扁平电池、电池组、组合电池组和车辆的制作方法

文档序号:6837002阅读:116来源:国知局
专利名称:扁平电池、电池组、组合电池组和车辆的制作方法
技术领域
本实用新型涉及一种扁平电池(flat cell),其中发电元件由一个壳体元件密封,电极端子通过多个集电器连接到发电元件并从壳体元件外缘伸出。这里,发电元件包括交替叠放的正极板和负极板,在其间插入了隔离物。
背景技术
一般的扁平电池包括由树脂金属薄膜制成的层压材料作为壳体元件,其中壳体元件是通过只在其外缘热封层压材料板,而不预先模制层压材料(见PCT国际专利号2002-510124的日本译文公布)来制成的。
但是,在这样的扁平电池中,表面压力在由壳体元件密封的发电元件的外缘强,而向着其中心部分会变弱。发电元件中表面压力的分布总体上趋向不均匀。
表面压力的这种不均匀分布导致的趋势是电极板之间的间隔在发电元件的外缘小,且向着其中心变宽。在整个扁平电池中,电极板之间的间隔是变化的。
在电极板之间的间隔整体上是不同的这样的扁平电池中,由电荷转移引起的电极活性材料的劣化分布是不同的。在电极不是缠绕的叠片型扁平电池中上述趋势强。特别是在车辆中使用的、包含大表面电极板的扁平电池中,劣化分布更可能是变化的。
在一种使扁平电池表面压力均衡的方法中,如图1A所示,壳体元件206是一个简单凸形的模制件。在壳体元件206中,预先在容纳发电元件208的部分中模制平壁210,预先在平壁210和热焊部分209之间模制垂直壁214。但是,当将电池200抽空时,如图1B所示,会导致壳体元件206的垂直壁214起皱,从而导致可能会降低壳体元件的强度。
实用新型内容本实用新型的一个目的是提供一种能够使电极活性材料劣化分布均衡并保持壳体元件强度的扁平电池。
本实用新型的第一个方面提供一种扁平电池,其包括发电元件,包括正极板、负极板和设置于正极板和负极板之间的隔离物;用于容纳发电元件的壳体元件,包括上壳体元件和下壳体元件;以及正极和负极端子,其通过多个集电器连接到上述发电元件并从上述壳体元件的外缘伸出,其特征在于,所述上壳体元件包括在用于容纳发电元件的部分中的平壁以及在壳体元件的平壁和外缘之间的斜壁,当将电池内部抽空时,所述斜壁向着电池内部弯曲。
本实用新型的第二个方面提供了一种电池组,包括多个扁平电池,每个扁平电池包括发电元件,包括正极板、负极板和设置于正极板和负极板之间的隔离物;用于容纳发电元件的壳体元件,包括上壳体元件和下壳体元件;以及正极和负极端子,其通过多个集电器连接到上述发电元件并从上述壳体元件的外缘伸出,其特征在于,所述上壳体元件包括在用于容纳发电元件的部分中的平壁以及在壳体元件的平壁和外缘之间的斜壁,当将电池内部抽空时,所述斜壁向着电池内部弯曲。
本实用新型还提供了一种包括上述电池组的车辆。


现在参照附图描述本实用新型,其中图1A是一个显示传统扁平电池的横截面图,该扁平电池带有一个在将电池抽空之前模制成凸形的上壳体元件;图1B是一个显示传统扁平电池的横截面图,该扁平电池带有一个在将电池抽空之后模制成凸形的上壳体元件;图2是根据本实用新型第一实施方案的扁平电池的透视图;
图3A是图2所示的扁平电池的俯视图;图3B是沿着图3A的线IIIB-IIIB得到的横截面图;图3C是沿着图3A的线IIIC-IIIC得到的横截面图;图4是在将电池抽空之前、沿着线IIIB-IIIB得到的扁平电池的横截面图;图5是第一实施方案中扁平电池的表面压力-真空度图;图6是根据本实用新型第二实施方案、在将电池抽空之前沿着图3A的线IIIB-IIIB得到的扁平电池的横截面图;图7是根据本实用新型第三实施方案、在将电池抽空之前沿着图3A的线IIIB-IIIB得到的扁平电池的横截面图;图8A和8B显示了连接多个根据本实用新型第一实施方案的扁平电池的结构的图;图9A和9B显示了连接多个根据本实用新型第一实施方案的扁平电池的其它结构的图;图10A显示了包括多个根据本实用新型第一实施方案的扁平电池的电池的俯视图;图10B显示了包括多个根据本实用新型第一实施方案的扁平电池的电池组的前视图;图10C是显示了包括多个根据本实用新型第一实施方案的扁平电池的电池组的侧视图;图11A显示了包括多个根据本实用新型的电池组的组合电池组的俯视图;图11B显示了包括多个根据本实用新型的电池组的组合电池组的前视图;图11C显示了包括多个根据本实用新型的电池组的组合电池组的侧视图;以及图12显示了安装了根据本实用新型的组合电池组的车辆的示意图。
具体实施方式
此后将参照附图对本实用新型的实施方案进行描述。
