具有底座形状的基本传输通道链路组的制作方法

文档序号:6843829阅读:109来源:国知局
专利名称:具有底座形状的基本传输通道链路组的制作方法
技术领域
本发明涉及多电路电子通信系统,更具体地,涉及这些系统中使用的专用传输通道结构。
背景技术
本领域公知有各种电子传输装置。这些装置中的大多数,如果不是全部的话,遭受内在的速度限制,例如频率上限与信号从系统中的一点向另一点移动的所需时间,通常称其为传播延迟。这些装置的电子性能主要受限于它们的结构,并次要地受限于它们的组成材料。一种常规的方法采用传导引脚,例如卡缘连接器中可以见到的那些,如图1中所示。在这种结构中,在塑料外壳21中安排多个传导引脚,即端子,且这种结构提供大约800至900MHz的工作频率。卡缘连接器代表了对这种标准结构的改进,其在本领域公知为“Hi-Spec”,且在图2中说明,其中,该系统包括在绝缘连接器外壳27中配置的大的接地触点25与小的信号触点26。这些结构中的信号触点不是差分信号触点,而仅仅是单端信号,意味着每个信号触点的两侧是接地触点。相信这种类型系统的工作速度大约为2.3GHz。
本领域中的另一改进称为“三元”或“三端”连接器,其中,传导端子以三角形排列在塑料外壳28内,且这些端子包括大的接地端子29和两个较小的差分信号端子30,如图3中所示,并在美国专利No.6,280,209中详细描述。这种三元/三端结构具有明显的4GHz的上限速度。在最简单的意义上,这三种方法都在塑料外壳中采用传导引脚,以便为电子信号提供传输线。
在这些结构的每一个中,希望保持穿过整个系统传递路径的专用传输线,包括穿过(多个)电路板,配合面,和源以及系统负载。当传输系统由多个单独的引脚构建时,在系统中难以达到所需的一致性。在这些连接器中对信号,接地,和电源使用分离的点对点连接。这些导体中的每一个要么设计为导体,要么设计为提供电气连续性的装置,通常并不考虑传输线效应。大多数导体设计为标准的插脚片(pin field),从而所有引脚,即端子,都是完全相同的,而不管他们代表的电气功能,且这些引脚还以标准的间距,材料类型以及长度排列。尽管在低的工作速度下性能令人满意,但在高的工作速度下,这些系统将导体视为系统中影响工作及其速度的不连续点。
系统中的许多返回信号端子,即引脚,对于相同的接地导体是公共的,并由此产生高的信号接地比,其不适用于高速信号传输,因为在信号与地间强制大电流环路,该环路降低带宽并增加系统的串扰,因此可能降低系统性能。
带宽(“BW”)与1LC成比例,其中,L为系统部件的电感,C为系统部件的电容,且BW为带宽。该信号传递系统的感性与容性部件运行,以降低系统的带宽,即使在完全一致没有不连续点的系统中也是如此。通过降低穿过系统的整体路径长度,主要是通过限制电流路径穿过的系统的面积,并降低系统元件总的极板面积,可使这些感性与容性部件最少。然而,随着传输频率的增加,有效物理长度降低至相当小的尺寸,尺寸的减少带来它自身的问题。10GHz及以上范围内的高频导致大多数计算得到的系统路径长度是不可接受的。
除了系统上总的电感与电容是限制性能的因素外,任何不均匀的几何形状和/或材料转变都将产生不连续点。在工作于12.5G比特每秒(Gbps)附近的低压差分信号系统中采用2.5GHz作为截止频率,使用介电常数约为3.8的介质将产生大约0.24英寸(6.1mm)的临界路径长度,在其上可容许长度不连续。这样的尺寸导致不能在给定的四分之一英寸内构造包括源、传输负载与负载的系统。从而可看出,尽管电子传输结构的演变从统一结构的引脚排列进步到专用功能引脚排列,再到尝试的单一结构的接口,但路径长度与其他因素仍制约这些结构。
为了获得高效的结构,必须在整个传递路径上从源开始,通过接口,直到负载,保持不变的和专用的传输线。这将包括成对的接头和印刷电路板。由于在引脚/端子之间,可能的尺寸、形状和位置的所需变化,当该传递系统由单独的传导引脚构成时,很难实现上述目标,其中,这些引脚设计用于与其它单独的传导引脚互连。例如,在直角连接器中,各引脚/端子行之间的关系在长度与电器耦合方面变化。包括源与系统负载间所有部分的高速互连设计原理正用于具有高达2.5Gpbs的源的传输系统中,其中,系统包括印刷电路板,电路板连接器和电缆组件。这样的一个原理是设计接地的原理,其在标准插脚片上提供额外的性能,因为信号与接地路径间和耦合得到加强,且补充了单端操作。在这种系统中使用的另一原理包括调整其使不连续性最小的阻抗。还有一个设计原理是插脚引线优化,其中,信号与返回路径分配至插脚片中特定的插脚,以使性能最佳。
对于获得上述临界路径长度,这些类型的系统都是受限的。本发明涉及改进的传输或传递系统,其克服前述缺点并工作在较高速度之下,其中,传输线集成至底座连接器中。

发明内容
因此,本发明涉及改进的传输结构,其克服前述缺点并采用导电元件组形成整体的机械结构,提供在某种意义上与光纤系统类似的完备的电子传输通道。本发明致力于提供完备的,基于铜的电子传输通道,其可集成至物理连接器结构中,这与提供单独的感性引脚相反,具备铜导体的独立接口,每一个都嵌入至传输通道中,产生更可预测的电气性能和更好的操作特性控制。本发明的这种改进系统相信可在大于0.24英寸(6.1mm)的扩展路径长度上提供12.5G数字信号传输的工作速度。
因此,本发明的主要目标是提供一种用作基本通道链路组的工程波导,其中,该链路包括形成连接器主体的介质体部分和沿连接器外表面以隔离的状态放置其上的至少两个传导元件。
本发明的另一目标是提供一种高速信号传输线通道链路,其具有在其长度上给定截面的拉伸体部分,该部分由具有所选介电常数的介质形成,并且在其最基本的结构中,该链路具有放置在其外面上的两个传导元件,这些元件的尺寸、形状、方向类似,彼此相对,以便通过建立特定电场与磁场控制通过该链路的电子能量波。
本发明还有一个目的是提供一种可集成至底座型连接器结构的改进的电传输通道,用于在两个不同的和隔离的级别间“步进的”传输通道,该连接器结构包括介质衬底,和多个在衬底上形成的凹槽,这些凹槽具有相对的侧壁,这些凹槽的侧壁具有淀积其上的传导材料,例如通过电镀,以在凹槽内形成电子传输通道。
