多相超导电缆的相位分离构件的制作方法

文档序号:6832199阅读:96来源:国知局
专利名称:多相超导电缆的相位分离构件的制作方法
技术领域
本发明涉及一种分离构件,其用于将许多电缆芯体构成的多相超导电缆分成包含所述电缆芯体的相应段(segment)。更特别地,本发明涉及一种多相超导电缆的相位分离构件,以最小化或抵消每根电缆芯体外部产生的磁场。
背景技术
作为使用例如由bi基高温超导带形成的超导线生产的超导电缆中的一种,将多根电缆芯体组装到一个单元中制造的多芯型的多相超导电缆正处于研制中。
参照图4,该超导电缆100包括扭曲的并容纳在隔热管101中的三根电缆芯体102。隔热管101具有一个外管101a和一个内管101b。这些外管101a和内管101b所构成的双管结构在其中设置有隔热材料(未示出)并且在双管之间产生真空。每根电缆芯体102从最内侧的部件起顺序包括定径管200、超导体201、电绝缘层202、屏蔽层203及防护层204。所述超导体201通过围绕定径管200以螺旋方式分层缠绕超导金属线而形成。屏蔽层203通过与超导体201类似的方法围绕电绝缘层202以螺旋方式缠绕形成。在该屏蔽层203中,在恒稳态中产生的电流与流经超导线201的电流具有相同的大小并与其流经的方向相反。产生的电流引发磁场,所述磁场抵消超导体201所产生的磁场,使得在磁芯102的外部几乎没有泄漏的磁场。在内管101b和每根电缆芯体102之间形成的间隙103通常提供冷却剂流经的通道。围绕隔热管101设置由聚氯乙烯制成的防腐层104。
例如,在多根多相超导电缆相互连接、多相超导电缆与普通传导电缆连接或形成有多相超导电缆的终端构件的情况中,所述多相超导电缆被分成各个相位所对应的各个段,也就是电缆芯体。在保持低温的分线盒中将所述电缆分成多根电缆芯体段,并且所述电缆芯体以相互分开的状态被固定在分线盒中。用来保持电缆之间具有充足的空间的夹具,例如在No.2003-009330日本公开专利中予以披露。
例如,在多根多相普通传导电缆相互连接或形成有多相普通传导电缆的终端构件的情况中,多相普通传导电缆与多相超导电缆一样,也被分成电缆芯体的各个段。在此,在没有上述分线盒的情况下将普通传导电缆分成多根电缆芯体段,因此使电缆芯体被自然分开。在电缆芯体的分开部分,每根电缆芯体的屏蔽层通常被接地,以便使每个相位获得接地电位。该技术例如在由Kihachiro Iizuka、Kabushiki Kaisha Denkishoin于1989年三月第一版,第一次印刷的“Power Cable Technology Handbook,NewEdition”中645页里予以描述。
可是,关于多相超导电缆,现在还未知道或想出在分开部分处怎样加工每根电缆芯体的屏蔽层,并因此也需要一种适当加工所述屏蔽层的特定方法。在所述超导电缆分开部分处、每根电缆芯体的屏蔽层可类似于上述普通传导电缆那样接地。可是,相比于普通传导电缆,超导电缆允许非常大的电流流过,从而如果所述屏蔽层与普通传导电缆的屏蔽层一样被接地,则电缆芯体的每个屏蔽层可能通过地而连接。如果超导电缆电缆芯体的各个屏蔽层被分别接地并且屏蔽层通过地连接,由于屏蔽层之间的高的电连接阻抗,使得流经屏蔽层的电流比超导体中所流经的电流小。最终问题是,每根电缆芯体的屏蔽层不能产生足够大的磁场以抵消每根电缆芯体的超导体所产生的磁场,并且会在每根电缆芯体的外侧产生大的磁场。

发明内容
本发明的一个目的是提供一种多相超导电缆的相位分离构件,以最小化或抵消在多根电缆芯体外部所产生的磁场。