参看图2和图3A到3C,将对根据本实用新型第一实施方案的扁平电池10的整个结构进行描述。扁平电池10是锂基薄型蓄电池,包括5个正极板101、11个隔离物102、5个负极板103、一个正极端子104、一个负极端子105、一个上壳体元件106、一个下壳体元件107和没有特别显示的电解质。它们之间的正极板101、隔离物102和负极板103称作发电元件。
正极板101、隔离物102和负极板103的数量不限于本实用新型的上述数量,发电元件108可以包括一个正极板101、三个隔离物102和一个负极板103。正极板101、隔离物102和负极板103的数量可以根据需要来选择。
构成发电元件108的正极板101如下制作。首先,混合诸如金属氧化物等正电极活性材料、诸如碳黑等导电材料和诸如聚四氟乙烯水性分散液等粘合剂,例如按100/3/10的重量比例混合。将这种混合物涂在作为正极端集电器的铝箔等的每一个表面上并干燥。这样,将得到的薄片碾平并切成预定大小,从而得到正极板101。上述的聚四氟乙烯水性分散液的混合比例根据其固体含量来确定。
正电极活性材料可以是锂基复合氧化物,例如镍酸锂(LiNiO2)、锰酸锂(LiMnO2)、钴酸锂(LiCoO2)、硫族锂化物(Li2S、Li2Se和Li2Te)等等。这些材料比较易于释放扁平电池中产生的热量,并能够将对壳体元件106和107的应力控制到比较小,从而防止上壳体元件106的梯状部分111起皱。
构成发电元件108的负极板103如下制造。执行锂离子的吸收和解吸的负电极活性材料,例如无定形碳、固体碳粒、软碳(soft carbon)和石墨,与作为焦化有机物质前身材料的苯乙烯-丁二烯橡胶粉的水性分散液混合,例如以100/5的固体含量比混合。然后干燥混合物并压碎,以得到在其表面上支撑着碳化的苯乙烯-丁二烯橡胶的碳颗粒作为负极板103主材料。然后得到的颗粒与诸如丙烯酸树脂乳胶等粘合剂混合,例如按100/5的重量比混合。随后,在作为负极端集电器的镍箔或铜箔等金属箔的各个表面上涂上该混合物并干燥。将得到的薄片碾平并切成预定大小,从而得到负极板103。
使用无定形碳或固体碳粒作为负电极活性材料,充电和放电的电势平直度差,输出电压随着放电而降低。因此,使用无定形碳或固体碳粒作为负电极活性材料的电池不适于作为通信设备或办公设备的电源。但是,由于输出电压不会猛烈下降,所以这种电池在用作电气机车等的电源时是有利的。
发电元件108的隔离物102防止上述正极板101和负极板103之间短路。隔离物102可具有容纳电解质的功能。此外,每个隔离物102是由如聚乙烯(PE)或聚丙烯(PP)等聚烯烃构成的多孔膜。当过载电流流经隔离物102时,隔离物的孔会由于生热而闭合,从而切断电流。
本实用新型的隔离物102不限于聚烯烃等单层膜,也可以使用由聚乙烯膜中间夹着聚丙烯膜形成的三层结构以及由聚烯烃多孔膜和有机无纺织物等制成的层压材料。隔离物102使用多层物质,能够赋予隔离物102不同的功能,例如防止过载电流、容纳电解质和保持隔离物形状(增加硬度)的功能。此外,代替隔离物102,还可以使用凝胶电解质、全固态聚合物电解质等。
在上述发电元件108中,正极板101、隔离物102和负极板103按顺序层叠,这样正极板101和负极板103交替层叠,且隔离物102位于正极板101和负极板103之间。此外,在发电元件108的最顶部和最底部各层叠隔离物102。五个正极板101中每一个都通过正极端集电器104a连接到由金属箔制成的正极端子104,五个负极板103中每一个都通过负极端集电器105a连接到也由金属箔制成的负极端子105。
正极端子104和负极端子105的材料没有特别的限制,只要是电化学方面稳定的金属材料即可。正极端子104的材料可以是铝、铝合金、铜、镍等等。负极端子105的材料可以是镍、铜、不锈钢、铁等等。这些金属在金属的阻抗、线性膨胀系数和比电阻方面特别适合作为扁平电池的一部分。此外,即使是在工作温度变化的时候,这些金属仍然能够将对壳体元件106和107的应力控制得比较小,从而能够防止壳体元件106的梯状部分111起皱。这里,该实施方案中的正极或负极端集电器104a和105a都是由构成正极板101和负极板103的集电器的铝箔、镍箔、铜箔和铁箔的伸出部分形成的,但集电器104a和105a可以由不同的材料或部分构成。