本发明还有一个目的是一种提供预制波导,其中,采用至少一对传导元件提供差分信号传输,即输入信号(“+”)与输出信号(“-”),这对传导元件安排在介质体的外部,以允许建立单位长度的电容,单位长度的电感,单位长度的阻抗,衰减与传播延迟,并在由传导元件形成的通道内建立这些预先确定的性能参数。
本发明还有一个目的是提供一种针对高速应用的非圆形传输线,其包括拉伸的矩形或方形的介质元件,其外表面具有至少四个放置其上的不同部分,该介质元件包括一对相互对齐的传导元件并在其上放置这些部分中的两个,并由中间部分隔离。
本发明还有一个目的是沿绝缘塑料材料的拉伸体,以高速传输线的形式提供一个或多个基本通道链路组,以便沿基本通道链路组在垂直和水平方向传输信号,其中,绝缘塑料材料在该拉伸体中具有至少一个弯曲。
本发明还有一个目的是提供一种塑料材料框架,其可选择性地镀有金属,通过用不可电镀的塑料材料过模制(over-molding)该塑料框架和用金属电镀该框架暴露的凸起部分,沿该框架中的凸起部分限定一个或多个基本通道链路组。
本发明还有一个目的是沿由绝缘材料形成的底座,以高速传输线的形式提供一个或多个基本通道链路组,以便沿基本通道链路组在垂直和水平方向传输信号,其中,在底座中具有至少一个弯曲。
本发明还有一个目的是沿绝缘支撑底座或沿绝缘塑料材料的拉伸体,以高速传输线的形式提供一个或多个基本通道链路组,其中,基本通道链路组包括一对隔离的低阻抗传导迹线,例如用于接地或电源,该间隔的低阻抗传导迹线由中间的气隙分隔,并配置支撑结构提供迹线路径,其中,迹线进行至少一次方向改变。
本发明还有一个目的是沿底座或绝缘塑料材料的拉伸体,以高速传输线的形式提供一个或多个基本通道链路组,其沿通道链路组容纳高速信号,并沿在底座或拉伸体中形成的其它传导迹线容纳较低速度的信号。
本发明通过其独特的结构实现上述和其它目标。在一个主要方面,本发明包括由具有预先选择的介电常数和预先选择的横截面结构的介质形成的传输线。在介质线,即链路上布置一对传导表面,优选地,相互对齐并彼此分离。传导表面用作沿传输链路引导电波的波导。
在本发明的另一主要方面中,传导元件在单个元件上组成对,从而限定采用的波导,该波导可在相继的印刷电路板之中或之间穿过,且不难与其相连。通过选择性地在介质体的外表面上淀积传导材料,例如通过电镀,或通过浇铸或向介质体连接实际导体,可形成传导表面。按照这种方式,形成具有弯曲的介质,且其表面上存在的传导表面维持通过弯曲的通道导体组的间隔结构。
在本发明的另一主要方面中,传输线的外部可覆盖有保护外套,或套管。传导表面以相等宽度的平衡结构或以具有不等宽度的导体元件对的不平衡结构布置在介质体上。在该介质体上可放置三个传导元件,以支持传输线上的三差分端,该传输线采用一对差分信号导体和一个关联的接地导体。传导表面的数量仅由介质体的尺寸限制,且可使用这样的分离传导元件支持两个不同的信号通道或具有双重接地的单个差分对。
在本发明的另一主要方面中,在衬底中形成的一个腔体中,或多个选择性尺寸的金属化腔体中形成整体传输线。对该衬底开槽以形成腔体,且凹槽的侧壁可镀有传导材料。在此例中,腔体或凹槽侧壁间的气隙,用作传输通道的介质。
在本发明的另一主要方面中,前述传输链路可用于承载电源。在这种情况下,下面的传输线将包括开槽的介质,在凹槽内形成的连续接触区,即覆盖侧壁与凹槽的底部。凹槽长度表面上的这三个连续接触区扩展了该结构的电流承载能力。可使用接地平面增加电源通道与该接地平面间的电容耦合,以降低整体结构的源阻抗。可通过突出的脊状体即槽脊形成传输线,其用于限定其间的槽。通过连续的工艺在槽内形成传导表面,例如选择的电镀,使得形成连续电镀的槽,即两个侧壁和连接基板,其针对传输线的长度延伸。这增加了电路承载能力。然后在介质上可产生高电容,以降低系统的源阻抗。
本发明的电源承载能力可进一步由在系统中形成高密度触点组增强。在开槽的传输线中,凹槽的相对的侧壁可镀有传导材料,以形成连续触点,其延伸传输线的长度且相反极性的信号(即“+”与“-”)可沿触点传送。可通过例如在凹槽内插入模制(insert molding)形成插件组件,其可单个地形成,也可作为包括两个或更多这种凹槽的组件形成,以绝缘和隔离相对的触点对,这将导致耐压值增加。也可使用类似的涂层实现类似目标。
本发明的传输线既可传送信号,也可传送电源,因而易于分离为单独的信号通道与电源通道。信号通道可用预定宽度的路径或传导带线制成,而电源通道,位于传送大电流,可包括更宽的带线或放大的,连续的导体带线。与信号带线相比,较宽的带线为扩大的极板面积,并具有高电容量。该信号与电源通道可由宽的,非传导性的传输线区域隔离,其作为隔离区。由于隔离区可在形成下面的介质基底期间形成,因而可容易地限定该隔离区,以使相互污染即电子干扰最小。
根据本发明的另一方面,并对于涉及底座类型的连接器的实施例,过模制的连接器可具有拉伸的框架部分,该框架部分由可镀有金属的材料形成,以形成传送高频电子信号的连接器。该框架部分可由催化树脂形成,具有沿该框架部分至少一侧形成的一组凸起筋肋。优选地,在这些凸起筋肋间限定的至少一些通道比其它通道更深,使得这些较深通道的侧壁可镀有金属,以提供具有高频电子信号特性的传导通道部件,非常像波导。这些筋肋可放置在该框架部分的两侧,并在该框架部分的拉伸方向上延伸。该凸起筋肋组中的一个可从顶面到底面围绕该框架部分的一端,以在另一凸起筋肋组附近终止,以在该框架部分的下侧面上产生接触区域。同样,另一凸起筋肋组可从底面到顶面围绕该框架部分的另一端,以在该框架部分的顶面上产生第二接触区域。优选地,在该框架部分和凸起筋肋上产生至少一个角度弯曲,使得该框架部分可在水平与垂直方向与接合并传导电子信号。
然后可通过诸如非催化树脂的绝缘材料选择性地过模制框架部分,以形成过模制连接器。在该过模制工艺中,用非催化树脂填充凸起筋肋间的通道,使具有催化树脂的筋肋顶部保持暴露。然而,使其侧壁镀有金属以形成通道链路的较深通道并不用绝缘树脂填充。过模制工艺之后保留的催化树脂暴露区域然后镀上金属。从而,在凸起筋肋和较深通道的侧壁上形成金属导体。可沿这些通道部件传导高频差分信号。任何积累在较深通道底部的金属可通过公知技术进行去除。优选地,在每对通道部件间布置至少一个凸起筋肋上的导体,筋肋上的导体具有低阻抗,例如针对地或电源的考虑。该通道部件将空气作为它们的介质材料,并且因此通道部件中的差分信号对于与该通道部件相邻的低阻抗导体将具有更好的适应性,从而降低连接器阻抗并改进高频信号在该过模制导体上的传输。该过模制的导体还可制成为底座连接器。
