无线芯片的制作方法

文档序号:6868276阅读:498来源:国知局
专利名称:无线芯片的制作方法
技术领域
本发明涉及无线芯片及其制造方法。
背景技术
近年来,用于无线数据发送/接收的无线芯片被积极地发展。用于数据发送/接收的无线芯片被叫做IC芯片、RF标签、RFID、无线标签、电子标签、无线处理器、无线存储器等,并且目前实际使用的大部分无线芯片是利用硅衬底形成的。
作为具有少量数据的条形码的替换物以便被用于商品管理,这种无线芯片引起了注意(见专利文献1)。另外,为了防止伪造或未经许可的使用,具有高安全性功能的非接触式IC卡也引起了注意。
图23示出了这种无线芯片的常规结构的实例。图23中示出的是根据接收的指令从存储器读取数据和写数据到存储器的无线芯片。无线芯片201包括天线电路202、电源电路203、解调电路204、调制电路205、存储器IF 206和存储器207。
天线电路202接收电磁波并且产生AC信号。电源电路203对AC信号进行整流并且产生提供给其它电路的功率。解调电路204、调制电路205、存储器IF 206和存储器207中的每一个从接收的AC信号提取指令或数据,根据解码的指令从存储器读取数据和写数据到存储器,并且发送该结果。
日本专利公开物No.2003-123033在本发明中,被叫做RFID、非接触式IC卡、ID标签、ID卡等的无线芯片被共同称为ID芯片。这种ID芯片的尺寸经常根据其天线电路来确定。通常,利用较大的天线可以更容易地接收提供给ID芯片的电源电压或功率。另一方面,利用较小的天线不太容易接收其,由此通信距离变得更短。例如,利用具有信用卡的尺寸的天线,使用13.56MHz的频带的电磁感应类型的ID芯片可以获得大约80cm的通信距离;然而,利用大约5mm见方的天线,它减小到大约1cm。
以这种方式,当天线被小型化时,通信距离变得更短并且因此其应用被限制;因此,改善通信距离是至关重要的。
考虑到前面所述,本发明的主要目的是提供能够利用小天线进行数据通信的ID芯片,即具有改善的可传达距离的致密ID芯片。

发明内容
考虑到前述问题,本发明的ID芯片的电源电路产生比常规ID芯片中产生的电源电压更高的电源电压。因此,可以改善通信距离。即,本发明实现了这样的结构即使当从天线电路获得的信号幅度小时ID芯片的内部电路也可以稳定地工作以便改善ID芯片的通信距离。
根据本发明的一个模式,提供一种无线芯片,其包括用来整流和提高天线电路的输出的电路。
根据本发明的另一模式,提供一种无线芯片,其包括天线电路和升压电路。升压电路的时钟信号输入端子直接或通过电容器连接到天线电路的输出。
根据本发明的另一模式,提供一种无线芯片,其包括具有用来输出两个信号的第一端子和第二端子的天线,以及具有用来接收两相时钟信号的两个端子的升压电路。升压电路的两个端子直接或通过电容器分别连接到天线电路的第一端子和第二端子。
根据本发明的一个特定模式,提供一种无线芯片,其包括具有用来输出两个信号的第一端子和第二端子的天线电路,以及升压电源电路。该升压电源电路包括具有用来从天线电路的第一端子接收信号的第三端子、用来从天线电路的第二端子接收信号的第四端子、和用来输出电势的第五端子的整流电路;以及具有用来从天线电路的第一端子接收信号的第六端子、用来从天线电路的第二端子接收信号的第七端子、用来接收电势的第八端子、用来输出电源电势的第九端子、以及用来输出地电势的第十端子的升压电路。天线电路的第一端子直接或通过电容器连接到整流电路的第三端子和升压电路的第六端子。天线电路的第二端子直接或通过电容器连接到整流电路的第四端子和升压电路的第七端子。整流电路的第五端子连接到升压电路的第八端子。电源电势比上述电势高。
根据本发明的另一特定模式,提供一种无线芯片,其包括具有用来输出两个信号的第一端子和第二端子的天线电路,以及升压电源电路。该升压电源电路包括具有用来从天线电路的第一端子接收信号的第三端子、用来从天线电路的第二端子接收信号的第四端子、用来输出第一电势的第五端子、以及用来输出第二电势的第十一端子的整流电路;以及具有用来从天线电路的第一端子接收信号的第六端子、用来从天线电路的第二端子接收信号的第七端子、用来接收第一电势的第八端子、用来接收第二电势的第十二端子、用来输出电源电势的第九端子、以及用来输出地电势的第十端子的升压电路。天线电路的第一端子直接或通过电容器连接到整流电路的第三端子和升压电路的第六端子。天线电路的第二端子直接或通过电容器连接到整流电路的第四端子和升压电路的第七端子。整流电路的第五端子和第十一端子分别连接到升压电路的第八端子和第十二端子。电源电势比第一电势高。
第二电势是例如地电势。
在本发明中,升压电源电路由模拟电路构成。
在本发明中,输入到升压电路的输入端子的信号之间的电势差具有模拟AC波形。
即使在利用常规电源电路不能获得大到足以操作逻辑电路的信号幅度的情况下,本发明的升压电源电路也可以正常工作并且产生高到足以操作该逻辑电路的电源电压。因此,可以实现具有改善的可传达距离的更致密的ID芯片。


图1是本发明的ID芯片的方块图。
图2是本发明的升压电源电路的方块图。
图3A到3C是均示出本发明的升压电源电路的性能的图表。
图4是本发明的升压电源电路的电路图。
图5A到5D是均示出本发明的升压电源电路的性能的图表。
图6是本发明的升压电源电路的方块图。
图7是本发明的无线芯片的方块图。
图8示出本发明的无线芯片的布局图案。
图9A到9E是示出本发明的无线芯片的制造方法的图示。
图10A和10B是示出本发明的无线芯片的制造方法的图示。
图11A和11B是示出本发明的无线芯片的制造方法的图示。
图12是构成本发明的无线芯片的薄膜晶体管的截面图。
图13是构成本发明的无线芯片的薄膜晶体管的截面图。
图14是本发明的无线芯片的天线的透视图。
图15是本发明的无线芯片的截面图。
图16是本发明的无线芯片的截面图。
图17A和17B是构成本发明的无线芯片的薄膜晶体管的制造图。
图18A和18B是构成本发明的无线芯片的薄膜晶体管的制造图。
图19A和19B是构成本发明的无线芯片的薄膜晶体管的制造图。
图20A和20B是构成本发明的无线芯片的薄膜晶体管的制造图。
图21A到21E示出均安装了本发明的无线芯片的商品的模式。
图22A和21B示出均安装了本发明的无线芯片的商品的模式。
图23是示出常规无线芯片的结构的图示。
具体实施例方式
尽管将参考附图借助实施例模式和实施例充分描述本发明,但是要理解的是,多种变化和修改对本领域的技术人员是显而易见的。因此,除非另外这些变化和修改脱离了本发明的范围,否则它们应当被解释为包括在其中。注意,相同的部分或具有相同功能的部分用相同的参考数字表示,并且其描述将仅进行一次。