发电元件108由上壳体元件106和下壳体元件107密封。该实施方案中上壳体元件106和下壳体元件107都是三层结构,其从正极端子104一侧向着扁平电池10的外侧包括内层、中间层和外层。内层由具有非常好的电解质耐受性和热封特性的树脂膜构成,例如聚乙烯、改性聚乙烯、聚丙烯、改性聚丙烯和离聚物。中间层由铝等金属箔构成。外层由具有良好电绝缘属性的树脂膜构成,例如聚酰胺系列树脂或聚脂系列树脂。因此,上壳体元件106和下壳体元件107都是由诸如树脂金属薄膜的层压材料这样的柔性材料制成。树脂金属薄膜的层压材料是通过在诸如铝箔等金属箔的一个表面(扁平电池10的内表面)上层叠如聚乙烯、改性聚乙烯、聚丙烯、改性聚丙烯或离聚物等树脂,并在其另一表面(扁平电池10的外表面)上层叠聚酰胺系列树脂,聚脂系列树脂等等来制备。
如上所述,每个壳体元件除了树脂层之外都具有金属层。因此能够增加壳体元件本身的强度。另外,壳体元件由诸如聚乙烯、改性聚乙烯、聚丙烯、改性聚丙烯或离聚物等树脂构成。因而能够确保金属端子和壳体元件之间良好的密封性。此外,树脂的可拉伸性能够防止梯状部分起皱。
如图2和图3A到3C所示,正极端子104从密封的壳体元件106和107的一边向外伸出,负极端子105从其另一边向外伸出。因此,在密封部分109中产生等于正极端子104和负极端子105的厚度的间隔,其中上下壳体元件106和107是密封的。为了保持扁平电池10内部的气密性,可以通过热封等在正极端子104和负极端子105与壳体元件106和107接触的部分插入由聚乙烯、聚丙烯等构成的片状薄膜。在正极端子104和负极端子105的任一个中,片状薄膜优选是由热封性方面与壳体元件106和107中包含的树脂一样类型的树脂构成。
如图4所示,该实施方案中的上壳体元件106是一个模制件,包括预先通过加压成形等方式模制的平壁110和斜壁112。平壁110形成在用于容纳发电元件108的部分中,从而大体上是平坦的。形成的斜壁112在平壁110和密封部分109之间沿着外缘是平的。
如图4所示,每个斜壁112相对于正极端子104和负极端子105从其伸出的平面倾斜45°到80°的角度θ。在图4中,角度θ用一个对顶角表示。
特别是在如图4所示的实施方案中,在正极端子104伸出的一侧模制的斜壁112与正极端集电器104a之中位置最靠近上壳体元件106的正极端集电器104a大体上是平行的。在负极端子105伸出的一侧模制的斜壁112也与负极端集电器105a之中位置最靠近上壳体元件106的负极端集电器105a大体上是平行的。
本实用新型中每个斜壁的角度θ可以设置成45°到80°范围中的任一个角度。随着该角度增加,表面压力分布变得更为均匀,如后面描述的例子中所示,另外,可以减少扁平电池的体积。
上面提到的发电元件108、正极端集电器104a、部分正极端子104、负极端集电器105a和部分负极端子105由这些壳体元件106和107罩住。然后将在有机溶剂中含有诸如高氯酸锂或氟硼酸锂等电解质的电解溶液注入由壳体元件106和107形成的空间中。在将上壳体元件106和下壳体元件107的内部抽空之后,壳体元件106和107外缘中的密封部分109是通过热压来热封的。
有机溶剂可以是酯系列溶剂,例如碳酸丙烯酯(PC)、碳酸乙烯酯(EC)和碳酸二甲脂(DMC)。但是,本实用新型的有机溶剂不限于这些,能够使用通过将酯系列溶剂与诸如γ-丁内脂(γ-BL)和二乙氧基乙烷(DEE)等醚系列溶剂混合而制备的有机溶剂。
因此在根据本实施方案构造的扁平电池10中,首先,当将电池10抽空时,通过上壳体元件106中预先模制的宽平壁110向正极板101和负极板103均匀施压。因此,能够消除正电极和负电极活性材料劣化分布中取决于表面压力的变化,以使劣化分布均衡。此外,当将电池10抽空时,如图3B所示、上壳体元件106中预先模制的斜壁112向着电池10内部弯曲,以便跟随集电器104a和105a,从而形成上壳体元件106的平滑梯状部分111并且大体上呈圆弧形。所以,抑制了梯状部分111起皱,并能够保持壳体元件106和107的强度。
在根据本实施方案的扁平电池10中,如图5所示,随着由于平壁110而将表面压力分布均衡化,增加了施加给整个发电元件108的表面压力。增加的表面压力全面减少了正极板101和负极板103之间的间隔并降低了阻抗。能够充分发挥扁平电池10本来具备的容量。图5中的传统结构是具有如图1A所示的、上壳体元件模制成凸形的扁平电池。
如上述密封的扁平电池10的总厚度优选在1到10mm的范围内。当扁平电池的厚度不超过10mm时,更可能从扁平电池内部释放热量。因此,可以将对壳体元件的应力控制到非常小,而且能够抑制梯状部分起皱,同时降低电池的热退化。厚度不小于1mm的扁平电池能够确保有足够的容量并增加经济效益。
接下来对本实用新型的扁平电池第二实施方案进行描述。
如图6所示,对于根据本实用新型第二实施方案的扁平电池10A,还可以在扁平电池10的上壳体元件106中模制出拐角部分113。
