可以采用可回收阴极废气中的水的空气冷却式热交换器或水隔膜作为冷凝器8。如果需要,可在水通道9A中设置过滤器。
水箱10经由水通道9B提供由加湿器4加湿用的水。在水通道9B中安装切断阀14、泵17和三通阀18。包括排水阀15的排水管16连接到在切断阀14和泵17之间的水通道9B。三通阀18是选择性地把加湿器4和空气泵20连接到水通道9B的阀。水箱10设置有用于加热所存储的水的加热器13。
燃料电池堆1包括水通道41,用于在启动过程中的预热并在发电过程中的冷却。水通道41实际上分别相邻于燃料电池的阳极1A和阴极1B形成,但图中为了简便仅示意性地示出。
将水从泵28经由加热器29供应给水通道41。在水通道41中,已经加热或冷却过燃料电池堆1的水选择性地经由通道21和三通阀22排放到冷却通道23和旁路通道25。冷却通道23在经过散热器24和冷凝器8的热交换部分26之后连接到泵28的吸入口。散热扇构建在散热器24中。旁路通道25绕过散热器24和热交换部分26,并连接到冷却通道23的下游部分。
在冷却通道23的中路设置存储箱27。把防冻剂如乙二醇与冷却水混合。
参见图1B,由从控制器30输出的信号分别控制加热器13、切断阀14、排水阀15、泵17、三通阀18、空气泵20、三通阀22、散热器24中的散热扇、泵28和加热器29。
控制器包括微型计算机,微型计算机包括中央处理单元(CPU)、只读存储器(ROM)、随机存储器(RAM)和输入/输出界面(I/O界面)。控制器还可以包括多个微型计算机。
再次参见图1A,在燃料电池发电装置正常工作时,控制器30将加热器29关闭,并控制三通阀22,使通道21连接到冷却通道23。
当燃料电池发电装置正常工作时,燃料电池堆1产生热量和电能。在水通道41中的冷却水吸收由散热器24散出的此生成热量。根据散热扇的旋转速度调节散热量。在冷凝器单元8的热交换部分26中,由散热器24冷却的冷却水冷却阴极废气,使得在阴极废气中的水蒸汽冷凝。此后,冷却水经由冷却通道23再循环至泵28的吸入口,再次从泵28供应到燃料电池堆1的水通道41。
当燃料电池发电装置启动时,控制器30打开加热器29,控制三通阀22,使得通道21连接到旁路通道25。以此方式,把由加热器29加热的水供应给燃料电池堆1的冷却通道41,并加热燃料电池堆1。在加热之后,水经过旁路通道25直接再循环至泵28的吸入口。
由于冷却或加热,使得在水再循环系统中的水进行上述热膨胀或收缩,存储箱27随着水的上述热膨胀或收缩来存储或提供水,从而使水再循环系统中保持适当量的水。
水从水箱10经由泵17和水通道9B供应到加湿器4。当在燃料电池发电装置冷启动的情况下水箱10中的水冻结时,加热器13用于使水解冻。并且,通过水箱10经由水通道9A回收已在如上所述的冷凝器8中冷凝的阴极废气中的水分。设置在水通道9B中的切断阀14用于切断水从水箱10向水通道9B的流出。排水管16和排水阀15用于从水通道9B排出水。三通阀18和空气泵20通过将压缩空气提供给水通道9B而迫使水通道9B中的水排出到排水管16。
如果燃料电池发电装置在低温下停止工作,在工作停止之后在水通道9B中汇集的水会冻结。在水通道9B中的冻结水影响重新启动系统时水向加湿器4的供应。但如上所述,如果从系统停止时起经过了特定时间后恒定地排出水通道9B,即使防止了水通道9B的冻结,在水箱10中的水也将不足。
在此燃料电池发电装置中,控制器30估计当发电装置停止工作时冻结的概率,通过在根据冻结概率的等待时间之后排干水通道9B,可防止冻结,而同时将排水频率控制得最小。
为了进行此控制,燃料电池发电装置包括检测燃料电池堆1的温度的温度传感器2;检测水箱10的水温的水温传感器11;检测水箱10的水位的水位传感器12;以及检测外部空气温度的外部空气温度传感器31。并且,它包括主开关40,主开关40控制燃料电池发电装置开始工作或停止工作。来自这些传感器的输出信号分别输入到控制器30作为信号。并且,在控制器30的ROM中预先存储有关在车辆行进的区域内室温变化的日历和数据。