在该实施例模式中,描述本发明的ID芯片的结构。
如图1中所示,ID芯片101包括天线电路102、升压电源电路103、解调电路104、调制电路105、存储器接口(IF)106和存储器107。这种IC芯片101根据通过天线电路102接收的指令(信号)从存储器107读取数据或写数据到存储器107。升压电源电路103具有下述功能根据在天线电路102中产生的AC信号产生升高的电源电压,并且提供功率给解调电路104、调制电路105、存储器接口(IF)106、存储器107等。
即使在不能获得大到足以操作解调电路或调制电路的内部逻辑电路的信号幅度的情况下,本发明的升压电源电路103也可以正常工作并且产生高到足以操作该逻辑电路的电源电势。升压电源电路103具有以下特征升压电源电路103(1)不具有电源输入但具有两个信号输入端子,并且该两个端子之间的电压幅度具有模拟AC波形;并且(2)不包括逻辑电路而仅包括模拟电路。
特征(1)是必需的,因为该ID芯片不具有电源输入而仅从天线接收信号。特征(2)是必需的,因为除了升高的电源电压之外不产生用来操作逻辑电路的电源电压。
注意,常规的升压电路接收多相时钟信号、电源电势和地电势。因此,难以将常规的升压电路应用到本发明的升压电源电路,其具有两个用来接收模拟信号的信号输入端子。另外,也难以将产生具有不同相位的时钟信号的逻辑电路应用到本发明的升压电源电路。
因此,本发明的升压电源电路103包括整流电路和升压电路,并且通过整流电路产生提供给该升压电路的电源电势。另外,本发明的升压电源电路103利用从天线输入的两个信号代替常规的多相时钟信号。该两个信号之间的电势差随时间的变化示出模拟AC波形。换句话说,该电势差周期性地和连续地变化。
图2是本发明的升压电源电路103的方块图并且图3A到3C示出每个节点的性能。
如图2中所示,本发明的升压电源电路301包括整流电路302和升压电路303,并且还具有将分别连接到天线电路的两个端子的两个端子。注意,天线电路的该两个端子和升压电源电路的该两个端子直接连接或通过电容器连接。
升压电源电路的该两个端子从天线电路接收具有如图3A所示的幅度Vpp的模拟AC信号。
整流电路302从天线电路的该两个端子接收信号并且产生电势(vddi)和电势(gndi)。电势(vddi)和电势(gndi)对应于均具有如图3B中所示的大约恒定的电势的信号,并且其间的电势差等于或低于从天线电路输入的信号的幅度Vpp。
升压电路303具有四个用来接收来自天线电路的两个端子的信号、电势vddi和电势gndi的输入端子,并且一接收这些信号和电势,升压电路303就产生电源电势VDD和地电势GND。从天线电路输入到升压电路303的输入端子的两个信号之间的电势差具有模拟AC波形。
注意,在电势gndi具有和天线电路的两个端子中的一个的电势相同的电平的情况下,不需要输入该端子的电势。因此,可以减少端子的数目。电源电势VDD和地电势GND是均具有大约恒定的电势的信号,并且满足(VDD-GND)>(gndi-vddi)。如图3C中所示,在地电势GND和电势gnd i具有相同的电平的情况下,从升压电路输出的电源电势VDD变得比从整流电路输出的电势vddi高。
这种升压电源电路可以输出电源电势(VDD)和地电势(GND)。
构成本发明的无线芯片的解调电路或调制电路的内部逻辑电路的特征在于它接收从升压电路输出的电源电势(VDD)作为电源。
随后,对具有图2中示出的结构的升压电源电路正常工作的情况进行描述。在整流电路302中,恒定电压下降(该电压降被称作V1);因此,输入的模拟AC信号的幅度(Vpp)必需大于下降的电压(V1)。在升压电路303中,在每个升压级也出现恒定电压下降。根据本发明,利用来自天线的两个信号进行电压升高(假定这些信号中的一个具有恒定电势,另一个信号是具有幅度(Vpp)的模拟AC信号);因此,利用两个升压级电压可以被升高了(Vpp)。因此,为了正常操作升压电路303,模拟AC信号的幅度(Vpp)必需大于该两个升压级的电压降(V2)。电压降V1和V2通常为大约相同的电平。
例如,本发明的具有六个升压级的升压电源电路可以获得(Vpp-V1)+(Vpp-V2)×3的电源电压。不用说,通过增加级数可以产生甚至更高的电源电压。同时,在常规ID芯片的内部整流电路中获得的电源电压低到(Vpp-V1)。
因此,即使在利用常规电源电路不能获得大到足以操作逻辑电路的信号幅度的情况下,本发明的升压电源电路也可以正常工作并且产生高到足以操作逻辑电路的电源电压。因此,可以实现具有改善的可传达距离的更致密的ID芯片。
注意,为了改善ID芯片的成本,优选在玻璃衬底上制造构成该ID芯片的电路。此外,从玻璃衬底剥离该ID芯片是有效的。因此,可以除去玻璃衬底并且因此可以改善抗冲击性。
描述本发明的升压电源电路的特定电路结构。
在图4中示出的升压电源电路501包括整流电路502和升压电路503,并且其输入端子in1和in2直接或通过电容器从天线电路接收信号。升压电源电路501输出电源电势(VDD)和地电势(GND)。
整流电路502包括两个串联连接的二极管507和508以及电容器506。二极管507的输入端子连接到输入端子in1同时其输出端子(节点n3)连接到电容器506的一个端子和二极管508的输入端子。电容器506的另一端子连接到输入端子in2。信号从输入端子in1和in2刚一输入到整流电路502,就产生电势vddi和电势gndi。输入端子in1的电势具有和电势gndi相同的电平。
升压电路503接收来自输入端子in2的信号、电势(vddi)和电势(gndi),并且产生电源电势(VDD)和地电势(GND)。特别地,升压电路503具有用来接收两相时钟的四级,并且它包括四个升压单元504和稳定化电容器部分505。升压电路503的两个时钟输入端子接收来自输入端子in2的信号和电势(gndi),并且其电源输入端子接收电势(vddi)。注意,尽管典型的升压电路利用二极管一次接收输入的电源电势,但是电势vddi直接输入到升压电路503的升压单元504(1)而不通过二极管,因为它在整流电路502中通过二极管508被整流。
升压单元504(i)(在该实施例模式中i=1、2、3和4)中的每一个分别具有一个电容器509(1)到509(4)、一个二极管510(1)到510(4)、两个输入端子(第一和第二输入端子)和一个输出端子。第一级的升压单元的第一输入端子接收vddi,并且第二或更低级的升压单元的第一输入端子接收其前一级的输出。偶数级的升压单元的第二输入端子从输入端子in2接收信号,并且奇数级的升压单元的第二输入端子接收电势(gndi),其具有与输入端子in1的电势相同的电平。每个二极管510(i)的输入端子连接到第一输入端子,并且其输出端子对应于升压单元的输出端子。电容器509(i)连接到第一输入端子和第二输入端子之间。