本发明还包括形成过模制连接器的相关工艺。尽管这种过模制仅仅是构造本发明连接器的优选方式。该框架部分首先通过具有前述特性的催化树脂模制,包括沿该框架部分至少一个表面布置的多个凸起筋肋,由凸起筋肋限定的一些通道比其它通道更深。在该框架部分和凸起筋肋上可形成一个或多个角度弯曲,以接合并传导来自不同方向的电信号,例如在水平或垂直方向。然后选择性地用电绝缘化合物,例如非催化树脂过模制该框架部分,包括在筋肋间的通道中,但不在较深的通道中,其将用于形成高频通道部件。接下来将筋肋的上表面与较深通道的侧壁镀上传导金属,以在筋肋的上表面形成导电体且在较深通道内形成通道部件。
通过下面的详细描述,将更加清楚地理解本发明的这些其他目的、特点和优越性。


在详细说明中,将会频繁引用附图,其中图1为常规连接器终止面的示意平面图;图2为用于高速连接器的卡缘的示意平面图;图3为使用三元组或三端的高速连接器的示意前视图;
图4为根据本发明原理构造的基本通道链路组的透视图;图5为图4基本通道链路组的示意端面图;图6为根据本发明原理构造的基本通道链路组的替换实施例的透视图;图7为本发明的传输链路的示意图,其用于连接源与负载,在传输链路上具有中间负载;图8为既使用常规触点“A”,又使用本发明的传输链路“B”的连接器元件的示意图,在“A”与“B”位置放大的细节部分说明在各自系统中电感的出现;图9为本发明的链路的替换结构的透视图,具有在其中形成的直角弯曲;图10为使用本发明链路的传输线的示意图;图11为说明本发明的链路的替换媒质的透视图;图12为说明替换传导表面配置的不同形状介质体阵列的透视图;图13为非圆形横截面介质体阵列的透视图,这些介质体可用于形成本发明的链路;图14为另一非圆形横截面介质体阵列的透视图,这些介质体适用于作为本发明的链路;图15为集成多个本发明的基本链路的连接器组件的分解图;图16为具有由本发明传输链路连接的两个连接器外壳的连接器组件的透视图;图17为本发明的传输通道的示意图,在通道的相对端形成两个互连的模块;图18为不同介质体阵列的透视图,该阵列可用作具有不同透镜特性(lens characteristic)的链路;图19为其上形成有不同信号通道的多个传输链路拉伸体的透视图;图20为用于本发明的多个链路拉伸体的透视图;图21为配合接口的透视图,其与分离的本发明传输链路之一使用,其中,配合接口采用中空端帽的形式;
图22为图21端帽的后向透视图,说明其容纳传输链路的中央开孔;图23为图21端帽的前向透视图,说明外部触点的方向;图24为多个传输链路直角弯曲连接器组件的平面图;图25为连接器组件终止端之一的替换结构的透视图;图26为适用于连接本发明传输通道链路与电路板的连接器的透视图;图27A为图26连接器的轮廓透视图,说明构成该连接器的各部件;图27B为图27A内部触点组件的透视图,去除了侧壁并说明耦合部件的结构与位置;图28为图26连接器的端视图;图29A-C为传输通道链路其它实施例的端视图,在图29A中,其使用传输通道的介质体作为影响耦合的媒质;在图29B-C中,使用传导元件间的气隙作为影响耦合的媒质;图30为图29C的传输通道阵列的端视图,其布置在底座上,并说明可通过本发明获得的传输通道的排列;图31为说明与图29A-C类似的空气介质传输通道的直角结构的平面图;图32为根据本发明原理构造的波导组件的透视图;图33为图32波导组件沿线33-33的剖面图;图34为图32波导组件沿线34-34的剖面图的细节放大图;图35为连接器组件的透视图,其使用在两个电路板间延伸的本发明通道传输元件组,并由保护外套保护;图36为变化使用一组本发明基本通道链路的透视图,说明将其直角应用于连接两个电路板;图37为根据本发明原理构造的高压、高密度传输线的透视图;图38为图37传输线的端视图;图39为本发明传输线的透视图,其适合作为低阻抗电源传输线;图40为本发明的信号与电源混合传输线的透视图,其在两个连接器间延伸,并且其中信号与电源导体由单个隔离区分隔;
图41为本发明的另一信号与电源混合传输线的透视图,其在两个连接器间延伸,并具有置于其上的多个隔离区,以将信号与电源导体彼此电气隔离;图42为根据本发明的用于一组“底座”型基本通道链路连接器的框架的透视图,其可用于卡缘连接器与印刷电路板之间;图43为图42框架的框架的侧视图;图44为图43和44连接器的框架的俯视平面图;图45图42-44的框架的后向正视图;图46为图44连接器沿线46-46的剖视图;图47为与图46一样的剖视图,但作为透视图放置;图48为图42连接器沿线48-48的另一横截面视图;图49为图42-48连接器的后向透视图,部分剖视;图50为图42-49连接器的放大的底部平面图;图51为根据本发明的图42-49的框架在用塑料材料过模制后的框架的透视图,某些框架部分以虚线表示;图52为在图42-51表示的基本通道链路连接器组的替换实施例的透视图,但说明另一实施例,其中,在成组的通道部件间具有更大的空间;图53为在一种应用中使用的图42-52连接器的分解图,其中,卡缘连接器与印刷电路板连接,且该卡缘连接器与印刷线路处于不同的高度;图54为与图53相同的视图,但该连接器及其屏蔽盘与印刷电路板相连,封盖与卡缘连接器盘为了清楚起见分解示出;图55为根据本发明原理构造的另一连接器框架结构的透视图,其专用于本发明的另一替换实施例中;图56为替换实施例连接器的透视图,但具有在图55框架结构上模制的外部封盖,且可安装在例如图53与54所示的印刷电路板上;图57图56连接器的俯视平面图;以及图58为图56与57的正面端视图。
具体实施例方式