如图6所示,根据本实用新型第二实施方案的扁平电池10A的上壳体元件106A与第一实施方案类似,包括预先模制的平壁110和斜壁112。在根据该实施方案的扁平电池10A的上壳体元件106A中,分别在对应于发电元件108上方四个角的位置形成拐角部分113。
如图6所示,在上壳体元件106A的平壁110和各个斜壁112之间模制各个拐角部分113,拐角部分113包括一个长度为L的垂直部分。该垂直部分与平壁110大体上垂直。如图6所示的实施方案的各个拐角部分113的垂直部分的长度L大体上等于在发电元件108上部层叠的一个正极板101、三个隔离物102和一个负极板103的厚度的总和。本实用新型中各个拐角部分113的垂直部分的长度L不特别受限,只要长度L大于发电元件的基本单元,即一个正极板、一个隔离物和一个负极板的厚度总和即可。随着每个垂直部分的长度L增加,其作用增加。但是,优选是每个拐角部分的垂直部分的长度使得斜壁不会与集电器接触。
当将该扁平电池10A抽空时,与第一实施方案类似,通过上壳体元件106A中预先模制的宽平壁110对正极板101和负极板103均匀施压。此外,由于上壳体元件106A中预先模制的斜壁112,形成了上壳体元件106A的平滑的梯状部分111,且斜壁112大体上呈圆弧形。因此,使正极板101和负极板103的劣化分布变得均衡,而且能够保持壳体元件106A和107的强度。
此外,在根据该实施方案的扁平电池10A中,在上壳体元件106A中预先模制的拐角部分113的垂直部分减少了从上壳体元件106A施加给发电元件108外缘的压力,还使施加给发电元件108的表面压力进一步变得均衡。
接下来对本实用新型的扁平电池的第三实施方案进行描述。
对于如图7所示根据本实用新型第三实施方案的扁平电池10B,在扁平电池10B的上壳体元件106B中模制拐角部分113,并将各个斜壁112A模制为弯曲形状。
如图7所示,在根据第三实施方案的扁平电池10B的上壳体元件106B中,与根据第二实施方案的扁平电池10A类似,预先模制平壁110、斜壁112A以及平壁110和斜壁112A之间的拐角部分113。此外,在根据该实施方案的扁平电池10B中,上壳体元件106B的各个斜壁112A模制成弯曲形状。
如图7所示,斜壁112A是一个向着扁平电池10B内部的大致圆弧形,半径R大体上等于扁平电池10B的厚度。除了上述第二实施方案的操作效果,上壳体元件106B的每个斜壁112A都是弯曲形状,因此减少了上壳体元件106B层压材料的多余部分。因此,当将扁平电池抽空时,进一步抑制了梯状部分111起皱。壳体元件各个斜壁弯曲形状的半径R不限于本实用新型的上述半径。半径越小对抑制起皱的效果越大,并且,优选是弯曲形状的半径与扁平电池的厚度基本相同。
在下文中对通过组合多个根据上述第一实施方案的扁平电池形成的电池组和通过组合多个该电池组形成的组合电池组进行描述。
首先对电连接两个扁平电池10的两种结构进行描述,该结构抵抗通过外部振动等施加的外力。
如图8A所示,在抵抗外力的第一连接结构中,第一扁平电池10a和第二扁平电池10b在同一个平面上并排排列,使得第一扁平电池10a的正极端子104和第二扁平电池10b的正极端子104指向同一个方向。第一扁平电池10a的正极端子104和第二扁平电池10b的正极端子104通过第一汇流条21a彼此电连接。第一扁平电池10a的负极端子105和第二扁平电池10b的负极端子105通过第二汇流条21b彼此电连接。如上所述,两个扁平电池具有相同极性的端子通过汇流条连接形成一个链接结构。因此通过外部振动等施加的外力以相同的相位施加给各扁平电池,所以这样一种结构可抵抗每个扁平电池中引起的扭曲。
相反,如图8B所示,第一扁平电池10a和第二扁平电池10b在同一个平面上并排排列,使得第一扁平电池10a和第二扁平电池10b的正极端子104指向相反的方向。第一扁平电池10a的正极端子104和第二扁平电池10b的负极端子105没有电连接,第一扁平电池10a的负极端子105和第二扁平电池10b的正极端子104通过第二汇流条21b彼此电连接,因此串联连接第一扁平电池10a和第二扁平电池10b。当两个扁平电池具有不同极性的端子通过汇流条彼此连接形成一个如上所述的非链接结构时,由外部振动等施加的外力独立施加给各个扁平电池,因此这样一种结构与上面提到的并联连接的情况相比对扭曲的抵抗力较小。