在该实施例模式中作为最后一级的升压单元504(4)的输出从升压电路503输出作为电源电势(VDD)。另外,升压电源电路501的GND连接到电势(gndi);因此,它们具有相同的电平。
稳定化电容器部分505在电源电势(VDD)和地电势(GND)之间具有电容器513,其可以稳定功率。
在本发明中,地电势(gndi)连接到时钟输入端子中的一个;因此,优选以偶数数目设置升压单元。然而,升压单元的数目并不限于图4中所示的4个,并且也可以设置例如2或6个单元的偶数个单元。此外,升压电源电路的地电势(GND)可以不连接到输入端子in1而是连接到输入端子in2,并且也可以以奇数数目设置升压单元。
在具有这样的多个升压单元的升压电路中,在奇数级的升压单元中可以通过利用从输入端子in1输入的信号使电压升高,而在偶数级的升压单元中可以通过利用从输入端子in2输入的信号使电压升高。
随后参考图5A到5D中示出的波形描述图4中示出的升压电源电路的操作。
图5A示出输入端子in1和in2的性能,其从天线电路接收信号。在信号的电势例如输入端子in1的信号的电势恒定的情况下,另一输入端子in2的信号的电势是模拟AC信号,其以该恒定电势作为中心电势进行摆动。
图5B示出整流电路502中的节点n3的电势,并且还示出输出电势vddi和gndi的性能。电势gndi连接到输入端子in1;因此,它具有类似于图5A的恒定电势。节点n3通过电容器506与来自输入端子in2的信号耦合;因此,其表现为模拟AC信号。在节点n3处于比电势(gndi)低了二极管507的阈值电压(Vth1)的电平或更大的电势的情况下二极管507导通;因此,可以将节点n3的电势V(n3)维持在(gndi-Vth1)的电势或更高。在节点n3处于比输出电势Vddi高了二极管508的阈值电压(Vth2)的电平或更大的电势的情况下二极管508导通;因此,可以将vddi维持在(V(n3)-Vth2)或更高。从而,节点n3、gndi和vddi示出了如图5B中所示的性能。注意,在图5B中,vddi是大约恒定的电势,因为该电势被在随后级的vddi和gndi之间的电容器509(1)保持。
图5C示出分别在升压电路503中的第一和第二级的升压单元504(1)和504(2)的性能。第一级的升压单元504(1)的输入信号vddi借助连接在gndi和vddi之间的电容器509(1)被设置在大约恒定的电势。节点n4的电势V(n4),其是第一级的升压单元504(1)的输出信号,通过电容器509(2)与从输入端子in2输入的信号耦合;因此,它表现为模拟AC信号。注意,节点n4的电势V(n4)通过二极管510(1)(具有阈值电压Vth3(1))的作用维持在(vddi-Vth3(1))或更高;因此,节点n4表现为图5C中所示的。节点5的电势V(n5),其是第二级的升压单元504(2)的输出电势,通过二极管510(2)(具有阈值电压Vth3(2))维持在(V(n4)-Vth3(2))或更高。该电势通过第三级的升压单元504(3)的gndi和n5之间的电容器509(3)被保持;因此,节点n5具有如图5C中示出的电势,其被整流和升高。
第三和第四级的升压单元504(3)和504(4)的性能分别类似。因此,升压电源电路501表现为如图5(D)中所示的。在图5D中,输入端子in1、gndi和GND是地电势,vddi是被整流的电势,V(n5)是经受两级升压之后的电势并且VDD是经受四级升压之后的电势。
以这种方式,可以实现升压电源电路,其在输入端子in1和in2处从天线电路接收信号,并且输出电源电势VDD和地电势GND。
注意,本发明的电路的操作条件遵循为了操作整流电路502,满足vddi>gndi;并且为了操作升压电路503,满足VDD>V(n5)>vddi。例如,假定来自输入端子in2的信号的幅度是Vpp,并且没有由于电容性耦合导致的幅度损失,在满足(Vpp-Vth1-Vth2)>0的情况下整流电路502工作并且在满足(Vpp-Vth3(1)-Vth3(2))>0以及满足(Vpp-Vth3(3)-Vth3(4))>0的情况下升压电路503正常工作。注意,在利用二极管连接的晶体管构成每个二极管的情况下,二极管的阈值电压对应于晶体管的阈值电压(Vth);因此,(Vpp-2×Vth)>0是工作条件。
一般而言,通过整流具有大约是该阈值电压的两倍大的幅度的输入信号所获得的电源电势是低的,并且由此难以操作逻辑电路或ID芯片中的全部电路。然而,利用具有大约是该阈值电压的两倍大的幅度的输入信号,本发明的升压电源电路可以正常工作,其能够通过利用产生的升高的电源电压稳定地操作逻辑电路或ID芯片中的全部电路。因此,可以实现具有改善的可传达距离的ID芯片,并且可以实现其进一步小型化。
在该实施例中,参考图6描述在本发明的升压电源电路的输出处提供限幅电路的情况。
ID芯片的输入信号的幅度取决于通信距离和信号源的强度。通过升压电源电路产生的电源电势取决于输入信号的幅度和频率、升压电源电路的升压级的数目和二极管的阈值电压。因此,通过升压电源电路产生的电源电势取决于通信距离和信号源的强度。
即使在输入信号的幅度小的情况下,本发明的升压电路也可以高性能地工作。同时,在输入信号的幅度大的情况下,存在产生非常高的电源电压的可能性。因此,优选如图6中所示,将限幅电路702连接到GND和VDD之间,其是升压电源电路701的输出。
通过限幅电路,可以将产生的电源电势维持在预置电势或更低。注意,限幅电路优选具有齐纳二极管、二极管连接的晶体管、连接到运算放大器的二极管等。
在该实施例中,描述具有本发明的升压电源电路的ID芯片的方块结构的实例。在该实施例中示出的ID芯片具有根据来自读写器的读出指令从掩模型ROM读出数据的功能。
如图7中所示,ID芯片801包括具有天线和谐振电容器的天线电路802、升压电源电路803、解调电路804、时钟控制器805、代码识别/确定电路806、存储器控制器807、掩模型ROM 808、编码电路809和调制电路810。
天线电路802接收从读写器输出的电磁波并且产生AC信号。产生的AC信号直接或通过电容器输入到升压电源电路803、解调电路804和时钟控制器805。升压电源电路803产生升高的电源电压,其根据所述AC信号被升高和整流。产生的电源电压作为电源被提供给ID芯片中的所有其它电路。解调电路804解调AC信号中的指令代码。时钟控制器805根据AC信号产生时钟信号。通过代码识别/确定电路806将解调的信号识别和确定读出码,并且将该结果输出到存储器控制器807。存储器控制器807根据确定结果控制掩模型ROM808的读出。从掩模型ROM 808读出的数据在编码电路809中被编码,并且被调制电路810调制。