图4表示根据本发明原理构造的一组基本通道链路50。可以看出,该链路包括拉伸的介质体51,优选地,为圆柱形细丝,其与光纤材料的长度类似。区别在于链路50用为预制波导和专用传输媒介。在这一点上,主体51由具有特定介电常数的专用介质和应用其上的传导元件52形成。在图4和图5中,传导元件52表示为传导材料拉伸延展体52,或带线,同样地,它们可为传统的铜或贵金属延展体,具有明确的横截面,可模制至或连接至链路50的介质体,如通过粘合剂或其它方式。它们还可在主体51的外表面55上形成,例如通过适当的电镀工艺。在每个链路上至少使用两个这样的导体,通常用于差分信号的信号传送,例如+0.5伏与-0.5伏。使用这种差分信号结构允许我们将本发明的结构描述为可在整个信号传递路径上维持的预制波导。使用介质体51提供降低并提供在链路内进行的首选耦合。在该最简单的实施例中,如图5中所示,传导元件布置在两个相对的面上,使得每个传导元件的电子引力通过支撑它们的介质体相互作用,或在传导通道的情况下,如下详细解释,并在图29-30中的示出,传导元件布置在(各个)腔体的两个或更多的内表面上,以在腔体间隙并通过空气介质建立主要的耦合模式。按照这种方式,可将本发明的链路视为光纤通道等的电子等效物。
同样,本发明链路的有效性取决于对通过通道链路的数字信号的保持与导向。这将包括保持信号完整性,控制发散以及最小化通过链路的损耗。本发明的通道链路包含传送的信号的电磁场,通过控制通道链路的材料以及系统部件的几何形状,以便产生首选的场耦合。
如图5中更好地说明,两个传导表面52彼此相对地安排在介质体51上,这本发明平衡链路的典型代表,其中,传导表面52的圆周或弧形部分C是相同的,介质体51的非传导外表面55的圆周或弧形部分C1也是如此。可认为该长度限定了传导表面间的总间隔D。如下所解释,该链路可为不平衡的,传导表面其中一个的弧长比另一个的大。在介质体与链路为圆形的情况下,该链路可作为接触引脚,并因此用于连接器应用中。该圆形横截面展示了与常规圆形接触引脚相同的构造类型。
图6中所示,可修改本发明的链路,以不仅提供多个传导元件作为整体系统传输媒介的一部分,还可在其中集成同心的同轴光纤波导,用于光线与光学信号的传输。考虑到这一点,对介质体51去芯,以产生光纤58穿过的中央开孔57。电信号与光信号都可通过该链路传送。
图7示意性地说明包含本发明链路50的传输线70,其中链路50在源71与负载72间延伸。该链路的传导表面52将源与负载连接在一起,还连接在源与负载间的第二负载73。可向系统添加这样的第二负载以控制系统的阻抗。在源与负载间建立传输线阻抗,并可通过向传输线增加第二阻抗进行修改。
图8示意性地说明本发明链路与常规导体间的区别,二者均在介质块76中表示。两个由铜或其它传导材料形成的分离的常规导体穿过块76。如放大区域“A”中所示,由于扩大的电流环,这两个分离导体形成具有大电感(L)的开放单元结构。完全不同的是,本发明链路在恒定阻抗下具有较小的电感(L),这是由于在介质体51上传导表面位置的接近造成的。这些链路50的尺寸在制造过程中可以控制,且拉伸将是首选的制造工艺,传导表面随介质体一起拉伸,或分别进行拉伸,例如通过选择的电镀工艺,使得产生的结构是电镀塑料的变体。在拉伸工艺中可容易地控制介质体51的大小与其上传导元件间的间隔。
如图9所示,介质体可具有示出的90°直角弯曲的内弯80,或其它角度值。在弯曲中可容易地保持介质体51与传导表面52。
图10说明使用本发明的链路的传输线。该链路50视为由一个或多个单个介质体51形成的传输电缆,并且其一端82终止于印刷电路板83。该终止端可为直连的,以使电路板的不连续性最小。还提供使不连续性保持最小的短传输链路84,这些链路84保持该传输链路的成组形式。提供终止端接口85,其中,链路在连接器处终止,具有最小的几何形状不连续与阻抗不连续。按照这种方式,在传输线的长度上保持传导表面的分组,形成几何与电气的统一性。
图11说明各种不同横截面的本发明传输线50。在最右边的链路90中,中央导体93由中空介质体94包围,其支撑多个由隔离空间分隔的传导表面95,优选地,隔离空间由部分介质体94填充。该结构适用于电源应用,其中,电源由中央导体传送。在中间的链路91中,中央封盖96优选地由所选介质制成,并具有在其上支撑的传导表面97。优选地,提供外部保护绝缘套98以保护和/或绝缘内部链路。最左边的链路92具有保护外套99,该保护外套包围可镀聚合环100,该聚合环包围传导或绝缘芯101。可替换地,环绕链路92芯的一个或多个元件可由空气填充,并可由适当的绝缘体等与内部元件隔离。
图12表示链路110-113的阵列,他们具有与介质体51结合的外部区域,以形成不同类型的传输链路。链路110具有布置在介质体51外表面上的两个不同弧长(即非平衡的)的传导表面52a,52b,使得链路110可提供单端操作。链路111具有两个相等间隔和尺寸(即“平衡的”)的传导元件52,以提供高效的差分信号操作。
链路112具有三个传导表面115,以支持两个差分信号导体115a与适当的接地导体115b的差分三端链路操作。链路113具有布置在其介质体51上的4个传导表面116,其中,传导表面可包括两个差分信号通道(或对)即一个差分对和一对关联的地线。
图13表示非圆形类型链路120-122的阵列,链路120具有方形结构,链路121-122具有矩形结构。介质体51可通过镀有或覆盖有传导材料的突出槽脊部分125进行延伸。这些槽脊部分125能够以某种方式用作连接器槽中的“键”,以便容易地使连接器端子(未示出)与传导面125间的接触生效。
图14表示一些另外的介质体。一个介质体130表示为凸起状,也示出了另外两个介质体131,132。圆形横截面的介质体具有将电场强度集中在传导表面拐角的趋势,而对于示出的介质体131的略微凸起形状,具有均匀集中场强的趋势,在更低的和更好的凸面中,如介质132中所示,导致具有降低串扰的有益特性,因为它向内部集中电场。
重要的是,传输线可形成为单个拉伸体200(图15-16),在其上传送多个信号通道,每个通道包括一对传导表面202-203。这些传导表面通过支撑它们的隔离体204和将它们连接在一起的连接板205彼此分隔,该拉伸体200可用作整体连接器组件220的一部分,其中,该拉伸体容纳在连接器外壳211上的互补形状的开孔210中。可选择性的电镀开孔210的内壁,或触点212可插入到外壳211中,以接触传导表面并提供,如果有必要的话,表面安装或穿过孔的尾部。