本发明通过借助导电材料以屏蔽层由低阻抗彼此连接的方式使多根电缆芯体的各个屏蔽层相互连接来获得上述目的。
特别地,本发明的多相超导电缆的相位分离构件包括多根电缆芯体,所述电缆芯体具有围绕相应的超导体设置的相应的屏蔽层;容纳电缆芯体的分线盒,每根电缆芯体从其中组装电缆芯体的集合部分伸出,所述分线盒中的电缆芯体相互间隔开;以及导电连接部分,该部分使分线盒中各电缆芯体的相应屏蔽层相互连接。
如果多相超导电缆的电缆芯体的各个屏蔽层通过地相互连接,那么在屏蔽层之间的连接阻抗高。在此情况中,在由电缆芯体的每个屏蔽层产生抵消从每根电缆芯体的超导体所产生磁场的磁场方面产生困难。因此,本发明使用具有低连接阻抗的导电元件使电缆芯体的各个屏蔽层相互连接,而没有以高连接阻抗的方式经由地来连接屏蔽层。
下面更加详细地说明本发明。
本发明旨在具有多根电缆芯体的多相超导电缆,所述电缆芯体在相应超导体周围具有相应的屏蔽层。例如,本发明旨在三芯型三相超导电缆,其具有三根扭曲并容纳于隔热管中的电缆芯体。本发明的超导电缆可以是任意已知的多相超导电缆。
本发明使用分线盒,用来容纳通过将超导电缆分成包含电缆芯体的各个段所形成的多相超导电缆的电缆芯体段。特别地,在分线盒中,容纳了从集合部分伸出并相互隔开的电缆芯体。在此,集合部分是指多相超导电缆的一部分,在该部分中,构成超导电缆的多根电缆芯体被组装到所述电缆中。分线盒充有如液氮的冷却剂来冷却电缆芯体,使得电缆芯体处于超导状态。因此,分线盒优选具有隔热结构。
分线盒中的每根电缆芯体可以借助固定工具予以固定。固定工具的一个示例能够固定每根电缆芯体并将电缆芯体固定在相互隔开的状态下。特别地,固定工具适当地构造成使其能够在分线盒中随电缆芯体的伸长/缩短而移动。
根据本发明,借助于特定连接部分,具体为由导电材料形成的导电连接部分使分线盒中容纳的电缆芯体的各个屏蔽层相互连接。所述导电材料优选为如铜或铝(在77K电阻率为ρ=2×10-7Ω·cm)的材料。即使在接近所述超导电缆的冷却剂温度,例如,在液氮用作冷却剂时为液氮的温度下,这些材料都具有低的电阻。所述导电连接部分在纵向上连接分线盒中容纳的相应电缆芯体的各个屏蔽层的至少相应部分。所述连接部分可以以这样一种方式成形,即连接部分沿圆周方向接触电缆芯体的相应屏蔽层的至少相应部分,并能使电缆芯体的相应屏蔽层相互连接。如果电缆芯体的每个屏蔽层都由许多超导绞合线形成,那么所述连接部分优选以这样的方式形成,即连接部分可以电连接到所有组成的超导绞合线。例如,连接部分成形为具有圆柱形元件和耦合元件的组合,所述圆柱形元件能够覆盖电缆芯体的每个屏蔽层的外围,而耦合元件将圆柱形元件相互耦合。特别地,耦合元件优选为柔性元件。更特别地,所述耦合元件由编织(braided)材料形成。所述柔性耦合元件能用于包容每根电缆芯体由于冷却所引起收缩时发生的任何移动。所述耦合元件的柔性在于有限空间内,如分线盒的内部组装的方面提供良好的可工作性,并能吸收(absorb)装配工作所引起的任何尺寸偏差。
优选地,在连接时,用低电阻连接导电连接部分和屏蔽层。例如,它们用焊料适当地连接。当导电连接部分连接到屏蔽层时,如果每根电缆芯体设有防护层,那么防护层被事先局部去除,以去除防护层中进行连接的部分。
所述导电连接部分可以连接到从分线盒引出的电缆芯体的屏蔽层。在此,延伸到分线盒之外的电缆芯体都配备有充满冷却剂,如液氮的隔热管,以便如同容纳在分线盒中的电缆芯体那样保持在超导状态。因此,将导电连接部分与从分线盒中伸出的电缆芯体的每个屏蔽层相连接的构件非常复杂,所以,本发明在分线盒中将导电连接部分与电缆芯体相连。