在该实施例中,描述具有本发明的升压电源电路的ID芯片的布局的实例。
图8示出用来构成实施例2中描述的ID芯片的布局的实例。该ID芯片包括天线901、谐振电容器902、升压电源电路903、解调电路904、时钟控制器905、代码识别/确定电路906、存储器控制器907、掩模型ROM、编码电路和地址产生电路908以及调制电路909。
注意,在图8中示出的每个电路由薄膜晶体管构成。因此,可以降低该ID芯片的单位成本。
图8中示出的ID芯片具有大约6mm见方的尺寸,并且使用13.56MHz的频带利用电磁感应方法工作。天线901以线圈形式形成在电路之上,并且在尺寸上减小到大约与构成ID芯片的电路的尺寸相同的尺寸。
以这种方式,通过利用本发明的升压电源电路903,与常规电源电路相比可以改善通信距离,由此可以实现这种小尺寸的天线。因此,可以实现IC芯片的小型化。
在该实施例中,描述包括升压电源电路的薄膜集成电路的通过应力剥离方法(下文中也称作“SPOP(应力剥离工艺)”)的制造步骤。
首先,如图9A中所示,剥离层11形成在具有绝缘表面的第一衬底210之上。注意,该第一衬底仅仅需要硬到足以抵抗随后的剥离步骤,并且它可以是例如玻璃衬底、石英衬底、陶瓷衬底、硅衬底、金属衬底或不锈钢衬底。剥离层可以形成为具有选自W、Ti、Ta、Mo、Nd、Ni、Co、Zr、Zn、Ru、Rh、Pd、Os和Ir的元素,包含这种元素的合金材料或化合物材料的单层结构或叠层结构。当剥离层11具有叠层结构时,它可以优选具有作为第一层的钨层、钼层或钨和钼的混合层(例如W和Mo的合金WxMo1-x),和包含钨、钼或钨和钼的混合物的氧化物、氮化物、氮氧化物或氧氮化物的第二层。
注意,在形成具有钨层和包含钨的氧化物的层的叠层结构的情况下,可以在钨层之上形成氧化硅层以便包含钨的氧化物的层形成在钨层和氧化硅层之间的界面处。在形成包含钨的氮化物、氮氧化物或氧氮化物的层的情况下同样如此,在该情况下,首先形成钨层,并且在其上形成氮化硅层、氮氧化硅层或氧氮化硅层。注意,形成在钨层之上的氮化硅层、氮氧化硅层、氧氮化硅层等可以用作基底绝缘层。
例如可以采用利用金属靶的溅射作为金属膜的制造方法。注意,金属膜的厚度可以是10到200nm,或更优选是50到75nm。
另外,可以将氮或氧加到金属膜中。作为增加方法,可以实施将氮或氧离子注入到金属膜中,或可以利用填充了氮气或氧气的沉积腔室实施溅射。可替换地,可以采用金属氮化物作为靶。
以这种方式,通过适当地设置用来形成金属膜的方法,可以控制剥离步骤,由此可以提供宽的工艺裕度。特别地,可以控制用于剥离的加热温度或热处理的必要性。
其后,具有薄膜集成电路的元件的将要剥离的层12形成在剥离层11之上。在该实施例中,采用薄膜晶体管(TFT)36和37作为薄膜集成电路的元件,其每一个至少具有厚度为10到200nm、由以岛形状隔离的半导体膜形成的沟道形成区。薄膜晶体管(TFT)36和37分别具有半导体膜、栅绝缘膜、其中第一导电膜(下层电极)18和20与第二导电膜(上层电极)19和21堆叠的栅电极62和64、以及在栅电极之上的绝缘膜。薄膜晶体管(TFT)36具有n型电导率,并且其半导体膜具有LDD(轻掺杂漏极)结构,其具有低浓度杂质区和高浓度杂质区。薄膜晶体管(TFT)37具有p型电导率并且其半导体膜具有仅包括高浓度杂质区的单漏极结构。注意,本发明的薄膜晶体管并不限于上述结构。
薄膜晶体管(TFT)36和37构成升压电源电路103、解调电路104、调制电路105、存储器接口(IF)106和存储器107。
优选提供氮化物膜例如氧氮化硅(SiNO或SiON)膜作为薄膜晶体管的保护膜60。保护膜60可以具有单层结构或叠层结构。在保护膜60之上,形成绝缘膜以用作层间绝缘膜61。层间绝缘膜61可以由有机材料或无机材料形成。作为有机材料,可以采用聚酰亚胺、丙烯酸、聚酰胺、聚酰亚胺-酰胺(polyimide amide)、抗蚀剂、苯并环丁烯(benzocyclobutene)、硅氧烷或聚硅氨烷。“硅氧烷”由通过硅(Si)和氧(O)的键形成的构架构成,其中至少包含氢的有机基团(例如烷基或芬香烃)被用作取代基。可替换地,氟代基团可被用作取代基。进一步可替换地,氟代基团和至少包含氢的有机基团可被用作取代基。通过利用具有硅(Si)和氮(N)的键的聚合物材料作为起始材料形成聚硅氨烷,其是包含所谓的聚硅氨烷的液体材料。作为无机材料,可以利用包含氧或氮的绝缘膜,例如氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiOxNy)(x>y)或氧氮化硅(SiNxOy)(x>y)(x,y=1,2,...)。此外,可以采用这些绝缘膜的叠层结构作为层间绝缘膜。具体地说,当利用有机材料形成层间绝缘膜时,可以改善平面度,而湿气和氧被有机材料吸收。为了防止这种情况,优选采用叠层结构,其中在有机材料上形成包含无机材料的绝缘膜。具体地说,当利用包含氮的绝缘膜作为无机材料时,可以防止碱离子例如Na的侵入。在特别考虑用于稍后形成的天线的材料的扩散的情况下,优选在层间绝缘膜61之上形成包含氮的绝缘膜。
其后,导电膜65被形成以起连接到薄膜晶体管(TFT)36和37的布线的作用。导电膜65也可以起天线的作用。
此外,可以形成覆盖导电膜65的保护膜。可以利用由有机材料或无机材料形成的绝缘体形成保护膜。例如,在有机材料的情况下,可以采用环氧树脂。在无机材料的情况下,可以采用包含碳的绝缘膜例如DLC或氮化碳(CN)、或包含氮的绝缘膜例如氮化硅(SiN)或氧氮化硅(SiNO或SiON)。
在这种状态下,将要剥离的层包括TFT、天线和保护膜。即,将要剥离的层指的是将要转移的层,其位于剥离层之上。
在将要剥离的层之下,形成包含硅的氧化物膜以便接触作为剥离层的金属膜。此外,为了防止来自金属膜或衬底的杂质或灰尘的侵入,优选在包含硅的氧化物膜之上形成包含氮的绝缘膜(称作氮膜),例如氮化硅(SiN)膜或氧氮化硅(SiON或SiNO)膜。氮化物膜可以起薄膜晶体管的基底膜的作用。
可以通过溅射或CVD利用氧化硅、氧氮化硅等形成包含硅的氧化物膜。注意,包含硅的氧化物膜优选比金属膜厚两倍或更多。根据上述条件,在该实施例中,通过溅射利用硅靶形成氧化硅膜以具有150到200nm的厚度。
当形成包含硅的氧化物膜时,在金属膜上形成包含金属的氧化物(金属氧化物)13。形成金属氧化物以具有0.1nm到1μm的厚度,更优选为0.1到100nm,或进一步优选为0.1到5nm。