图17说明两个传输通道50的结构,如图所示排列,一端在连接器块180终止,并穿过直角块182,其包括在其中形成的多个直角通道183,这些通道如图所示容纳传输通道。在图17所示的结构中,将会理解,可通过连续制造工艺生产传输通道链路,例如通过拉伸,且可与内部的或集成的传导元件52一起制造每个通道。在制造这些元件的过程中,可控制传输通道本身的几何形状,和介质体上传导元件的间隔与位置,使得传输通道作为一致的和统一的波导运行,其支持信号(通信)业务的单个通道或“带”。由于可极其灵活地制造传输通道链路的介质体,所以本发明的系统可容易地与延伸长度上的各种路径类似,而不显著牺牲系统的电气性能。一个连接器端块180可保持垂直对齐的传输通道,而块182可保持直角方向的传输通道链路端,用于其它部件的终止。
图18表示一组凸起的介质块或介质体300-302,其中,隔离距离L不同,并且这些块的外表面306的曲线305在链路300-302中凸起。按照这种方式,应当理解,可选择这些介质体的形状以提供不同的透镜特性。
图19表示多个通道拉伸体400,具有由连接板402连接的一组介质体或块401,其中,传导表面403实际上是多重的或复杂的。
图20表示如图15与16中所示的标准拉伸体200。
本发明的链路可在连接器与其它外壳中终止。图21-23表示一个略呈圆锥形的终止接口端帽,其具有中空体501和中央孔502。该零件可支持一对端子504,其与介质体51的传导表面52匹配。该端帽500可插入至各种连接器外壳的孔中,同样,优选地包括圆锥插入端510。
图24表示在一组链路520上适当位置的端帽500,链路在具有表面安装端子522的端块521终止。
图25表示端块的替换结构570。在该结构中,传输线,即链路571,由介质形成,并包括一对在其外表面形成的传导延伸体572(为了清楚起见,仅示出一个侧面上的延伸体572,它们的对应延伸体在链路571对着图25纸面的表面上形成)。这些传导延伸体572通过在电路板574内部形成的传导过孔575与电路板574上的迹线573相连。如果需要的话,这些过孔也可在端块570的主体内构成。过孔575是分开的,且它们的两个传导部分由隔离间隙576分隔,以在电路板上保持两个传导传输通道的隔离。
图26表示安装在电路板601上的端帽600。这种类型的端帽600当作连接器并由此包括外壳602,和具有各种键槽604的中央槽603,键槽容纳传输链路的突出部分。端帽连接器600可具有多个窗口620,用于焊接触点607的传导尾部。在表面安装尾部的情况下,尾部具有在端帽壳体下折起的水平部分609,以降低所需的电路板焊盘尺寸,和电路板上的系统电容。
图27A表示端帽连接器600的轮廓图,并显示在连接器外壳602中如何支撑触点,即端子607,和穿过连接器外壳。端子607可包括双重导线接触端608,用于重复接触(并提供并行的电气通路),且连接器600可连接U形钉615,其为倒U形,并加强外壳上端子的连接。这些双重导线端子607的尾部增加连接器的稳定性。在这方面,它还对构成(横向)穿过外壳槽601的端子提供控制。图27B用于端帽600的内部接触组件的视图。端子607排列在连接器的相对侧面上,并安装在各自的支撑块610中。这些支撑块610彼此相隔预先选择的距离,该距离辅助分离端子触点608。可提供具有整体U形,即刀锋形的连接U形钉615,并可将其插入在端子607与支撑块610间,以增强端子607间和其中的连接。图28为连接器600的端视图。
图29A-C为根据本发明原理构造的传输通道链路的其它实施例,使用空气作为介质并在使用在传导元件间连接的较宽侧面。在图29A中,介质衬底700具有基本均匀的横截面,在其上间隔地形成凸起部分701,传导部分702布置在衬底的相对表面上。在这方面,因此在该结构中形成垂直的信号通道,其在出现于图29A的每个凸起701下的方框中标示。可安排多个传导元件702,以提供差分信号传输,如图所示,一种这样的结构将正(“+”)信号传导表面放在一侧,并将负(“-”)信号放在介质衬底的另一侧。如本领域所理解的,相反极性的传导延伸体702将构成对或信号通道;其在图29A之下由“1”至“4”标示。在该实施例中,该相对的传导对由中间支撑介质衬底的体积与长度分隔。该结构适用于夹层配置。
图29B表示这种连接器的结构变化,衬底700’的介质体具有多个在其中形成的槽705’,这些槽沿衬底的宽度彼此分隔。传导表面702’布置在槽的相对侧面上(即侧壁),并通过中间的空隙彼此隔离,其中用空气填充。在该结构中,如图所示选择传导表面的极性,以使负信号与正信号传导表面彼此面对,因此在关联的传导表面对间用槽705’中的空气作为介质。而在图29A的实施例中,垂直排列信号对或通道,或穿过介质体,在图28B与29C中,该结构和两个传导表面间的电引力水平穿过中间的气隙。在构造这种传输通道中,可电镀衬底的全部外表面,且可蚀刻上部的外表面706’,以去除它们的镀层。起初在两侧壁间的底部708’上存在的镀层可被去除,例如将其蚀刻去除。结果,形成多个传导上不相连的垂直极板702’。在这种类型的结构中,主要的场耦合出现在相反充电的传导表面对之间(在图29B中是水平的),且相反充电的传导表面对之间的气隙即间隔比空隙本身间的间隔更加紧密。从而通过几何形状控制使得差分对间隔在电气上更加紧密,以确保主要的电引力保持在差分对内。这些传导表面的间隔与轮廓可通过模制连接器与电镀所需表面进行控制,以保持连接器的合适尺寸。
图29C表示类似的结构,但使用传导接地平面710’,其施加在介质衬底700’的底面上。
如图30中所示,可使用这种结构形成传输通道链路的密集矩阵,其中,多个衬底700’侧向叠放在一起。每个衬底可包括接地平面710’和三个通信或信号带,如图所示,或可选择其它结构。
图31表示在直角情况下使用那样的结构,介质块800具有在其中形成的多个凹槽804。凹槽的相对侧壁可镀有传导表面803,其从一端806延伸至另一端807的钟形口802。传导表面803弥补了钟形口802的不足,以将该通道与下一传输通道链路部分去掉电气耦合。
图32-34表示根据本发明原理构造的波导媒质的其它结构。如图32中所示,介质衬底900具有在其上形成的多个槽902。槽902在介质体904的相对表面上形成,以限定一系列突出的槽脊,其支撑电镀的或另外的传导表面903。槽902可视为形成一系列薄的连接板,其减少介质的横截面并减少交错的通道间的电容。可在每个信号通道或带中控制传导表面的宽度,以便控制通道的阻抗。如在图34中的最佳表示,表面安装元件,例如管脚910可通过衬底形成,并可包括布置在它们外表面上的传导表面,以便建立用于与电路板相连的传导接口,例如通过焊接。