导电连接部分可以设置在分线盒中每根电缆芯体的任意位置。如果导电连接部分设置在与分开电缆的终端(下文称作分离终端)相对靠近的位置,则电缆芯体被进一步相互隔开,因此增加了电缆芯体之间的距离。在此情况中,在连接所述连接部分中的可工作性被改善,故这种方法是优选的。相反,如果导电连接部分被设置在与集合部分相对靠近的位置,所述电缆芯体基本不能被进一步分开,所以它们之间的距离就比较小。在此情况中,导电连接部分被做得紧凑,由于连接部分远离分离终端定位,分线盒位于分离终端较近的部分可被制造得更小。换句话说,分线盒能被做得更紧凑。
优选地,本发明的分离构件不仅在电缆芯体(超导电缆)的一端形成,而且还形成在电缆芯体的两端中的每一端处。如果本发明的分离构件被设置在超导电缆的各个端部,在电缆芯体的各个终端处的各个分线盒的每一个中的电缆芯体的相应屏蔽层都通过导电连接部分相互连接。因而,在从超导电缆一端处的导电连接部分延伸到超导电缆另一端处的导电连接部分的电缆芯体的各个屏蔽层的每一个中,在稳定状态中引发与流经相对应的超导体的电流具有基本相同大小并且方向相反的电流,并因此抵消电缆芯体外侧的任何泄漏磁场。相对于导电连接部分来说,大多数与流经超导体的电流具有基本相同大小并且方向相反的电流流经位于离集合部分较近的一部分屏蔽层。所以在导电连接部分和分离终端之间的部分屏蔽层中,仅流过比超导电缆中的电流小的电流。那么,如果围绕从分线盒伸出的每根电缆芯体设置的上述隔热管由低电阻材料制成,由于位于导电连接部分和分离终端之间的电缆芯体附近产生泄漏磁场而引发涡流损耗。那么,为了减少或抵消涡流损耗,隔热管优选由高阻抗材料或绝缘材料形成。所述高阻抗材料优选从室温到大约77K低温具有至少10-5Ω·cm的电阻率ρ。高阻抗的一个实例为不锈钢(电阻率ρ=4×10-5Ω·cm到8×10-5Ω·cm)。绝缘材料的一个实例为FRP(纤维增强塑料)。
电缆芯体的每个相应的屏蔽层都接地。在此,优选地将所述屏蔽层一起接地。因此,本发明使相互连接屏蔽层的导电连接部分接地,以便使屏蔽层一起接地,来改进可工作性。因此,本发明使得将屏蔽层彼此连接的导电连接部分接地。如果本发明的分离构件被设置在超导电缆的两端并且在各个端部处的导电连接部分接地,那么通过地形成一闭环。因此,仅有在一个端部处的分线盒中的导电连接部分接地。
本发明的前述和其他目的、特征、形式和优势,将根据以下结合附图进行的本发明详细说明变得更加清楚。


图1示意性示出本发明多相超导电缆的相位分离构件,其具有位于分离终端较近处的导电连接部分;图2A为图1沿II-II的截面图,图2B为图1所示区域C中部分电缆芯体的截面图,以及图2C为其他形式的导电连接部分的截面图;图3A示意性示出本发明多相超导电缆的相位分离构件,其具有位于集合部分较近处的导电连接部分,而图3B为图3A沿III-III的截面图;图4为三芯型三相超导电缆的截面图。
具体实施例方式
下面说明本发明的实施例。
第一实施例如图1所示,结合具有三根电缆芯体102的三相超导电缆100的相位分离构件的示例来描述这个实施例。
参照图1,本实施例的多相超导电缆的相位分离构件150包括三根电缆芯体,每根电缆芯体具有围绕超导体设置的屏蔽层;分线盒1,该分线盒在从三根电缆芯体102集合到超导电缆中的集合部分110伸出的电缆芯体102相互分开的状态下容纳超导电缆;以及导电连接部分2,该导电连接部分将分线盒中电缆芯体102的各个屏蔽层相互连接。