金属氧化物13可以是薄的金属氧化物,其通过利用包含硫酸、盐酸或硝酸的水溶液、其中过氧化氢溶液与硫酸、盐酸或硝酸混合的溶液、或臭氧水的处理形成在金属膜的表面上。作为替换方法,可以通过在氧气氛中的等离子体处理、用来产生臭氧的在包含氧的气氛中的紫外线照射、或利用清洁炉(clean oven)的在200到350℃的热处理形成金属氧化物。
在以这种方式形成将要剥离的层12和金属氧化物13之后,实施热处理以结晶化金属氧化物。例如,在利用W(钨)用于金属膜的情况下,当在400℃或更高实施热处理时,WOx(0<x<3)的金属氧化物被结晶化。可以借助选择的金属膜来确定温度或是否实施热处理。为了容易地实施剥离步骤,可以根据需要结晶化金属氧化物。
另外,该热处理可以与其它热处理结合。因此,可以减少步骤的数目。例如,它可以与用来结晶化薄膜晶体管(TFT)36和37的半导体膜的热处理结合。注意,通过结合热处理,可以存在使包含在半导体膜中的氢扩散以改变金属氧化物的化合价的情况。
然后,如图9B中所示,利用第一粘附剂15把将要剥离的层12附着到支撑衬底14。注意,支撑衬底14优选是比第一衬底210硬的衬底。作为第一粘附剂15,优选采用可剥离的粘附剂,例如可以通过紫外线剥离的紫外线可剥离粘附剂、可以通过热剥离的热可剥离粘附剂、可以通过水剥离的水可溶粘附剂、或双面胶带等。注意,在利用粘性的环氧树脂等用于覆盖天线的保护膜的情况下,不需要第一粘附剂15。
然后,通过物理地施加压力(下文中称作物理方法)剥离被提供有剥离层11的第一衬底210(图9C)。
尽管在图9C的示意图中没有示出,但是在金属氧化物13的层的内部或在金属氧化物13的任一侧的边界(界面)内部剥离第一衬底210。金属氧化物13的任一侧的边界是金属氧化物13和金属膜之间的界面或金属氧化物13与将要剥离的层12之间的界面。
在附着支撑衬底14之后,可以实施热处理以结晶化金属氧化物。
这时,为了容易地实施剥离,可以部分地切割第一衬底210并且利用切割器等划在切割表面处的剥离界面的附近,即金属膜和金属氧化物13之间的界面。
随后,如图9D中所示,利用第二粘附剂16将已经剥离的将要剥离的层12附着到第二衬底110。第二粘附剂16可以是紫外线可固化树脂、特别是环氧树脂粘附剂、诸如树脂添加剂的粘附剂、双面胶带等。在第二衬底具有粘附特性的情况下,不需要第二粘附剂。
注意,可以存在金属氧化物13被完全除去、或金属氧化物13的一部分或大部分散布(保留)在将要剥离的层12之下。在金属氧化物13保留下来的情况下,可以在通过蚀刻等除去残余物之后把将要剥离的层12附着到第二衬底。这时,任何提供在半导体膜之下的绝缘膜都可以被除去。
可以利用塑性材料,例如聚对苯二甲酸乙二醇酯、聚碳酸酯、聚芳酯或聚醚砜,来形成第二衬底。另外,为了降低表面的不规则性并且改善硬度、抵抗性和稳定性,可以在把将要剥离的层12转移到那里之前利用涂敷处理第二衬底。
具有这些材料的第二衬底称作塑料衬底,其包括塑料膜。这种塑料衬底是柔性的;因此,其也被称为柔性衬底。
然后,除去第一粘附剂15并且剥离支撑衬底14(图9E)。为了剥离第一粘附剂,可以对其利用紫外线照射、加热、或漂洗。
注意,可以在一个步骤中实施第一粘附剂的去除和第二粘附剂的硬化。例如,在第一粘附剂和第二粘附剂分别由热可剥离树脂和热可固化树脂形成、或者分别由紫外线可剥离树脂和紫外线可固化树脂形成的情况下,仅通过加热或紫外线照射一次就可以实施第一粘附剂的去除和第二粘附剂的硬化。
以这种方式,可以形成固定在塑料衬底上的薄膜集成电路。
与利用硅晶片形成的具有大约50μm的厚度的IC相比,因为使用了以岛形状隔离的半导体膜,所以本发明的薄膜集成电路与10到200nm一样薄。因此,本发明的ID芯片可以非常薄、柔韧和重量轻。因此,可以获得具有极好的抗冲击性和柔韧性的ID芯片。
与利用硅晶片制造的IC芯片不同,不需要实施导致破裂或伤痕的背部研磨工艺,并且最大可以将厚度变化抑制到大约几百纳米,因为它取决于在半导体膜的沉积中的变化等;因此,与由于背部研磨工艺引起的几到几十微米的变化相比,可以很大程度上抑制该变化。
另外,商业上可用的硅衬底是圆形的并且最多具有大约30厘米的直径。因此,难以大量生产无线芯片以降低其成本。然而,通过如在本发明中利用玻璃衬底形成无线芯片,能够实现无线芯片的大量生产以降低其成本。
通过利用如上所述的SPOP方法,第一衬底可以被重新利用,由此可以降低处理机的单位成本。
本发明并不限于前述的剥离步骤,并且可以利用激光束照射剥离层或可以通过蚀刻除去玻璃衬底。然而,通过利用如该实施例中的剥离方法,可以增加设计灵活性,因为不需要第一衬底210透射激光束。
在该实施例中,描述了固定在塑料衬底上的薄膜集成电路;然而,本发明并不限于此。例如,在从第一衬底210剥离掉将要剥离的层12之后,剥离的层可以不被转移到第二衬底110而是转移到膜,然后其可以被密封。
在该实施例中,描述用于利用与前述实施例不同的方法在塑料衬底上固定元件形成区的方法。
如图10A中所示,顺序地在第一衬底210之上形成剥离层30和将要剥离的层12。图10B是沿图10A的e-f的截面图,其通常仅示出n型和p型薄膜晶体管。
将要剥离的层12包括天线和元件,其构成升压电源电路103、解调电路104、调制电路105、存储器接口(IF)106和存储器107。可以利用n沟道和p沟道薄膜晶体管(TFT)36和37作为电路元件。注意,结构及其制造方法类似于实施例4;因此,省略其描述。
可以利用包含硅的膜或金属膜形成剥离层30。在该实施例中,描述利用包含硅的膜的情况。
包含硅的膜的状态可以是非晶半导体、其中非晶态和结晶态混合的半非晶半导体(也称作SAS)以及结晶半导体。注意,SAS包括微晶半导体,其中在非晶半导体中可以观察到0.5到20nm的晶粒。可以通过溅射、等离子体CVD等形成剥离层30。剥离层30可以具有0.03到1μm的厚度,并且在通过剥离层的沉积系统的薄膜沉积的可允许的范围之内它可以是0.03μm或更小。
包含硅的剥离层30可以被添加元素,例如磷或硼。这些元素可以通过加热等被激活。通过添加这些元素,可以改善剥离层30的蚀刻速率。
将要剥离的层12在与剥离层30接触的区域中具有绝缘膜31。提供绝缘膜31以便将要剥离的层12不被蚀刻。绝缘膜31可以被形成为具有包含氧或氮的绝缘膜例如氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiOxNy)(x>y)或氧氮化硅(SiNxOy)(x>y)(x,y=1,2,...)的单层结构,或这些绝缘膜的叠层结构。例如,在利用三层结构的情况下,第一绝缘膜由氧化硅膜形成,第二绝缘膜由氮氧化硅膜形成,并且第三绝缘膜由氧化硅膜形成。当考虑来自第一衬底210等的杂质的扩散时,优选利用氮氧化硅膜形成绝缘膜31;然而,担心的是氮氧化硅膜对剥离层30和TFT的半导体膜具有低的粘附性。因此,绝缘膜31优选具有包括对剥离层30具有高粘附性的氧化硅膜、半导体膜和氮氧化硅膜的三层结构。注意,绝缘膜31可以起薄膜晶体管的基底膜的作用。