控制器30采用此数据执行图2A和2B所示的防冻程序。当主开关40打开时该程序同时启动。
参见图2A,首先,在步骤S1中,控制器30读取来自传感器2、11、12和31的输出数据。
在下一步骤S2中,它确定燃料电池堆1的温度是否在50℃以上。此步骤是用于确定是否执行启动操作的步骤。当燃料电池堆1的温度在50℃以上,不需要启动操作。在这种情况下,在步骤S3中,确定燃料电池发电装置是否产生电能。如果不产生电能,控制器30执行步骤S7的过程。如果产生电能,控制器30执行步骤S8的过程。
通过在同一控制器30中单独编程的电能控制程序控制由燃料电池发电装置产生的电能。因此,控制器30了解燃料电池发电装置是否产生电能的问题。燃料电池发电装置的电能控制还可以由另一控制器执行。在此情况下,根据来自此另一控制器的信号确定燃料电池发电装置是否产生电能。
在步骤S7中,向发电控制程序输出通知启动结束的信号。当收到此启动结束的信号时控制程序开始产生电能,但由于此电能控制与本发明无关,在此省略了对它的描述。在步骤S7进行之后,控制器30执行步骤S8的过程。
在步骤S2中,当燃料电池堆1的温度在50℃以下时,在步骤S4中,控制器30确定由水温传感器11检测出的水箱10的水温是否低于5℃。5℃是设定成区分冷启动和正常启动的温度。
当水箱的水温低于5℃时,在步骤S5中,控制器30执行图7所示的冷启动子程序。当水箱的水温没有低于5℃时,在步骤S6中,控制器30执行图8中所示的正常启动子程序。这些子程序将在以下进行描述。在进行了步骤S5或S6之后,控制器30执行步骤S8的过程。
在步骤S8中,控制器30以由水温传感器12检测出的水箱10的水位为基础确定水位是否在预定水位L1以下。当水位传感器12的输出随着水表面的搅动而变化时,采取如1分钟以上检测出的水位的平均值作为水箱10的水位,将此平均值与预定水位L1进行比较。此外,从控制稳定性方面考虑,优选采用对于当水位升高时和当水位下降时的给定电平的不同值,换句话说,通过向确定值分配滞后区。该滞后区大约为最大水位波动范围的1/10。
当在步骤S8中水位低于预定水位L1时,在步骤S9中控制器30执行生成水的操作。具体而言,通过增加散热器24的散热扇的旋转速度,提高冷凝器8的水蒸汽冷凝稳定性,由此增加了从冷凝器8向水箱10回收的水量。
在步骤S9的过程之后,在步骤S10中,控制器30将水位与低于预定水位的最低水位L2进行比较。最低水位L2是临界水位,低于该水位时、在没有从外界补充水的情况下将不再进行水向加湿器4的供应。当水位低于最低水位L2时,在步骤S11中,驾驶员通过在驾驶室中的报警灯等发现水量不足。如果在报警后经过了预定时间之后没有供应补充水,则被迫终止燃料电池发电装置的操作。
在进行了步骤S11之后,控制器30执行步骤S12的过程。当水位没有低于在步骤S10中的最低水位L2时,跳过步骤S11,程序进行至步骤S12。如果在步骤S8中水位没有低于预定水位L1,则跳过步骤S9-S11,程序进行至步骤S12。
在步骤S12中,控制器30确定主开关40是否关闭。如果主开关40没有关闭,也就是说,如果还没有发出燃料电池发电装置停止操作的指令,控制器30就重复步骤S1-S12的过程。
如果主开关40关闭,则意味着停止燃料电池发电装置操作的指令已经发出。在这种情况下,控制器30执行在图2B所示的步骤S13-S21中停止工作时的过程。
参见图2B,在步骤S13中,控制器30确定在工作停止之后在发电装置中是否存在水冻结的危险。