在第二连接结构中,如图9A所示,第二扁平电池10b叠放在第一扁平电池10a上面,使得第一扁平电池10a的正极端子104和第二扁平电池10b的正极端子104指向相同的方向。焊接第一扁平电池10a的正极端子104和第二扁平电池10b的正极端子104,从而彼此电连接。以相同的方式,焊接第一扁平电池10a的负极端子105和第二扁平电池10b的负极端子105,从而彼此电连接。如上所述,两个扁平电池具有相同极性的端子连接以形成一个链接结构。因此由外部振动等施加的外力以相同的相位施加给扁平电池,这样一种结构会抵抗每个扁平电池中引起的扭曲。
相反,如图9B所示,第二扁平电池10b叠放在第一扁平电池10a上面,使得第一扁平电池10a的正极端子104和第二扁平电池10b的正极端子104指向相反的方向。第一扁平电池10a的正极端子104和第二扁平电池10b的负极端子105没有电连接,焊接第一扁平电池10a的负极端子105和第二扁平电池10b的正极端子104,从而彼此电连接。当两个扁平电池具有不同极性的端子彼此连接形成一个如上所述的非链接结构时,由外部振动等施加的外力独立施加给各个扁平电池,因此这样一种结构与上面提到的并联连接的情况相比对扭曲的抵抗力较小。
图10A到10C显示了由通过使用上述连接结构并联连接的24个扁平电池10构成的电池组20。该电池组20包括24个扁平电池10、电池组端子22和23、以及电池组盖25。附图中没有具体显示,扁平电池10具有相同极性的端子根据上述连接结构通过汇流条21a和21b连接,因此扁平电池是并联的。连接正极端子104的第一汇流条21a连接到电池组正极端子22,该电池组正极端子22大体上是圆柱形的,并从电池组盖25伸出。同样,连接负极端子105的第二汇流条21b连接到电池组负极端子23,该电池组负极端子23大体上是圆柱形的,并从电池组盖25伸出。如此相连的24个扁平电池10放置在电池组盖25中,电池组20的盖25和电池组20其它组成部件之间限定的间隔用填充物24填充并密封。此外,在电池组盖25底面的四个角安装外部弹性元件26,以便在电池组20叠放成后面描述的组合电池组时减少各电池组20之间的振动传递。
图11A到11C显示了一个由6个如图10A到10C显示的电池组20构成的组合电池组30,各电池组20彼此电连接。如图11A到11C所示,在组合电池组30中,叠放各电池组20以使电池组20的端子22和23指向相同的方向。具体来说,位于第(m+1)层的电池组20叠放在位于第m层的电池组20上,以使得第(m+1)层的电池组20的端子22和23分别指向与第m层的电池组20的端子22和23相同的方向。这里,m是一个自然数。指向相同方向的所有电池组20的正极端子22通过一个用于连接组合电池组30和外部的外部连接正极端子31彼此电连接。同样,指向相同方向的所有电池组20的电池负极端子23通过一个外部连接负极端子32彼此电连接。如附图中所示,外部连接正极端子31大体上是矩形板形状,并配有多个端子连接孔。每个端子连接孔的直径使得每一个电池组正极端子22能够插入其中。制作端子连接孔所采用的间隔大体上等于叠放的电池组20的电池组正极端子22的间隔。外部连接负极端子32配有类似的端子连接孔。如上叠放的6个电池组20在其两侧由板形耦接元件34相互耦接,并通过固定螺钉35固定来扣紧。
如上所述,电池组是根据作为一个单元的预定数量的扁平电池来构造的,且组合的电池组根据作为一个单元的电池组来构造。因此,能够容易地获得适合所需容量、电压等的组合电池组。
此外,可以在没有复杂连接的情况下构造组合电池组,从而能够降低由于不适当的连接而造成的组合电池组故障率。
而且,当构成组合电池组的某些扁平电池损坏或退化而需要替换时,可以通过只替换包括损坏或退化的扁平电池的电池组轻松地修复组合电池组。
图12显示了一个车辆1的例子,例如电动车辆,上述组合电池组30安装在其底盘下。用于车辆的扁平电池的电极板表面大,其正电极和负电极活性材料的劣化分布更可能发生变化。因此,利用使用了根据本实施方案具有均衡劣化分布的扁平电池的组合电池组30对于车辆1尤其有效。
如上所述,在根据第一到第三实施方案的各个扁平电池中,首先,在扁平电池壳体元件中容纳发电元件的部分中预先模制平壁,当将电池抽空时,电极板与这个宽平壁一起均匀受压。因此,取决于表面压力分布的电极活性材料劣化分布不会变化,且能够使劣化分布均衡。其次,在壳体元件的平壁和外缘之间预先模制斜壁,且当将电池抽空时,壳体元件变形,以便跟随集电器形成平滑的梯状部分。因此,抑制了梯状部分起皱,并且能够保持壳体元件的强度。此外,在根据各实施方案的扁平电池中,连同由于上壳体元件的平壁导致的表面压力分布均衡一起,增加了施加到整个发电元件的表面压力。因此使电极板之间的间隔整体变窄,这降低了阻抗。因此,能够有效发挥为扁平电池提供的容量。