在这种状态下,形成开口(凹槽、孔等)32以至少在除了薄膜晶体管(TFT)36和37之外的区域中暴露剥离层30。利用粘附剂(未示出)等将被提供有孔34的支撑衬底33附着到第一衬底210。作为粘附剂,可以利用树脂材料,例如紫外线可固化树脂或热可固化树脂,以及双面胶带等。
然后,如图11A所示,蚀刻剂35通过孔34被注入开口32中以通过蚀刻除去剥离层30。图11B是沿图11A的e-f的截面图。
可以利用包含卤素氟化物的气体或溶液作为蚀刻剂。例如,可以利用ClF3(三氟化氯)作为卤素氟化物。利用这种蚀刻剂,可以选择性地蚀刻剥离层30。更具体地说,可以通过利用低压CVD系统,在350℃的温度;ClF3的流量为300sccm;气压为6乇(6×133Pa);以及时间为3小时的条件下除去剥离层。可替换地,可以利用HF(氟化氢)作为包含卤素氟化物的溶液。
以这种方式,可以除去剥离层30以从第一衬底210剥离掉层12以便利用粘附剂等将剥离的层转移到塑料衬底。注意,作为粘附剂,可以利用树脂材料,例如紫外线可固化树脂或热可固化树脂,以及双面胶带等。
在以这种方式形成薄膜集成电路的情况下,第一衬底210可以被重新利用,由此可以降低ID芯片的单位成本。
本发明并不限于前述的剥离方法,并且可以利用激光束照射剥离层或可以通过蚀刻除去玻璃衬底。然而,通过利用如该实施例中的剥离方法,可以增加设计灵活性,因为第一衬底210不需要透射激光束。
该实施例可以自由地与前述的实施例模式和实施例结合实施。
在该实施例中,描述不同于前述的实施例的利用金属膜作为剥离层30的情况。
在该实施例中,可以用作剥离层3 0的金属包括选自W、Ti、Ta、Mo、Nd、Ni、Co、Zr、Zn、Ru、Rh、Pd、Os和Ir的元素、或包含这种元素作为主要成分的合金材料或化合物材料的单层,或其叠层。
通过溅射、等离子体CVD等形成类似于在实施例4中描述的金属膜的金属膜。
可以利用氮化的金属膜(金属氮化物膜)代替金属膜,并且另外与实施例4中描述的金属膜相似,该金属膜可以被添加氮或氧。
在包含金属的剥离层30之上,形成包含该金属的氧化物、氮化物或氧氮化物。这种包含该金属的氧化物、氮化物或氧氮化物也被称作反应物。例如,在利用W、Mo或W和Mo的混合物用于金属膜的情况下,包含金属的氧化物、氮化物或氧氮化物对应于W、Mo或W和Mo的混合物的氧化物、氮化物或氧氮化物。
当在金属膜的表面之上形成包含氧化物、氮化物或氧氮化物的膜时可以制造这种反应物。
在该实施例中,当在包含W的剥离层30之上形成氧化硅膜时,包含W的氧化物膜,例如WOx(0<x<3),形成在包含W的剥离层30的表面之上。类似地,当在包含W的剥离层30之上形成氮化硅膜时,可以形成包含W的氮化物膜,并且当在包含W的剥离层30之上形成氧氮化硅膜时,可以形成包含W的氧氮化物膜。
作为反应物的替换制造方法,可以在金属膜之上形成氧化物、氮化物或氧氮化物。例如,作为用来形成氧化物作为反应物的方法,可以使用与实施例4中描述的金属氧化物的制造方法相似的方法。
通过选择以这种方式形成的金属膜和反应物,可以控制剥离层的蚀刻速率。
由于如实施例4中所示的在随后的步骤中的热处理等,形成在金属膜的表面之上的反应物可能具有化学状态变化。例如,在形成包含W的氧化物膜的情况下,氧化钨(WOx(x=2到3))的化合价改变。
此外,在氧化硅膜等之上,形成起薄膜晶体管的基底膜的作用的绝缘膜。形成该绝缘膜以具有包含氧或氮的绝缘膜例如氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiOxNy)(n>y)或氧氮化硅(SiNxOy)(x>y)(x,y=1,2,...)的单层结构,或这些绝缘膜的叠层结构。通过利用这种绝缘膜,可以减少来自第一衬底210等的杂质的扩散。
其后,半导体膜被形成并且被图案化成预定形状以形成岛状半导体膜,由此可以形成具有岛状半导体膜的薄膜晶体管(TFT)36和37。薄膜晶体管的结构和制造方法类似于实施例4的结构和制造方法;因此,省略其描述。
注意,为了形成具有非常短的栅极长度的TFT,优选缩短导电膜的宽度。为此,可以实施用来使被提供以蚀刻导电膜的掩模例如抗蚀剂掩模变薄的步骤。例如,可以利用氧等离子体使抗蚀剂掩模变薄。该步骤可以结合前述实施例使用。
本发明的薄膜晶体管可以在栅电极的侧面上被提供有由绝缘膜形成的侧壁。通过利用这些侧壁作为掩模,可以形成高浓度杂质区。该结构可以结合前述实施例使用。
然后,形成用来形成起布线或天线的作用的导电膜的开口。然后,可以形成起保护膜的作用的绝缘膜。起保护膜的作用的绝缘膜优选包含氮。另外,优选使用环氧树脂作为设置在天线上的保护膜。
在这种状态下,与实施例5类似,形成开口(凹槽、孔等)以在除了形成薄膜晶体管的区域之外的区域中暴露剥离层30。在该实施例中,开口形成在薄膜集成电路之间。
然后,利用粘附剂等将被提供有孔34的支撑衬底33附着到第一衬底210以便与开口交叠。作为粘附剂,可以利用树脂材料,例如紫外线可固化树脂或热可固化树脂,以及双面胶带等。
然后,蚀刻剂35通过孔34被注入开口32中,由此可以除去剥离层30。在该实施例中的剥离层是形成在绝缘衬底之上的金属膜和反应物,并且通过除去这些,可以剥离第一衬底210。注意,在利用金属膜作为剥离层的情况下,可以在金属膜和反应物中的至少一个与蚀刻剂反应时剥离第一衬底210。
与实施例5类似,可以利用包含卤素氟化物的气体或溶液作为蚀刻剂。例如,可以利用ClF3(三氟化氯)作为卤素氟化物。特别地,在剥离层由W和WO3形成作为其氧化物的情况下,它快速地与ClF3反应,并且因此可以被以更短的时间除去。当利用蚀刻剂以化学方法除去剥离层时,可以优选减少反应物的残余物。例如,可以使用氟化氢(HF)作为替换的包含卤素氟化物的溶液。
除了如上所述以化学方法除去剥离层的方法以外,也可以使用利用压力的物理方法。因此,可以更容易地并且以更短的时间除去剥离层。
以这种方式,可以除去剥离层30以从第一衬底210剥离掉层12以便利用粘附剂等将薄膜集成电路固定在支撑衬底例如塑料衬底或塑料膜衬底上。注意,作为粘附剂,可以利用树脂材料,例如紫外线可固化树脂或热可固化树脂,以及双面胶带等。
在以这种方式形成薄膜集成电路的情况下,第一衬底210可以被重新利用,由此可以降低ID芯片的单位成本。
本发明并不限于前述的剥离方法,并且可以利用激光束照射剥离层或可以通过蚀刻除去玻璃衬底。然而,通过利用如该实施例中的剥离方法,可以增加设计灵活性,因为第一衬底210不需要透射激光束。