图35表示本发明的传输线420,其跨接在两个电路板421,422间。传输线420与连接器424匹配,与图26中示出的类型类似,并从此向外延伸,到达布置在电路板422上的表面安装连接结构425(或形成为表面安装“引脚”,其为模制的,或通过传输线形成,该传输线可与电路板422表面上的相对的接触焊盘或迹线相连)。这种连接可包括从表面427向上延伸的多个接触元件426,且该接触元件426优选地包括传导表面428,其排列在传导带线430的对面,使得它们与传输元件的带线430进行直接接触。它们可为焊接的,或另外连接的,或可仅仅依靠摩擦接触,以进行电气连接。该示出的结构还包括由塑料或金属形成的保护外套431(假设其正对传输元件的内侧由绝缘体保护),以保护传输元件免受损伤和外部接触。
图36中,在跨接在两个电路板间的直角结构中表示传输链路420。该传输链路可模制为这种形状,其具有期望的厚度、间隔等物理尺寸,以通过弯曲半径保持波导参数。在示出的应用中,该传输链路通过直接位于电路板427表面上的表面安装结构425将表面安装连接器424与电路板427连接。
图37与38表示基本通道传输线组的另一实施例,即链路650,其特别适用于传送高密度触点间隔的高电压与强电流。传输线650的主体由介质形成,且具有在其中形成的一系列凹槽,即槽651,凹槽从一个表面652延伸至主体部分内部。这些槽的侧壁654涂覆有传导材料,例如通过电镀,并实际上形成一系列“极板”,它们彼此相对,并由中间的空间分隔,即空气,其通常充满槽651。在图37与38的左边,示出插入模制的插头658,且该插头包括封盖部分659和一个或多个舌状物,即填充体660,其来自封盖部分659并向槽651内延伸,并完全占据槽651的空间。在图37和38的下表面上淀积接地平面659,以提供增加的电容耦合。
按照这种方式,如图38中的最佳表示,相反极性(即“+”或“-”)的传导触点对间彼此电气隔离,但限定了完整的电路。涉及本发明传输元件的尺寸允许在低电感传递模式下实现非常高的密度,特别是由于大量公共并行电流路径造成。图37与38的右边示出实现这种隔离的另一装置,也就是使用沿全部槽和槽脊结构的类似的涂层,但其在两个传导表面间提供绝缘或隔离。在传输线中使用相对的对将导致传输线系统较低的环路电感,其中,电流横跨传输线,并可能在其两个相对表面上通过。
如图39中所示,本发明的传输线还可用于以极低阻抗传送电源,在所示的传输线750中,介质体751部分具有在其外表面753上形成的一系列凹槽752。与前面一些实施例不同,不是仅在介质体槽脊部分的外表面镀有传导金属。两个这样的槽脊755在传输线750的长度上连续电镀,并由分隔它们的凹槽,即槽752中的镀层相连,从而电镀5个不同的表面。这些表面包括两个槽脊755,凹槽752的两个侧壁756和凹槽的底部757,它们合并起来形成传输线的单个电源端子。在这种结构中,存在增加的表面区域,其将在电源端子与关联的接地端子间提供增加的电容。低电感与增加的电容将用于降低整体系统的阻抗,从而本发明的传输线可用于低阻抗电源传输。
图40与41表示信号与电源混合线的可能使用方式。在图40中,可以看出,传输线具有两个信号迹线,即延长体951,和一个宽的电源迹线,即延长体952,其在传输线的至少一个,或优选地,在两个(相对)表面上形成。电源延长体通过用于处理电流增大的扩大的连续导体限定大的电源通道,并通过扩大的极板面积限定高电容。该类型结构的电源与信号区可通过宽的“隔离”区956分隔,该隔离区可浇铸模制或形成为传输线的一部分。在例如拉伸的制造工艺中,可高度可靠地控制隔离区的尺寸与公差,以获得最大的电气益处并最小化相互干扰,或电源与信号延长体间的短接。
图41表示类似的结构,除了电源区包括由中间的隔离区分隔的多个电源延长体952a。
图42-50表示底座类型的结构,其集成了本发明的原理,且优选地,专用于在两个高度间需要过渡的应用。在图42中,所示的底座类型的连接器采用用于基本通道链路连接器组(GECL)的框架的形式,通常由1000代表。该框架1000具有多个凸起的筋肋状元件,它们沿框架的轮廓以平行的关系排列。与框架1000的宽度相比,框架1000可描述为在筋肋状元件的纵向延伸。第一组凸起元件1006从布置在框架1000底部1010中的孔1008的一侧开始,直到基本垂直的部分1012的前侧,然后穿过顶部1014的上侧,并进一步包围框架1000的后端1016(图45),并最终在一对中心与支撑引脚1018与1020附近(图50),终止于顶部1014的底侧上。该框架的主要结构与S形类似,且在两个等级间提供弯曲的路径,其中,在框架上支撑的传输线至少改变一次方向。
第二组凸起元件1022从孔1008的对侧开始,包围框架1000的前边缘1024,沿底部1010的下侧,到达垂直部分1012的后侧,然后沿顶部1014的底侧,并最终在一对中心与支撑引脚1018与1020附近,也终止于顶部1014的底侧上,但没有到达第一组凸起元件1006的终止端。该框架提供两组凸起元件1006与1022,它们从底部1010上侧的孔1008附近开始,以相反方向,到达框架1000顶部1014的下侧。在图50中可看出,该凸起元件1006与1022,包括它们的终止端,是彼此交错的,而不是对齐的。凸起元件1006的终止端1028与凸起元件1022的终止端1030也能够以平行的行形式排列,并可从顶部1014的下表面凸起,用于与在印刷电路板上对应的传导模式的合适的表面安装和电气接触。
优选地,该框架1000通过至少一次弯曲形成,使得传导迹线将在其延伸的长度上进行至少一次方向的改变。在所示的框架1000的实施例中,从图43的侧视图可看出,框架1000可具有两个大约90°的弯曲1002与1004,以适应不同垂直位置间和不同水平位置间电信号的转化。当然,弯曲1002与1004可具有任意所需的角度。例如,弯曲1002与1004可小于或大于90°,并实现期望的结果。这些弯曲实际上限定导体的弯曲路径并允许本发明的连接器用于使电子设备中处于不同高度的电路连接在一起的应用,例如服务器或路由器等。