在根据本实用新型第二和第三实施方案的扁平电池中,在对应于发电元件至少一个角的位置预先模制至少一个拐角部分,该拐角部分包括一个与发电元件的上表面大体上垂直的部分。因此,当将电池抽空时,降低了从壳体元件施加给发电元件外缘的压力。电极板之间间隔的变化减小,能够使施加给发电元件的表面压力分布均衡。此外,拐角部分的垂直部分的长度设置得至少大于一个正极板、一个隔离物和一个负极板的总厚度。因此,能够进一步使从壳体元件施加给发电元件的表面压力分布均衡。
另外,在根据第三实施方案的扁平电池中,壳体元件的每个斜壁是弯曲形状,减少了树脂-金属薄膜层压材料的多余部分。因此,能够在将电池内部抽空时进一步抑制壳体元件起皱。
描述上述实施方案是为了便于理解本实用新型,而不是为了限制本实用新型。所以,上述实施方案中提出的每个组成部分意在包含所有属于本实用新型技术范围的设计变化和等同物。例如,构成电池组的扁平电池的数量、构成组合电池组的电池组的数量、构成电池组的扁平电池的连接方法、以及构成组合电池组的电池组的连接方法不限于上述数量和连接方法。这些数量和连接方法(串联、并联或串并混合连接)能够根据所需电容量、电压等适当设置。
在上述实施方案中,已经对包含根据第一实施方案的扁平电池的电池组、组合电池组和车辆进行了描述,但是这些电池组、组合电池组和车辆能够包含根据第二或第三实施方案的扁平电池。
在下文中,对给出本实用新型具体形式的例子进行描述。
(例1)例1的扁平电池制备如下。在例1的扁平电池中,正极端子、负极端子、正电极活性材料、负电极活性材料分别是厚度为100μm的铝箔、厚度为100μm的铜箔、锂-锰复合氧化物和结晶碳材料。对于上壳体元件,只有第一实施方案如图4中显示的平壁和斜壁用树脂-金属薄膜的层压材料模制而成。上壳体元件斜壁相对于电极端子表面的角度θ为60°。表1中显示了在例1中制作的扁平电池的制作条件。
表1

该扁平电池是根据上壳体元件梯状部分形成的皱纹量、发电元件中的表面压力分布和表面压力增加率来测量的。对上壳体元件梯状部分的皱纹量的测量是通过视觉观察将电池抽空之后壳体元件梯状部分来进行的。对发电元件表面压力分布的测量执行如下。用千分尺详细测量抽空后的扁平电池在表面上9个位置((上部、中部、底部)×(右、中、左))的厚度。根据表面压力-厚度通用曲线,将在上述各位置测量的厚度转换成表面压力,表面压力-厚度通用曲线是通过测量将负载施加到由与那些例子相同的材料构成的扁平电池时厚度的变化而得到的。表面压力增加率是通过将扁平电池典型表面压力与比较例1的典型表面压力进行比较,并计算表面压力增加率来测量的。这里,典型表面压力是上面9个位置处表面压力的平均值。
结果,在测量例1中形成的皱纹量的过程中,如表2所示,例1中的上壳体元件梯状部分中的皱纹量与比较例1的扁平电池的相比大大减少。例1中的表面压力分布几乎是均衡的,变化很小,且表面压力整体上增加大约13%。

在表2中,对于皱纹量,“A”表示形成很少的皱纹;“B”表示形成少量皱纹;“C”表示形成大量皱纹。对于表面压力分布,“Y”表示表面压力分布变化很小,“N”表示表面压力分布变化很大。
(例2)如表1所示,例2的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备。对于上壳体元件,只有第一实施方案如图4中显示的平壁和斜壁用树脂-金属薄膜的层压材料模制。上壳体元件斜壁相对于电极端子表面的角度θ为80°。表1中显示了在例2中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量、发电元件中的表面压力分布和表面压力的增加率来测量的。结果,如表2所示,在对例2中形成的皱纹量的测量中,上壳体元件梯状部分中的皱纹量与比较例1的扁平电池相比大大减少。例2中的表面压力分布几乎均衡,变化很小,且表面压力整体上增加大约15%。
(例3)如表1所示,例3的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备。对于上壳体元件,只有第一实施方案如图4中显示的平壁和斜壁用树脂-金属薄膜的层压材料模制。上壳体元件斜壁相对于电极端子表面的角度θ为45°。表1中显示了在例3中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量、发电元件中的表面压力分布和表面压力的增加率来测量的。结果,如表2所示,在对例3中形成的皱纹量的测量中,上壳体元件梯状部分中的皱纹量与比较例1的扁平电池相比大大减少。例3中的表面压力分布几乎均衡,变化很小,且表面压力整体上增加大约10%。