本实施例的三相超导电缆100具有与图4中所示结构相同的结构。特别地,参照图4,通过扭曲三根电缆芯体102并其将容放在隔热管101中来构造三相超导电缆100,每根电缆芯体从最内侧部分顺序包括,定径管200、超导体201、电绝缘层202、屏蔽层203以及防护层204。通过扭曲各自覆盖有绝缘体的多根铜线来构造定径管200。超导体201通过围绕定径管200以螺旋方式分层缠绕Bi2223基超导带形的导线(包覆有Ag-Mn的导线)而构造。屏蔽层203通过围绕电绝缘层202以螺旋方式分层缠绕Bi2223基超导带形的导线(包覆有Ag-Mn导线)而构造。电绝缘层202通过围绕超导体201缠绕聚丙稀层压纸(由Sumitomo Electric Industries有限公司制造的PPLP(R))而构成。防护层204通过围绕屏蔽层203缠绕牛皮纸来构成。隔热管101具有分别由SUS波形管形成的外管101a和内管101b。外管101a和内管101b构成的双管其中分层设置有隔热材料,并且在双管之内产生真空以实现真空的多层隔热结构。而且,围绕隔热管101设置聚氯乙烯的抗腐蚀层104。
再次参照附图1,具有组装在其中的扭曲电缆芯体102的三相超导电缆100通过使电缆芯体102相互分隔而被分成电缆芯体各个段,使得电缆芯体102可单独控制。分线盒1容纳这些逐渐相互分开的三根电缆芯体102。因此,所述超导电缆100从分线盒1的一侧(图1中的右侧)插入,且从电缆分出的电缆芯体102从与该侧面相反的另一侧(图1中的左侧)突出。分线盒1的内部充有如液氮的冷却剂,用于冷却其中具有冷却剂的电缆芯体。因此,分线盒1具有带隔热层1a的隔热结构。本实施例的分线盒1为圆柱形。
置于分线盒1中的电缆芯体102从分线盒1的一侧(从超导电缆100的集合部分110)朝分线盒1的另一侧(朝电缆芯体102分离终端)延伸,且电缆芯体102之间的空间逐渐增加至恒定。本实施例的电缆芯体102由第一固定工具10、第二固定工具11、和中间固定工具12予以固定,其中第一固定工具10将芯体固定到相对靠近集合部分110的位置处,第二固定工具11将芯体固定在中间位置处,而中间固定工具11将芯体固定在第一固定工具10和第二固定工具11之间。
第一固定工具10具有环状中心部分,并且三个中间固定工具12被固定在环状部分外围。第一固定工具以这样的方式设置在电缆芯体102之间,即环状部分的中心基本位于由三根电缆芯体102所围绕的空间的中心。电缆芯体102设置在相应的中间固定工具12处,使得中间固定工具12固定相互分开的电缆芯体102。
第二固定工具11的基本结构几乎与第一固定工具10相类似,它们的区别仅在于第二固定工具11的环状部分直径比第一固定工具10的要大。在本实施例中,设置了滑动部件11a,其基本与分线盒的内周面点接触,以便随电缆芯体102伸长/缩短而可在分线盒中移动。滑动部件11a连接到环状部分的外围上的任意部分相连接,在所述连接处中间固定工具12未固定。电缆芯体102由第二固定工具11以这样一种方式固定,即电缆芯体在分线盒1中朝终端部分4延伸,同时各个电缆芯体之间的间隔恒定。注意到此处“接近分离终端”指的是相对于第二固定工具11更靠近终端部分4定位的部分。此外,此处“接近集合部分”指的是相对于第二固定工具11更靠近集合部分110定位的部分。