图3表示在日本东京每月的室外温度模型。从此图中可看出,在从12月到3月的时间段内在燃料电池发电装置中存在着冻结的危险。会发生冻结的时间段取决于地区,在寒冷地区长一些,在温暖地区短一些。
图4给出了根据区域在日本2月份平均的每日温度波动的模型表示。在此图中,由方点连接的曲线表示温暖地区,由三角点连接的曲线表示寒冷地区,由圆点连接的曲线表示温度居中的地区。在控制器31中,把在温度居中的区域内每月气温变化预先存储在存储器中,通过以由外部空气温度传感器31检测出车辆外部的温度为基础改变对应月的存储数据,预先判断在燃料电池发电装置停止工作之后的温度变化。
例如,考虑到当外界空气温度为23℃时主开关40在下午4点关闭的情况。控制器30从ROM中存储的大气温度变化数据中查照在下午4点时(即16点)的值,为7℃。然后,通过计算得到在外部气温和大气温度变化数据之间的16℃的偏差。如果在ROM中存储的气温变化数据的最低气温是1℃,那么由16℃的变化与1℃相加获得的17℃的温度值将被认为是接下来的24小时所预先确定的最低气温。
在以此方式预先确定了最低气温之后,控制器30通过查找在ROM中预存的、具有图5所示的特性的图表,由最低气温计算冻结概率。在此图表中,当预先确定的最低温度是0℃或更低,冻结概率估算为100%。另一方面,如果预先确定的最低气温是10℃或更高,冻结概率估算为0%。因此认为在0℃和10℃之间的冻结概率在从100%至0%的直线上变化。如上所述,如果预先确定的最低气温是17℃,则因此水冻结概率为0%。
针对在步骤S13中对冻结概率的预先确定,存在各种选择。具体而言,可通过下述方式以提高估计精度利用汽车定位系统以获得有关车辆的当前位置的信息;在控制器30中存储有关在存储装置中的各个位置的大气温度变化的数据;从存储装置中读取有关对应于当前位置的大气温度变化的数据;并由此预先确定大气温度变化。还可以由天气预报直接获得预估大气温度。
在步骤S13中预先确定冻结概率之后,在下一步骤S14中,控制器30确定冻结概率是否为0%。如果冻结概率是0%,在步骤S21中发出了所有控制装置停止工作的指令之后,终止程序。
另一方面,当冻结概率不为0%,控制器30执行步骤S15-S19的过程。
首先,在步骤S15中,控制器30操作三通阀18以把空气泵20连接到水通道9B。从空气泵20送入水通道9B的压缩空气将水通道9B中残留的水再循环至水箱10。水泵17采用具有让水再循环结构的泵。例如,当齿轮泵优选为被聚四氟乙烯涂覆的齿轮用作水泵17时,由于由空气泵20提供的空气压力使齿轮以反向旋转,在水通道9B中的残留水通过被反方向旋转的齿轮所引导的泵17再循环至水箱10。
根据经验可预先发现由于提供压缩空气而将在水通道9B中的残留水全部回收到水箱10中所需的时间。在压缩空气从空气泵20经过该预定时间提供给水通道9B之后,控制器30关闭此切断阀14,并停止空气泵20的操作。
在停止了在水通道9B中回收水之后,在步骤S16中,控制器30以冻结概率和由水温传感器11检测出的水温为基础确定等待时间。这里,等待时间表示从下述定时器重置到排放过程进行的时间。在此图中,水温越低,冻结概率越高,等待时间越短。
在下一步骤S17中,控制器30重置定时器。在下一步骤S18中,控制器30递增定时器。在下一步骤S19中,判断定时器的值是否达到等待时间。重复进行步骤S18和S19直至定时器值达到等待时间。
当在步骤S19中定时器的值达到等待时间时,在步骤20中控制器30打开排水阀15,在步骤S12中输出指令信号以停止所有控制装置的操作,终止程序。
在此程序中,在步骤S15中执行的回收水通道9B中的水的过程还可以在步骤S20中打开排水阀15之前立即执行。
参见图7,现在描述在图2A的步骤S5中由控制器30执行的冷启动子程序。
在步骤S31中控制器31首先打开水箱10中的加热器13。