(例4)如表1所示,例4的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备。对于上壳体元件,如第二实施方案图6中显示的平壁、斜壁和平壁四个角的拐角部分用树脂-金属薄膜的层压材料模制。上壳体元件斜壁相对于电极端子表面的角度θ为80°。每个拐角部分的垂直部分的长度L设置为大约0.3mm,相当于一个正极板、一个隔离物和一个负极板的总厚度。表1中显示了在例4中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量、发电元件中的表面压力分布和表面压力的增加率来测量的。结果,如表2所示,在对例4中形成的皱纹量的测量中,上壳体元件梯状部分中的皱纹量与比较例1的扁平电池相比大大减少。例4中的表面压力分布几乎均衡,变化很小,且表面压力整体上增加大约20%。
(例5)如表1所示,例5的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备。对于上壳体元件,如第二实施方案图6中显示的平壁、斜壁和平壁四个角的拐角部分用树脂-金属薄膜的层压材料模制。上壳体元件斜壁相对于电极端子表面的角度θ为80°。每个拐角部分的垂直部分的长度L设置为大约0.9mm,相当于三个正极板、三个隔离物和三个负极板的总厚度。表1中显示了在例5中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量、发电元件中的表面压力分布和表面压力的增加率来测量的。结果,如表2所示,在对例5中形成的皱纹量的测量中,上壳体元件梯状部分中的皱纹量与比较例1的扁平电池相比大大减少。例5中的表面压力分布几乎均衡,变化很小,且表面压力整体上增加大约23%。
(例6)如表1所示,例6的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备。对于上壳体元件,如第三实施方案图7中显示的平壁、具有弯曲形状的斜壁和平壁四个角的拐角部分用树脂-金属薄膜的层压材料模制。上壳体元件每个斜壁的弯曲形状是半径相当于发电元件4mm总厚度的弧。每个拐角部分的垂直部分的长度L设置为大约0.9mm,相当于三个正极板、三个隔离物和三个负极板的总厚度。表1中显示了在例6中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量、发电元件中的表面压力分布和表面压力的增加率来测量的。结果,如表2所示,在对例6中形成的皱纹量的测量中,上壳体元件梯状部分中的皱纹量与比较例1的扁平电池相比大大减少。例6中的表面压力分布几乎均衡,变化很小,且表面压力整体上增加大约30%。
(比较例1)如表1所示,比较例1的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备。对于上壳体元件,用树脂-金属薄膜的层压材料模制成如图1A所示的、由一个平壁和垂直于平壁的梯状部分构成的简单凸形。表1中显示了在比较例1中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量和发电元件中的表面压力分布来测量的。结果,如表2所示,在上壳体元件梯状部分形成了大量的皱纹,而且发电元件的表面压力分布是变化的。
(比较例2)如表1所示,比较例2的扁平电池使用与例1相同的正电极和负电极活性材料以及正极和负极端子来制备,对于上壳体元件,是无平壁、无斜壁和无拐角部分的树脂-金属薄层压板。表1中显示了在比较例2中制作的扁平电池的制作条件。
该扁平电池是在与例1相同的条件下,根据上壳体元件梯状部分中形成的皱纹量和发电元件中的表面压力分布来测量的。结果,如表2所示,在上壳体元件梯状部分形成了大量的皱纹。发电元件的表面压力在电池的中间部分小,在其外缘大,因此表面压力分布变化很大。
将例1到6与比较例1和2进行比较,可以确定,上壳体元件的梯状部分中预先模制斜壁显著抑制了梯状部分中的皱纹,使发电元件中的表面压力分布均衡,而且增加了发电元件中的表面压力。
将例1到4与例5和6进行比较,可以确定,上壳体元件中预先模制各带有一个具有适当长度L的垂直部分的拐角部分大大减少了梯状部分中形成的皱纹。
此外,可以确定,增加发电元件中表面压力的因素如下较大的角度θ(通过比较例1到3);在上壳体元件中形成拐角部分(通过比较例2和4);各个拐角部分较长的垂直部分(通过比较例4和5);上壳体元件中模制的斜壁的弯曲形状(通过比较例5和6)。
这里引用了申请日为2003年10月10日的日本专利申请No.2003-352748的全部内容作为参考。