该框架1000可通过公知的模制技术,由催化树脂形成,例如液晶聚合物(LCP)。该框架1000然后可过模制,例如通过非催化树脂,以提供图51所示的GECL连接器。在过模制工艺中,框架1000的某些特征需要暴露,例如凸起元件1006与1022的顶面。然后这些暴露的特征可镀有金属,例如通过化学镀工艺沿凸起元件1006与1022形成金属导体。当然,可逆用过模制工艺,首先模制非催化树脂,然后浇铸催化树脂,以形成所需导体的金属镀层的迹线。第三种技术是模制连接器并随即选择区域,通过激光或光刻技术进行金属化。连接器可模制为一个整体,并可选择性地或全部向其施加镀层,然后将镀层蚀刻去除。
如果需要的话,在过模制工艺中可使用在底部1010限定的一对孔,以在模制工艺中定位或标记框架1000。在每个凸起的元件1006与1002间布置的是凹壁或通道,例如图50中所示的通道1026。孔1008也在底部1010中限定,其将增强框架1000的树脂流,包括用树脂填充凹壁或通道1026,以电气绝缘在多个分离的凸起元件1006与1022上形成的金属覆层,以在其上提供分离的导电体。
根据本发明的一个方面,在凸起元件1006和/或1022间布置的通道中的至少一些比通道1026具有更深的深度。例如,在图48中,三个通道1032具有较深的深度。在过模制工艺中,通道1032没有用树脂填充。从而,在化学镀金属化工艺期间,通道1032还具有在其侧壁1036上形成的金属覆层,以在通道1032中形成金属导体。在图50中可看出,在形成三个通道1032的三对凸起筋肋1006的侧壁1036上形成金属覆层。为了说明的目的,放大图50中的金属覆层厚度。在图46中也示出了这些金属化的通道1032。可通过公知技术去除在通道1032的底部形成的任何金属覆层,以在每个通道1032中的侧壁1036上产生分离的和相对的导电体。具有已镀侧壁的通道1032作为高频信号的传输线。例如,处于10Gbit或更高频率的高速差分电信号,例如+5伏与-5伏,可沿相对的金属化侧壁1036传导。在这方面,通道1032还当作波导,其沿传输线的长度延伸,由两个传导迹线限定。中间的气隙具有近似或等于1.0的介电常数,其增强两个导体间的耦合。
继续参考图50,凸起元件组1006的其它凸起筋肋1038具有在过模制工艺期间填充的相邻通道,使得仅有筋肋1038的顶面镀有金属,以在电镀工艺期间形成导体。优选地,在每个通道1032中形成的高频传输线间至少布置一个筋肋1038。在使用中,在筋肋1038上形成的导体优选地用于低阻抗源,例如地线和电源,以对通道1032中的传输线中的差分信号提供引力。综上,进一步优选地在通道1032两侧的筋肋1038a上布置低阻抗导体。从而,在突起的筋肋1038和1038a上和在穿过框架1000与对应的连接器1050的通道元件1032中形成的导体的首选结构为,例如,地线,差分信号对,电源,差分信号对,地线,差分信号对与电源。当然,接地或电源导体1038或1038a的结构可改变,因为任何电源视为低阻抗的,且在阻抗上与地线相似。
注意到,在图48与50所示的实施例中,凸起元件1022不具有任何通道1032。然而,如果需要的话,元件1022中的一些在通道1032中也可具有传输线。在该实施例中,假设可使用在元件1022顶部形成的导体以传导较低频率的信号,或用于另外的电源与接地线。
图51表示在框架1000过模制后,基本通道链路连接器组,由1050表示。框架1000的各种特征由虚线表示。连接器1050因此保留框架1000的属性,例如,在凸起元件或筋肋方向上的拉伸形状和在垂直与水平位置间转化信号的一个或多个弯曲。
连接器1050的替换实施例在图52中表示,由1060代表。连接器1060基本上与连接器1050类似,除了部分介于信号通道传输传导表面间的通道1062比连接器1050中的通道1032更宽。连接器1060通常可为与插入并保持在传导屏蔽罩1070,1082中的收发机或的适配器模块的电路卡或卡缘相匹配的连接器。1022的前缘支持连接器1062,如图53所示,而通道1062延伸到达的后缘接触电路板1052的上表面(图53)。在连接器1060的实施例中,例如图50中的筋肋1038上,在通道1062中形成的传输线间没有提供低阻抗导体。然而,可在通道1062的任一侧提供低阻抗导体,例如在筋肋1064上。再一次地,在过模制期间没有填充通道1062,使得通道1062的侧壁在电镀工艺期间以针对连接器1050的通道1032说明的方式镀上金属。
在图53和54中表示GECL连接器1050,或替换实施例GECL连接器1060的使用示例。印刷电路板(“PCB”)1052可具有多个连接器表面安装区域1054,每个具有多个多个电子触点,用于和连接器1050或1060下侧的对应触点匹配。可在安装区域1054提供孔1056,以啮合中央安装引脚1018与1020,并使连接器1050与PCB 1052对齐。
卡缘连接器1062具有向下的引脚1064,其与GECL 1050和1060中的孔1036和1038匹配。卡缘连接器1062在其下侧具有多个触点,当与连接器1050和1060连接时,它们与连接器1050和1060的凸起元件1006和1022进行电气连接。通常为矩形的孔1066在卡缘连接器1062的表面上形成,以容纳具有多个电气触点的匹配连接器的边缘。因此,在形成于凸起元件1006与1022,包括通道部件1032与1062上的导体上存在的信号的全部或任一所选部分可在卡缘连接器1062的孔1066处得到。
连接器盘,或屏蔽罩1070可选地与PCB 1052啮合,且它可分为多个仓,每个仓用于一个连接器1050或1060。在连接器盘1070侧面形成的多个圆形凸起1072可嵌入在PCB 1052边缘中形成的相应形状的凹槽中,且盘1070上垂直方向的引脚1078可嵌入在安装区域间布置的孔1080中,以将盘1070与PCB 1052锁定。盘1070的唇缘1076置于PCB 1052的上表面。多个盘,或仓盖1082优选地具有向下的引脚1084,其可插入到在连接器盘1070上形成的孔1086中。连接器盘1070与舱盖1082可镀有金属以降低EMI,RF或其它对连接器1050和1060的电子干扰。