在下一步骤S32中,判断由水温传感器11检测出的水箱10的水温是否在10℃以上。然后程序等待直至水温超过10℃。
当在步骤S32中水温超过10℃时,在步骤S33中控制器30关闭排水阀15。在恰好之前燃料电池发电装置停止操作时执行的图2A和2B的防冻程序中,如果没有执行步骤S20的过程,则关闭排水阀15。在这种情况下,在步骤S33中,控制器30将排水阀15保持在关闭状态。
在下一步骤S34中,控制器30打开切断阀14。在下一步骤S35中,在等待5秒之后,发出指令以在步骤S36中开始发电。该步骤与图2A的步骤S7过程相同,并且可如上所述单独地设置施加给发电控制程序的指令。在步骤S36中等待的5秒钟对应于从当由水箱10流出到水通道9B的水充满水泵17的吸入口时的时间。优选该等待时间依据水通道9B的结构按经验设定。假设由发电控制程序控制水泵17的随后操作。
在下一步骤S37中,确定水箱10的水温是否高于20℃。然后程序进行等待直至水温超过20℃。当水温超过20℃时,在步骤S38中控制器30关闭加热器13的能量供应,终止程序。
接下来,参照图8描述在图2A的步骤S6中由控制器30执行的正常启动子程序。
步骤S71-S73的过程与图7的步骤S33-S35的过程相同,步骤S74的过程与图7的步骤S36的过程相同。
具体而言,控制器30关闭排水阀15并将水从水箱10供应给水泵17。在等待5秒后,控制器30向发电控制程序发出发电启动指令,终止子程序。在正常启动程序和冷启动程序之间的差别在于水箱10没有被加热器13加热。
如上所述,当操作停止时,燃料电池发电装置首先在空气泵20的空气压力下将残留在水通道9B中的水回收至水箱10。在根据由气温数据推断出的冻结概率的等待时间之后,打开排水阀15,将残留在水通道9B中的水排放到外部。
这样,从排水阀15排放到外部的水限制于不能由空气泵20的空气压力回收的残留水。并且,根据冻结概率设定直至排水阀15打开的等待时间。与没有首先回收、在从工作停止时起经过给定时间后机械打开排水阀15的原有技术相比,可更有效地防止冻结,同时大大地减少了水排出量和排出频率。
作为打开排水阀15以排出水通道9B中的残留水的方式的取代,还可以操作加热器14以防止冻结。
根据此实施例,水供应/回收机构向加湿器4供应水并回收阴极废气中的水,此机构与加热或冷却燃料电池堆1的加热/冷却机构不同。在此结构中,向水供应/回收机构的水通道9B提供防冻。
但根据本发明的防冻还可以应用于加热/冷却机构。
并且,当这两个机构都采用水时,可将它们连接。例如,可设置阀以将冷凝水从冷凝器8提供给冷却通道23,并且水位传感器可设置在存储箱27中。因此,根据存储箱27的水位的降低,把在冷凝器8中的冷凝水提供给冷却通道23,从而将更多的水供应给加热/冷却机构。
接下来,参照图9和10描述本发明的第二实施例。
此实施例涉及防冻程序,控制器30具有独立的芯片,该芯片具有使CPU休眠的功能、定时器功能、以及在定时器计时达预定时间时通过中断操作而重启CPU的功能。燃料电池发电装置的结构的剩余特征与图1所示的第一实施例的那些相同。
根据此实施例,当车辆停止时,间歇地启动控制器30的CPU,在采取防冻措施的同时观察燃料电池发电装置的冻结。为此,控制器30执行图9A、9B所示的防冻程序。当燃料电池发电装置启动时,即当主开关40打开时,此程序开始执行,即使在主开关40关闭之后仍继续直至达到预定终止条件。
参见图9A,首先在步骤S41中,控制器30确定是否打开主开关40。如果主开关40打开,执行步骤S1-S11的过程,当主开关40关闭时,执行图9B所示的步骤S52-S64的过程。