中间固定工具12各自都是通过合并半弧形元件被构造成圆柱形,即俗称的细管(canaliculate)元件。在本实施例中,成对的细管元件覆盖电缆芯体102的外围,并且细管元件的外周与电缆芯体102的外周通过一些夹紧工具,如带子(未示出)相连接以便在其中固定电缆芯体102。中间固定工具12可以具有一些适当设置在其中的通孔,以促进中间固定工具12中电缆芯体102和冷却剂的接触。
本实施例的特征在于用导电连接部分2使电缆芯体102的各个屏蔽层相互连接的构件。在本实施例中,相对于第二固定工具11较靠近分离终端定位的电缆芯体102的每个屏蔽层通过导电连接部分2相互连接。参照图2A和2B,本实施例的导电连接部分2包括圆柱形元件2a和耦合元件2b,其中圆柱形元件覆盖电缆芯体102的屏蔽层203各个外周,而耦合元件2b使圆柱形元件2a相互耦合。
每个圆柱形元件2a由一对半弧形元件构成,所述半弧形元件在外形上与电缆芯体102的外形相匹配,以便于圆柱形元件2a附着到每根电缆芯体102的屏蔽层203外周上。由此所述半弧形元件被合并以覆盖屏蔽层203的外周。更特别地,如图2B所示,部分去除电缆芯体的防护层203以部分地露出屏蔽层203,并且成对的半弧形元件被设置在屏蔽层203的露出部分上以覆盖电缆芯体102。圆柱形元件由铜制成。尽管成对的半弧形元件通过焊料连接,但它们也可以借助如螺钉的耦合元件予以连接。另外,每个圆柱形元件2a和电缆芯体102的屏蔽层203也通过焊料连接。因此,圆柱形元件2a与构成屏蔽层203的超导带形导线相接触。
耦合元件2b使圆柱形元件2a相互连接并设置在电缆芯体102之间,以将电缆芯体102保持在电缆芯体102相互分离的状态。在本实施例中,耦合元件2b各自由铜编织材料形成,如圆柱形元件2a那样。柔性耦合元件2b可用来遵循每根电缆芯体的任何移动,并便于与分线盒1中圆柱形元件2a连接,其中所述运动会在冷却而引起收缩时出现。而且,可以吸收连接工作中所出现的任何偏差。在本实施例中,采用了三个耦合元件2b,圆柱形元件2a连接到每个耦合元件2b的相应的端部,于是,如图2A所示,导电连接部分2形成为三角形,且圆柱形元件2a在各个顶点处(△型连接)。在本实施例中,耦合元件2b和圆柱形元件2a通过焊料连接。另外,它们可以借助如螺栓的耦合元件进行连接。此外,如图2C所示,导电连接部分2构造成使其中心元件2c设置在三角形中心处,且圆柱形元件2a设置在顶点处,并使耦合元件2b将中心元件2c连接到相应的圆柱形元件2a(Y型连接)。
根据本实施例,隔热管3围绕从分线盒中伸出的每根电缆芯体102设置,隔热管3由双不锈钢波形管构成,并且隔热管与分线盒一样充有冷却剂。因此,每个从分线盒1中伸出的电缆芯体102可保持在超导状态。每根电缆芯体102的分离终端设置有可与另一电缆芯体或连接设备连接的终端部件4。上述特征也是将在下面说明的第二实施例的特征。
按照上述所构造的超导电缆的相位分离构件150具有连接电缆芯体102各个屏蔽层203的导电连接部分2,使得这些屏蔽层203在电流流过所述电缆时相互短路。特别地,因为屏蔽层203之间通过低连接电阻予以连接,所以使得流过每个屏蔽层203的电流大小基本与流过每个超导体201的电流相等。因此,在每个屏蔽层203中可以产生抵消每个超导体201所产生的磁场的磁场,并相应地减少电缆芯体102外部产生大磁场。