该实施例可以自由地与前述的实施例模式和实施例结合实施。
在该实施例中,描述薄膜集成电路与单独形成的天线被连接的情况。
如前述的实施例中所描述的,可以利用导电膜65通过光刻形成天线;然而,在该实施例中,天线48形成在另一衬底50之上并且通过如图14中所示的凸起(bump)49连接到导电膜65。可以通过印刷方法、微滴泄放(droplet discharge)方法、溅射方法、光刻方法、利用金属掩模的汽相沉积方法中的任一种、或通过其组合来制造天线48。此外,可以通过电镀法在其上堆叠导电膜以减小天线的电阻。在通过微滴泄放方法或印刷方法形成天线的情况下,导电膜不需要被图案化;因此,可以优选减少制造步骤的数目。
可以通过利用导电材料例如Ag(银)、Al(铝)、Au(金)、Cu(铜)或Pt(铂)形成天线。在考虑这种材料的布线电阻的情况下,可以通过借助电镀法使天线变厚来减小该布线电阻。另外,因为天线形成在另一衬底上,因此如果增加天线的宽度,则可以减小该布线电阻。至于具有低电阻但是其扩散被关注的材料例如Cu,优选在天线形成区的表面之上形成包含氮的绝缘膜或通过覆盖天线的外围形成包含氮的绝缘膜。
在微滴泄放方法的情况下,作为溶剂被混合到十四烷中的Ag可以从喷嘴滴下以形成天线。这时,为了增加Ag的粘附性,由氧化钛(TiOx)形成的基底膜可以形成在天线衬底之上。
注意,天线的形状和位置并不限于图14中的形状和位置。例如,天线可以如图8的布局中所示那样形成在整个ID芯片之上。
可替换地,可以通过对其施加压力来改善形成在另一衬底之上的天线48的平面度。因此,天线48能具有更薄的形状。除了施加压力之外,还可以施加热处理,并且可以同时实施压力和热处理的施加。在利用微滴泄放方法的情况下,如果有必要执行热处理以除去溶剂,则优选同时实施压力和热处理的施加。
通过安装以这种方式形成的天线,可以获得ID芯片。
其后,可以形成保护膜以便覆盖另一衬底和天线。例如,保护膜优选由有机材料例如环氧树脂形成。保护膜具有15到30μm的厚度。
薄膜集成电路可以通过使用前述实施例中的任何一种剥离方法来剥离。
该实施例可以自由地结合前述实施例模式和实施例来实施。
在该实施例中,描述剥离具有升压电源电路的薄膜集成电路的时序。
在形成起天线的作用的导电层(简称为天线)之后,可以以下面四种时序中的任一种剥离薄膜集成电路。
根据第一剥离时序,通过蚀刻绝缘膜等形成开口以便暴露剥离层;形成覆盖天线的保护膜;并且然后将蚀刻剂注入开口中以除去剥离层,由此从衬底剥离薄膜集成电路。
根据第二时序,形成覆盖天线的保护膜;通过蚀刻绝缘膜等形成开口以便暴露剥离层;并且然后将蚀刻剂注入开口中以除去剥离层,由此从衬底剥离薄膜集成电路。
根据第三时序,通过蚀刻绝缘膜等形成开口以便暴露剥离层;形成覆盖天线的保护膜;并且然后将蚀刻剂注入开口中以选择性地除去剥离层,由此通过物理方法从衬底剥离薄膜集成电路。
根据第四时序,形成覆盖天线的保护膜;通过蚀刻绝缘膜等形成开口以便暴露剥离层;并且然后将蚀刻剂注入开口中以选择性地除去剥离层,由此通过物理方法从衬底剥离薄膜集成电路。
通过使用物理方法,可以更容易地并且以更短的时间实施剥离。
该实施例可以自由地结合前述实施例模式和实施例来实施。
在该实施例中,描述构成薄膜集成电路的TFT的结构和制造方法。
如图17A中所示,剥离层11形成在第一衬底210之上。在该实施例中,利用金属膜作为剥离层11,并且以该顺序形成包含金属的金属氧化物13和氧化硅膜212。当形成氧化硅膜212时,在利用W作为金属膜的情况下,形成包含W的金属氧化物(WOx(0<x<3))13。
其后,形成起底部栅电极(下文中称作底部栅电极63)的作用的导电膜。可以通过利用金属或多晶半导体形成底部栅电极63,对其添加了具有一种电导率类型的杂质。当使用金属时,可以使用钨(W)、钼(Mo)、钛(Ti)、钽(Ta)、铝(Al)等。利用掩模例如抗蚀剂掩模将底部栅电极63蚀刻成期望的形状。这时,为了形成优良的栅电极,可以在利用氧等离子体使抗蚀剂掩模变薄之后实施蚀刻。
图17B是底部栅电极63的顶视图,并且图17A对应于沿图17B的a-b的截面图。
然后,如图18A所示,形成起基底膜的作用的绝缘膜46。在该实施例中,形成氮化硅膜46a作为第一绝缘膜,同时形成氮氧化硅膜46b作为第二绝缘膜;然而,本发明并不限于该堆叠顺序。
然后,以该顺序形成具有预定形状的半导体膜214、覆盖半导体膜的栅绝缘膜47、以及起栅电极的作用的导电膜304a。可以通过利用非晶半导体膜、结晶半导体膜、SAS或微晶半导体膜形成该半导体膜。可以通过对非晶硅膜施加热处理来形成结晶半导体膜。可以通过利用加热炉或激光照射来实施热处理。为了降低热处理的温度,可以利用用来促进结晶化的金属元素通常是镍(Ni)涂覆非晶半导体膜。因此,可以获得具有均匀取向的结晶半导体膜。在实施激光照射的情况下,可以采用CW激光器系统或脉冲激光器系统。此外,可以组合CW激光器和脉冲激光器用于照射。可替换地,在利用加热炉结晶化半导体膜之后,可以利用激光进一步照射它以增加其结晶度。可以通过利用硅、锗或其混合物形成半导体膜。
为了将导电膜304a图案化成预定形状,形成掩模,例如抗蚀剂掩模。这时,可以利用底部栅电极63通过背表面曝光形成具有预定形状的抗蚀剂掩模55。然后,通过利用抗蚀剂掩模55将导电膜304a图案化成预定形状,由此形成栅电极的下层电极18和20。
图18B是抗蚀剂掩模设置在导电膜304a上的情形的顶视图,并且图18A对应于沿图18B的a-b的截面图。
然后,如图19A中所示,通过利用下层电极18和20可以将杂质元素添加到半导体膜214。
然后,为了分别控制底部栅电极63与下层电极18和20,布线连接到底部栅电极63与下层电极18和20中的每一个。为了提供用来连接底部栅电极63和布线的接触孔,下层电极18和20被部分地除去。这时,可以通过在下层电极18和20上设置掩模例如抗蚀剂掩模来部分地蚀刻下层电极18和20。
图19B是被部分地蚀刻的下层电极18和20的顶视图,并且图19A对应于沿图19B的a-b的截面图。
在类似于下层电极18和20那样控制底部栅电极63的情况下,与前述不同,不需要部分地除去导电膜。然后,通过在设置在底部栅电极63之上的栅绝缘膜47中形成接触孔,并且在接触孔中直接形成下层电极18和20,可以将底部栅电极63连接到下层电极18和20。
然后,如图20A中所示,可以形成上层电极19和21以便形成具有叠层结构的栅电极。在该实施例中,可以通过利用掩模例如抗蚀剂掩模将上层电极19和21图案化成预定形状。然后,可以利用提供的上层电极19和21添加杂质元素。这时,可以形成低浓度杂质区以便与下层电极18和20分别交叠。