步骤S1-S11涉及燃料电池发电装置工作的过程中水供应/回收机构的控制,过程的详细情况与图2A中所示的步骤S1-S11的那些相同。但在此实施例中,在步骤S11的过程之后,或在步骤S8中水箱10中的水位不低于预定水位L1时,或在步骤S10中水箱10中的水位不低于最低水位L2时,程序返回至步骤S41,并重复进行步骤S41,并以随后的步骤取代在第一实施例的情况下的终止程序。
如果在步骤S41中关闭主开关40,就意味着发出了停止燃料电池发电装置工作的指令。在此情况下,首先,在图9B的步骤S52中,控制器30确定在发电装置中的水是否冻结。此判断方式采用与第一实施例的步骤S12不同的算法。具体而言,根据此实施例,在图4中,在三个区域中选择表示与由外部气温传感器31检测出的温度最接近的区域,根据该区域的温度变化特性确定冻结概率。
在此第一实施例中,通过计算由外部气温传感器31测出的温度与相应的温度居中区域的温度的偏移量,预测最低气温,但在此情况下,根据区域每天气温波动的差别造成了误差。根据此实施例,采用以外部空气温度传感器31为基础选择的区域的温度数据,因而增加了预测冻结概率的精确性。
通过按照第一实施例相同的方式查询具有图5所示特性的图表,预测冻结概率,并且为了使冻结概率的估计更可靠,优选以过去冻结概率估计值的变化为基础修正目前的估计值。
现在参照图10描述修正方法。这里,假设冻结概率呈线性变化,由恰好之前的冻结概率估计值Pn-1和在两次时机前的冻结概率估计值Pn-2之间的差值,计算出目前的冻结概率估计值P0n。当以由外部气温传感器31检测出的温度为基础的目前冻结概率估计值低于P0n时,按增加方向修正冻结概率估计值Pn。
在图中,以由外部气温传感器31检测出的温度为基础,把在连接两次时机前的估计值Pn-2和恰好之前的估计值Pn-1的虚线上的值P0n与冻结概率估计值Pn进行对照,如果Pn低于P0n,由下式(1)计算修正值Pfn,并将此值作为冻结概率估计值Pn。
Pfn=Pn+(P0n-Pn)/2 (1)由于此修正过程,即使当存在大的温度波动时,也能够防止由于冻结概率的不正确判断而造成的燃料电池发电装置中水的冻结。
在按步骤S52描述的方式计算出冻结概率之后,在下一步骤S53中控制器30确定冻结概率是否为0%。当冻结概率为0%时,在步骤S64中,控制器30输出停止所有控制装置操作的指令信号,并终止程序。在此情况下,排水阀15保持关闭状态。
当冻结概率不为0%时,在步骤S55中,控制器30确定冻结概率是否为90%或更低。
当冻结概率为90%或更低时,程序执行步骤S56-S61的过程。当冻结概率超过90%时,程序进行步骤S62-S64的过程。
在步骤S62中,正如在图2B的步骤S15中,操作空气泵20和三通阀18以将残留在水通道9B中的水再循环至水箱10。在此过程执行了预定时间后,控制器30关闭切断阀14并停止空气泵20的操作。
在进行了步骤S62之后,在下一步骤S63,控制器30打开排水阀15,正如在图2B的步骤S20中。随后,在步骤S64中输出指令信号以停止所有控制装置的操作,并终止程序。
另一方面,当在步骤S55中冻结概率是90%或更低时,控制器30设定等待时间。这里,以冻结概率和由水温传感器11检测出的水温为基础、通过查询具有第一实施例所采用的图6所示特性的图表设定等待时间。
在设定了等待时间之后,控制器30重置在上述芯片组(chip set)中的定时器,并将等待时间输入定时器,在下一步骤S58中,进入休眠状态,在休眠状态下CPU和RAM不工作。因此,下几个步骤S59-S61涉及芯片组的操作。
在步骤S59中,芯片组递增定时器。在步骤S60中,确定定时器是否达到等待时间。芯片重复设定步骤S59的递增定时器数值,并以固定时间间隔重复步骤S60的判断过程,直到定时器数值达到等待时间。
当定时器的值达到步骤S60中的等待时间时,芯片组通过步骤S61中的中断操作重置CPU。由于此操作,CPU和RAM重新返回到工作状态,程序返回至步骤S41,重复步骤S41和随后的步骤。