此外,根据本实施例,导电连接部分2在相对靠近分离终端的位置处连接,使得导电连接部分2很容易地在电缆芯体102相互充分分开的位置处进行连接。而且,在本实施例中,围绕从分线盒1中伸出的每根电缆芯体102设置的隔热管3由高阻抗材料制成,从而甚至在导电连接部分2和终端之间的部分(参见附图1)处围绕电缆芯体102产生泄漏磁场时,也可以减少或最小化涡流的产生。这样,可减少由涡流所引起的任何损耗。
本实施例中,超导电缆的相位分离构件150被设置在每个超导电缆100的每个相应端部处。在电缆一个端部处仅有分线盒1的导电连接部分2被接地。特别地,例如用焊料将地线连接到导电连接部分2上,该地线被拉出到分线盒1外侧并接地。所述地线和分线盒1被气密密封以保持气密性。将电缆芯体102的各个屏蔽层相互连接的导电连接部分2进而被接地,使得屏蔽层被共同接地。另外,因为仅有电缆一端部处的导电连接部分2被接地,所以电缆芯体102的屏蔽层203没有通过地连接。
第二实施例参照图3A和3B,本实施例的多相超导电缆的相位分离构件160,与图1所示第一实施例中多相超导电缆的相位分离构件150具有基本相似的结构,区别在于导电连接部分2′相对于第二固定工具11被设置在离集合部分110相对近的位置,这些将在下文详细说明。在此,图3A未示出终端部分。
第二实施例的导电连接部分2′如图3B所示包括圆柱形元件2a′和耦合元件2b′,其中圆柱形元件分别覆盖多根电缆芯体102的各个屏蔽层外周,而耦合元件使圆柱形元件2a′相互耦合。本实施例的圆柱形元件2a′,类似于第一实施例中的,由一对铜制半弧形元件构成。圆柱形元件2a′的半弧形元件围绕通过局部去除电缆芯体102的防护层204而露出的相对应的屏蔽层设置,并用螺栓连接以覆盖电缆芯体102。圆柱形元件2a′各自通过焊料连接到相应电缆芯体102的对应屏蔽层203上。
本实施例的耦合元件2b′将这些圆柱形元件2a′相互连接并设置在电缆芯体102之间。耦合元件2b′由三角棱形材料形成并与圆柱形元件2a′一样由铜制成,所述材料对应三角截面的各个顶点的每个部分被切割成弧形。在本实施例中,耦合元件2b′的切割部分与相应的圆柱形元件2a′连接以形成具有三角形截面的导电连接部分2′,如图3B所示,且在所述导电连接部分2′的三角形截面的每个顶点上设有圆柱形元件2a′(△型连接)。尽管在本实施例中,通过焊料连接耦合元件2b′和圆柱形元件2a′,但它们可以通过如螺栓的耦合元件予以连接。
如上所述构造的超导电缆的相位分离构件160具有导电连接部分2′,所述连接部分2′将多根电缆芯体102的各个屏蔽层相互连接,使得在电流流经电缆时,与第一实施例所实现的一样,降低了屏蔽层之间的连接阻抗。于是,使得流经每个屏蔽层的电流大小与流经每个超导体的电流大小基本相等,并因此可通过屏蔽层中产生的磁场抵消超导体所产生的磁场。这样,可减少电缆芯体外部大磁场的产生。
此外,由于本实施例的导电连接部分2′被设置在离集合部分110相对近的位置,所以电缆芯体102之间的距离相对短。因此,导电连接部分2′可被制造得小并且在分线盒1中相对于第二固定工具11,位于相对靠近分离终端的位置的间隔可被设置得更小。这样,分线盒1能被制造得紧凑。
第三实施例参照图1和3A,已经结合如下的构件说明了第一和第二实施例,所述构件具有为高阻抗材料的不锈钢的隔热管3,并围绕从分线盒1伸出的每根电缆芯体102外周设置。在本实施例中,隔热管由FRP(纤维增强塑料)的绝缘材料制成。利用本实施例的超导电缆的相位分离构件,即使在从导电连接部分2、2′到终端部分(参见图1)的区域内围绕电缆芯体102产生泄漏的磁场,因为围绕从分线盒伸出的电缆芯体102的相应外周设置的隔热管3由绝缘材料制成,所以不易于产生涡流。由此,可以有效地降低由涡流带来的损失。