虽然上面已经通过参照本实用新型的特定实施方案描述了本实用新型,但本实用新型不限于上面描述的实施方案。那些本领域技术人员根据上述教导能够对本实用新型的实施方案进行各种修改和变化。参照下面的权利要求定义本实用新型的保护范围。
权利要求1.一种扁平电池,包括发电元件,包括正极板、负极板和设置于正极板和负极板之间的隔离物;用于容纳发电元件的壳体元件,包括上壳体元件和下壳体元件;以及正极和负极端子,其通过多个集电器连接到上述发电元件并从上述壳体元件的外缘伸出,其特征在于,所述上壳体元件包括在用于容纳发电元件的部分中的平壁以及在壳体元件的平壁和外缘之间的斜壁,当将电池内部抽空时,所述斜壁向着电池内部弯曲。
2.根据权利要求1的扁平电池,其特征在于,每个端子具有平面形状,而且在将电池内部抽空之前,斜壁以相对于所述端子的表面45°到80°的角度倾斜。
3.根据权利要求1的扁平电池,其特征在于,上壳体元件包括拐角部分,该拐角部分具有大体上垂直于所述平壁的部分,在对应于发电元件至少一个角的位置模制该拐角部分。
4.根据权利要求3的扁平电池,其特征在于,包含在拐角部分中的垂直部分的长度大于正极板、负极板和隔离物的总厚度。
5.根据权利要求1的扁平电池,其特征在于,在将电池内部抽空之前,将斜壁模制成与多个集电器中位置最靠近壳体元件的集电器大体上平行。
6.根据权利要求1的扁平电池,其特征在于,在将电池内部抽空之前,使斜壁向着电池内部弯曲。
7.根据权利要求1的扁平电池,其特征在于,正极端子包含铝、铁、铜和镍中的至少任意一种。
8.根据权利要求1的扁平电池,其特征在于,壳体元件包含聚丙烯、改性聚丙烯、聚乙烯、改性聚乙烯和离聚物中的至少任意一种。
9.根据权利要求1的扁平电池,其特征在于,正极板包含正电极活性材料,该正电极活性材料是锂基复合氧化物。
10.根据权利要求9的扁平电池,其特征在于,该锂基复合氧化物是锂锰基复合氧化物。
11.根据权利要求1的扁平电池,其特征在于,负极板包含负电极活性材料,该负电极活性材料是碳材料。
12.根据权利要求11的扁平电池,其特征在于,该碳材料是结晶碳材料和无定形碳材料中的任意一种。
13.一种电池组,包括多个扁平电池,每个扁平电池包括发电元件,包括正极板、负极板和设置于正极板和负极板之间的隔离物;用于容纳发电元件的壳体元件,包括上壳体元件和下壳体元件;以及正极和负极端子,其通过多个集电器连接到上述发电元件并从上述壳体元件的外缘伸出,其特征在于,所述上壳体元件包括在用于容纳发电元件的部分中的平壁和在壳体元件的平壁与外缘之间的斜壁,当将电池内部抽空时,所述斜壁向着电池内部弯曲。
14.根据权利要求13的电池组,其特征在于,每个扁平电池叠放在另一个扁平电池之上,每个扁平电池的正极端子与另一个扁平电池的正极端子指向大体上相同的方向,且所述每个扁平电池和另一个扁平电池具有相同极性的端子彼此电连接以形成该电池组。
15.根据权利要求13的电池组,其特征在于,每个扁平电池放置在另一个扁平电池的旁边,每个扁平电池的正极端子与另一个扁平电池的正极端子指向大体上相同的方向,且每个扁平电池和另一个扁平电池的具有相同极性的端子通过连接部件彼此电连接以形成该电池组。
16.一种组合电池组,其特征在于,所述组合电池组通过连接权利要求13的多个电池组形成。
17.一种车辆,包括具有多个扁平电池的电池组,各个扁平电池包括发电元件,包括正极板、负极板和设置于正极板和负极板之间的隔离物;用于容纳发电元件的壳体元件,包括上壳体元件和下壳体元件;以及正极和负极端子,其通过多个集电器连接到上述发电元件并从上述壳体元件的外缘伸出,其特征在于,所述上壳体元件包括在用于容纳发电元件的部分中的平壁以及在壳体元件的平壁和外缘之间的斜壁,当将电池内部抽空时,所述斜壁向着电池内部弯曲。
专利摘要本实用新型的扁平电池具有一个发电元件,包括一个正极板、一个负极板和一个设置于正极板和负极板之间的隔离物;一个壳体元件,其包括一个上壳体元件和一个下壳体元件并容纳发电元件;正极和负极端子,其通过多个集电器连接到发电元件并从壳体元件的外缘伸出。上壳体元件包括用于在容纳发电元件的部分中的平壁和在壳体元件平壁与外缘之间的斜壁。其中当将电池内部抽空时,斜壁向着电池内部弯曲。
文档编号H01M4/48GK2796109SQ20042001375
公开日2006年7月12日 申请日期2004年10月10日 优先权日2003年10月10日
发明者渡边恭一 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1