根据第一实施例,当冻结概率不为0%时,在主开关40关闭之后经过了根据冻结概率的等待时间之后,打开排水阀15。根据此实施例,控制器30重新计算冻结概率,并根据此结果确定是否立即打开排水阀15。
因此,可高精度地估计直至冻结开始的时间,和第一实施例相比,由于没有进行不必要的排水,因此存在更高的工作概率。并且,在等待时间的过程中CPU和RAM处于睡眠状态,因此可将监测所需的功率消耗控制在绝对最小值。
CPU的上述间歇启动和随后执行的程序消耗了由在车辆上安装的二次电池提供的电能。考虑到二次电池的一般容量,上述休眠和启动过程可在发电装置停止发电之后维持约一个星期。虽然在流程图中没有示出,但是优选在冻结概率超过90%的情况下执行步骤S62-S64,在主开关关闭之后经过一个星期时结束程序。
2002年7月5日在日本申请的JP特开2002-197117的内容在此引作参考。
虽然以上参照本发明的特定实施例描述了本发明,但本发明不限于上述实施例。鉴于上述启示,本领域技术人员可对上述实施例进行变化和修改。
例如,在上述第一和第二实施例中,把由外部空气温度传感器31检测出气温用作参数以估计冻结概率,但如果有冻结的危险也可以简单地确定,如果存在冻结的危险,可单独由水温传感器检测出的温度为基础设定等待时间。
并且,根据第一和第二实施例,采用由外部空气温度传感器31检测出的气温作为预测冻结概率的参数,但是也可以在不采用外部气温传感器31的情况下预测外部空气的温度。具体而言,由上述汽车定位系统获得车辆的当前位置,由当前位置、日历以及建立在控制器30中的与区域的气温变化有关的数据预测出在当前位置的当日最低气温,并根据预测的气温预测冻结概率。
应用的工业领域如上所述,根据本发明,可有效地防止在燃料电池发电装置中的冻结,并可将排出的水量控制在绝对低值。因此,在车用燃料电池发电装置用于各种气候并且难以从外界提供更多水的情况下,通过采用本发明防冻,获得了极好的效果。
其中要求享有专用性或独占权的本发明的实施方式定义在权利要求书中。
权利要求
1.一种采用水进行工作的燃料电池发电装置,包括用于防止在燃料电池发电装置中的水冻结的防冻机构(15,16);和可编程控制器(30),编程为根据用于估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率的参数,估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率(S13,S15);根据冻结概率判断从发电装置停止工作时起的等待时间(S16,S56);以及延缓防冻机构(15,16)的工作直至从燃料电池发电装置停止工作时起经过了该等待时间(S18-S20,S55,S58-S61,S62,S63)。
2.根据权利要求1所述的燃料电池发电装置,其中燃料电池发电装置还包括传感器(2,31),它检测用于估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率的参数。
3.根据权利要求1或2所述的燃料电池发电装置,其中控制器(30)进一步编程为随着冻结概率的增加把等待时间设定得更短(S13)。
4.根据权利要求1或2所述的燃料电池发电装置,其中,燃料电池发电装置进一步包括检测燃料电池发电装置内部水温的传感器(12),控制器(30)进一步编程为当燃料电池发电装置停止工作时的水温越高时,设定等待时间则越长(S13)。
5.根据权利要求1或2所述的燃料电池发电装置,其中控制器(30)进一步编程为在经过了等待时间之后操作防冻机构(15,16)(S20,S63)。
6.根据权利要求5所述的燃料电池发电装置,其中控制器(30)进一步编程为根据在经过了等待时间之后检测出的参数更新冻结概率(S52),仅当更新后的冻结概率超过预定指标时才操作防冻机构(15,16)(S63)。