图55的1102示出了框架部分的另一实施例。该框架1102具有在底座上支撑的多个元件1104和1106(它们镀有传导金属),其从底座向上延伸,使得它们对于底座“凸起”。该框架1102也具有一个或多个弯曲,例如在1108和1110处,其中,由于与前述框架1000相同的原因与目的,导体的传导迹线进行两次方向改变。触点行1112与1114分别布置在这些元件1106与1104的端部,并用于与对应的触点行进行接触,例如图53与54中电路板1052上的安装区域1054。这些传导元件的自由端1106允许另一连接器与连接器1100接合。从图55和56可看出,这两个自由端在垂直方向彼此分离,并且它们还优选地位于两个不同的,但基本平行的平面中。
框架1002用于过模制为另一类型的底座连接器1100,其在图56-58中示出。如图56中所示,凸起元件1104间的至少一些通道,例如三个通道1122,优选地在过模制工艺期间保持开放,使得通道1122的侧壁可金属化,以作为通道部件或传输线工作,如上面对连接器1050与1060的说明。具有传导材料的镀层还可在连接器外部的过模制之前完成。
形成框架部分1102,其外部优选地对于它的所选部分过模制,且该外部具有一对支撑壁1199,如图56中所示,支撑壁垂直延伸,以形成在一端1106之下并与另一端相邻的腔体,即容仓1200,使得该底座连接器可放置于另一连接器上的电路板上。该连接器在其侧壁间具有较宽的槽,且这些较宽的通道部件1124在构造、排列和操作方面类似于已经说明的较宽的用于图52中连接器1060中的通道部件1062。金属镀层1132布置在通道部件112的相对侧壁上。可通过本领域公知的各种技术去除金属化工艺期间在通道1124底部形成的任何金属。在图55-58所示的底座连接器1100的实施例中,凸起元件1106不具有任何窄的或宽的通道部件1122或1124,但如果需要的话,也可以具有。底座连接器1100上表面中的一对孔1128与1130用于以针对连接器1050与1060说明的类似方式和相同目的,容纳图53与54示出的卡缘连接器1062。
权利要求
1.一种电连接器,包括具有两个端部的绝缘体部分;一对在其上布置的传导迹线,该两个迹线沿所述连接器主体并在所述连接器主体端部之间共同限定差分信号传输通道,所述连接器主体具有布置在其中的至少一个弯曲,使得所述传导迹线在所述连接器主体端部之间的范围内至少改变一次方向。
2.权利要求1的连接器,其中,所述连接器主体包括由金属化的材料形成的内部框架部分;以及由电绝缘的化合物形成的外部,其选择性地仅覆盖所述框架部分的一部分,但保留一部分框架部分未被覆盖,以暴露所述传导迹线。
3.权利要求1的电连接器,其中,所述传导迹线在所述连接器主体端部之间,在水平与垂直方向上延伸。
4.权利要求2的电连接器,其中,所述连接器主体包括在其中形成的槽,该槽限定一对相对的侧壁,每个侧壁在其上支持传导迹线。
5.权利要求4的连接器,其中,所述槽在所述内部框架部分内形成。
6.权利要求2的连接器,其中,该框架部分由催化树脂模制,并且外部为非催化树脂。
7.权利要求2的连接器,其中,所述外部在所述内部框架部分上模制。
8.权利要求1的连接器,其中,所述连接器主体具有在其中形成的两个弯曲,使得所述两个传导迹线沿所述连接器主体端部之间沿连接器主体的范围内进行两次方向改变。
9.权利要求1的连接器,其中,所述连接器主体两端位于不同的和隔离的平面中。
10.权利要求1的连接器,其中,所述连接器主体包括一对支撑壁,其在隔离的平面间延伸,并在所述连接器两端中的一个之下形成腔体。
11.一种用于过模制电连接器的框架,包括由塑料材料形成的框架部分,其可镀有金属,所述框架部分在一个方向上拉伸,所述框架部分具有顶侧与底侧;以及多个沿侧面之一形成凸起的筋肋,这些侧面具有在一对筋肋间形成的通道,至少一个通道比其余通道更深,所述至少一个通道具有相对的侧壁,其可镀有金属的,以限定具有高频电子信号特性的通道部件,所述多个筋肋和所述通道部件布置在拉伸的方向上。
12.如权利要求11所述的用于过模制电连接器的框架,其中,所述框架部分具有至少一个跨过其拉伸方向的有角度的弯曲,以在水平和垂直方向上接合并传导电信号。
13.如权利要求12所述的用于过模制电连接器的框架,其中,在该框架部分的顶面上形成第一组多个凸起筋肋,并在该框架部分的底面上形成第二组多个凸起筋肋,第一组凸起筋肋的一部分向底侧包围该框架部分的一端,且所述第二组凸起的筋肋的一部分向顶侧包围所述框架部分的相对端。
14.如权利要求13所述的用于过模制电连接器的框架,其中,第一与第二组凸起筋肋的第一组端部在该框架部分底侧上布置的连接器区域内会合,且第一与第二组凸起筋肋的第二组端部在该框架部分顶侧上布置的另一连接器区域内会合。
15.一种制造用于过模制连接器的框架的工艺,包括的步骤为由塑料材料模制框架部分,其可镀有金属;在模制该框架部分期间,沿所述框架部分的一个表面提供至少一组凸起筋肋,在所述凸起筋肋间布置多个通道,至少一个通道比其余通道更深,在所述凸起筋肋、所述通道和所述框架部分中提供至少一个有角度的弯曲。
16.一种制造过模制连接器的工艺,包括的步骤为由塑料材料模制框架部分,其可镀有金属;在模制该框架部分期间,沿所述框架部分的一个表面提供至少一组凸起筋肋,在所述凸起筋肋间布置多个通道,至少一个通道比其余通道更深;在所述凸起筋肋、所述通道和所述框架部分中提供至少一个有角度的弯曲;用电绝缘化合物选择性地过模制所述框架部分,使多个筋肋暴露在上表面上,使所述至少一个较深的通道暴露,但用电绝缘化合物填充其余通道,以使筋肋暴露的上表面彼此电气绝缘;将所述筋肋的暴露的上表面镀上金属,以在其上提供导电体;以及,将所述至少一个较深通道的侧壁镀上金属,以提供至少一个具有高频信号特性的通道部件。
全文摘要
一种集成了一个或多个基本通道链路传输线组的底座连接器,其具有介质体和两个相对的接触端,其用于接触相对的触点或迹线。该介质体具有S形的结构,使得在其上支撑的该传输线至少进行一次方向上的改变。因此允许使用这种连接器连接位于两个不同平面上的元件。该传输线包括在框架内延伸的槽,且其限定在介质体上形成的相对的传导表面,其由中间的气隙隔离。
文档编号H01R12/16GK1774835SQ200480010008
公开日2006年5月17日 申请日期2004年3月15日 优先权日2003年3月14日
发明者维克托·萨德雷杰, 戴维·L·布伦克尔, 菲利普·J·丹巴赫 申请人:莫莱克斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1