如上所述,使用本发明的相位分离构件,多根电缆芯体的各个屏蔽层在电缆被分成相应电缆芯体段的部分处用导电连接部分相互连接。于是,可有效地减少在电缆芯体外侧产生大磁场。
而且,因为围绕相对靠近分离终端区域处的各个电缆芯体的外周设置高阻抗材料或绝缘材料的隔热管,即使在位于分离终端和导电连接部分之间电缆芯体的相应部分附近产生任何泄漏磁场,也可以减少或最小化涡流的产生。进而可减少由涡流带来的任何损耗。
尽管已对本发明进行了详细地说明和图示,但应该清楚图示和实施例仅仅为了说明和举例,而不是限定性的,本发明的精髓和范围仅通过所附权利要求来限定。
权利要求
1.一种多相超导电缆的相位分离构件(150),包括多根电缆芯体(102),其具有围绕相应的超导体(201)设置的相应屏蔽层(203);分线盒(1),该分线盒容纳从集合部分(110)伸出的所述多根电缆芯体(102),其中所述电缆芯体(102)被组装在所述超导电缆中,而所述分线盒(1)中的所述电缆芯体(102)相互分开;导电连接部分(2),其在所述分线盒(1)中将所述多根电缆芯体(102)的各个屏蔽层(203)相互连接。
2.根据权利要求1所述的多相超导电缆的相位分离构件(150),其中,所述导电连接部分(2)具有覆盖所述多根电缆芯体(102)的所述屏蔽层(203)相应外周的圆柱形元件(2a、2a′),以及将所述圆柱形元件(2a、2a′)彼此耦合的耦合元件(2b、2b′)。
3.根据权利要求2所述的多相超导电缆的相位分离构件(150),其中,所述耦合元件(2b、2b′)由编织材料制成。
4.根据权利要求1所述的多相超导电缆的相位分离构件(150),其中,所述导电连接部分(2)在所述分线盒(1)中靠近所述电缆芯体(102)的分离终端。
5.根据权利要求1所述的多相超导电缆的相位分离构件(160),其中,所述导电连接部分(2)在所述分线盒(1)中靠近所述电缆芯体(102)的所述集合部分(110)设置。
6.根据权利要求1所述的多相超导电缆的相位分离构件(150),其中,隔热管(3)围绕从所述分线盒(1)引出的多根电缆芯体(102)中每一根的外周设置,并且所述隔热管(3)由高阻抗材料或绝缘材料制成。
7.根据权利要求1所述的多相超导电缆的相位分离构件(150),其中,分线盒(1)设置在所述电缆芯体(102)的相应端部,并且仅是在所述端部之一处的所述分线盒中的所述导电连接部分(2)接地。
全文摘要
本发明公开了一种多相超导电缆的相位分离构件(150),包括三根电缆芯体(102),每根具有围绕超导体(201)设置的屏蔽层(203);分线盒(1),该分线盒以电缆芯体(102)彼此间隔开的状态容纳所述从集合部分(110)伸出的三根电缆芯体(102),其中在所述集合部分,所述电缆芯体(102)组装到所述超导电缆中;以及导电连接部分(2),其在所述分线盒(1)中使所述多根电缆芯体(102)的各个屏蔽层(203)相互连接。这样,可以有效减少在所述电缆芯体(102)外部产生大磁场。
文档编号H01R9/03GK1574110SQ20041005970
公开日2005年2月2日 申请日期2004年6月17日 优先权日2003年6月19日
发明者增田孝人, 汤村洋康, 高桥芳久, 松尾公义, 本庄升一, 三村智男 申请人:住友电气工业株式会社, 东京电力株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1