7.根据权利要求6所述的燃料电池发电装置,其中控制器(30)进一步编程为当更新后的冻结概率没有超过预定指标时,以更新后的冻结概率为基础重新计算等待时间(S56),在经过了重新计算的等待时间之后再更新冻结概率(S52),仅当再更新的冻结概率超过预定指标时才操作防冻机构(15,16)(S63)。
8.根据权利要求7所述的燃料电池发电装置,其中控制器(30)进一步编程为由在过去估计的冻结概率的变化预测冻结概率的变化特性,根据变化特性修正再更新的冻结概率(S52)。
9.根据权利要求5所述的燃料电池发电装置,其中该发电装置包括水回收机构(10,14,18,20),当发电装置停止工作时该水回收机构回收并存储一部分残留水,控制器(30)进一步编程为在操作防冻机构(15,16)之前操作水回收机构(10,14,18,20)(S15,S62)。
10.根据权利要求1或2所述的燃料电池发电装置,其中防冻机构(15,16)包括排水阀(15),它排出在燃料电池发电装置中的部分残留水。
11.根据权利要求10所述的燃料电池发电装置,其中发电装置进一步包括具有阳极(1A)和阴极(1B)的燃料电池堆(1)、冷凝从阴极(1B)排出的阴极废气中的水蒸汽的冷凝器(8)、回收在冷凝器(8)中冷凝的水的水箱(10)、加湿供应到阳极(1A)的气体的加湿器(4)、以及从水箱(10)向冷凝器(8)提供加湿用水的水通道(9B),所述防冻机构(15,16)包括从水通道(9B)排出水的排水管(16)、包含打开和关闭排水管(16)的阀(15)的排水阀(15)。
12.根据权利要求1或2的燃料电池发电装置,其中防冻机构(15,16)包括加热器(13),该加热器加热在燃料电池发电装置中的部分残留水。
13.根据权利要求1或2所述的燃料电池发电装置,其中所述参数包括对应于发电装置的当前位置的外部气温和气候数据之一。
14.根据权利要求2所述的燃料电池发电装置,其中传感器(2,31)包括检测发电装置外部的温度作为参数的传感器(31),该控制器(30)进一步编程为根据外部气温计算冻结概率(S13,S52)。
15.一种用于燃料电池发电装置的防冻方法,该燃料电池发电装置采用水进行工作并包括用于防止在燃料电池发电装置中水冻结的防冻机构(15,16),该方法包括检测用于估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率的参数(S1);根据该参数估计在燃料电池发电装置停止工作之后在燃料电池发电装置中水的冻结概率(S13,S52);根据冻结概率估计从发电装置停止工作时起的等待时间(S16,S56);以及延缓防冻机构的工作直至从燃料电池发电装置停止工作时起经过了该等待时间(S18-S20,S55,S58-S61,S62,S63)。
全文摘要
燃料电池发电装置,其中由冷凝器(8)冷凝在来自燃料电池发电装置的阴极(1B)的阴极废气中所含的水分并回收到水箱(10)。在水箱(10)中的水从泵(17)经过水通道(9B)提供给加湿器(4),加湿器(4)对经由水通道(9B)供应给阳极(1A)的富氢气体进行加湿。当发电装置停止工作时,控制器(30)首先将水通道(9B)中的水回收到水箱(10)。并且,根据外部气温传感器(31)检测出的温度确定水通道(9B)的冻结概率,根据冻结概率设定等待时间。通过在经过了等待时间后打开排水阀(15)并排出水通道(9B)中的残留水,可以最小的排水量防止水通道(9B)的冻结。
文档编号H01M8/02GK1666371SQ0381595
公开日2005年9月7日 申请日期2003年6月9日 优先权日2002年7月5日
发明者福田隆 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1