其后,形成覆盖栅电极的绝缘膜305。可以通过利用包含氧或氮的绝缘膜例如氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiOxNy)(x>y)或氧氮化硅(SiNxOy)(x>y)(x,y=1,2,...)形成绝缘膜305。在该实施例中,采用氮氧化硅。当通过等离子体CVD形成绝缘膜305时,特别地,它可以包含更多的氢。利用这些氢,可以优选减少半导体膜214的悬挂键。因此,优选利用提供的绝缘膜305施加热处理。
然后,形成覆盖绝缘膜305的层间绝缘膜306以便改善其平面度。可以通过利用有机材料或无机材料形成这种层间绝缘膜,并且特别地,可以参考实施例4。
注意,可以在形成层间绝缘膜306之后实施在形成绝缘膜305之后的热处理。
其后,在层间绝缘膜306、绝缘膜305和栅绝缘膜47中形成接触孔,并且形成起连接到杂质区的布线的作用的导电膜65。通过利用导电膜65,可以形成天线。
图20B是顶视图,其中设置作为布线的导电膜65、连接到底部栅电极63的布线和连接到栅电极的布线,并且图20A对应于沿图20B的a-b的截面图。注意,未示出上层电极19和21。
以这种方式,可以形成具有底部栅电极63的TFT。可以与栅电极分开地控制底部栅电极63。因此,在形成优良的TFT中,即使当关断信号输入到栅电极时电流流动,也可以通过控制底部栅电极63来精确地关断TFT。从而,可以实现低功耗。
特别地,当负偏压被施加到n沟道薄膜晶体管(TFT)36的底部栅电极63时,可以提高其阈值电压以减小漏电流。另一方面,当对其施加正偏压时,可以降低阈值电压以容易地在沟道形成区中产生电流。因此,薄膜可以以更快的速度或利用更低的电压工作。
该实施例可以自由地结合前述的实施例模式和实施例来实施。
在该实施例中,描述与前述的实施例不同的TFT的结构。
图12是采用顶栅TFT的实例。在第一衬底210之上,以该顺序形成剥离层11和绝缘膜13,薄膜晶体管设置在其上。至少绝缘膜43(43a和43b)起半导体膜214的基底膜的作用。另外,提供覆盖半导体膜214的栅绝缘膜47。在栅绝缘膜47之上,对应于半导体膜214形成栅电极62和64,在其上设置起保护膜作用的绝缘膜305和层间绝缘膜306。在层间绝缘膜306之上,可以进一步形成起保护层作用的绝缘膜308。
至于半导体膜214的材料和制造方法,可以参考实施例9。
剥离层11及其蚀刻方法可以遵循实施例4到6中示出的那些中的任何一个。
可以利用多晶半导体形成栅电极62和64,对其添加了具有一种电导率类型的杂质。在形成具有叠层结构的栅电极的情况下,可以采用所谓的帽子形状,其中第一层的边缘形成得比第二层的边缘大。这时,通过利用金属氮化物形成第一层,可以提高阻挡特性。在这种情况下,可以借助第二层的金属防止杂质扩散到栅绝缘膜47和在其下的半导体膜214。
通过结合半导体膜214、栅绝缘膜47、栅电极62和64等形成的晶体管可以采用多种结构,例如单漏极结构、LDD结构和栅交叠漏(gate overlapped drain)(GOLD)结构。此外,本发明可以采用单栅结构或多栅结构。该多栅结构等效于均具有相同的栅电压电平的晶体管串联连接的结构。
可以通过利用无机绝缘材料例如氧化硅或氮氧化硅、或有机绝缘材料例如丙烯酸树脂或聚酰亚胺树脂形成层间绝缘膜306。在利用诸如旋涂或辊涂的施加方法的情况下,可以在施加溶解在有机溶剂中的绝缘膜材料之后采用通过热处理形成的氧化硅。例如,在形成具有硅氧烷键的膜之后,可以使用可以通过在200到400℃的热处理形成的绝缘膜。当利用通过施加方法形成的绝缘膜作为层间绝缘膜306时,其表面可以被平面化。另外,可通过回流平面化该绝缘膜。以这种方式,当在平面化的绝缘膜之上形成布线时,可以防止布线的断裂。此外,本发明可以有效地应用于形成多层布线的情况。
在层间绝缘膜306之上,形成起布线作用的导电膜65。优选通过结合低电阻的材料例如铝(Al)和高熔点的金属材料例如钛(Ti)或钼(Mo)形成导电膜,例如钛(Ti)和铝(Al)的叠层结构或钼(Mo)和铝(Al)的叠层结构。另外,可以通过利用导电膜65形成天线。
具有这种结构的TFT可以应用到薄膜集成电路。
图13示出采用底栅TFT的实例。在衬底110之上,以该顺序形成剥离层11和绝缘膜13,元件形成层45设置在其上。元件形成层45包括栅电极304、栅绝缘膜47、半导体膜214、沟道保护层309、起保护层作用的绝缘膜305和起层间绝缘层作用的层间绝缘膜306。在元件形成层45之上,可以形成起保护层作用的绝缘膜308。可以形成绝缘膜308以具有包含氧或氮的绝缘膜例如氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiOxNy)(x>y)或氧氮化硅(SiNxOy)(x>y)(x,y=1,2,...)的单层结构,或这些绝缘膜的叠层结构。
可以在绝缘膜305或层间绝缘膜306之上形成导电膜65。通过利用导电膜605,可以形成天线。
可以将具有这种结构的TFT应用到薄膜集成电路。
以这种方式,在薄膜集成电路中使用的薄膜晶体管可以具有实施例9中示出的顶栅结构、底栅结构或双栅结构。也可以组合使用顶栅结构、底栅结构和双栅结构。即,本发明并不限于薄膜晶体管的该结构。
该实施例可以自由地结合前述的实施例模式和实施例来实施。
在该实施例中,描述密封的ID芯片的截面图。
从天线给ID芯片提供功率,并且由此难以获得稳定的电源,并且必需尽可能多地抑制功耗。如果功耗增加,那么必需输入电磁波;因此,出现这些问题读写器的功耗增加,其它装置或人体受到有害的影响,或ID芯片和读写器之间的通信距离受到限制。
因此,在该实施例中,为了抑制功耗,采用具有如实施例9中所示的双栅结构的薄膜晶体管以形成以升压电源电路为代表的薄膜集成电路52。
图15示出包括底部栅电极63和顶部栅电极62的n沟道薄膜晶体管(TFT)36,和包括底部栅电极63和顶部栅电极64的p沟道薄膜晶体管37。
利用第一衬底53和第二衬底54密封以升压电源电路为代表的薄膜集成电路52。这样,完成了具有利用第一衬底53和第二衬底54密封的薄膜集成电路52的ID芯片。
在这种ID芯片中,用于施加偏压到底部栅电极63的方法有效地抑制了功耗。特别地,当负偏压被施加到n沟道薄膜晶体管(TFT)36的底部栅电极63时,可以提高其阈值电压以减小漏电流。另一方面,当对其施加正偏压时,可以降低其阈值电压以容易地在沟道形成区中产生电流。因此,薄膜晶体管(TFT)36可以以更快的速度或利用低电压工作。
当正偏压被施加到p沟道薄膜晶体管(TFT)37的底部栅电极63时,可以提高其阈值电压以减小漏电流。另一方面,当对其施加负偏压时,可以降低其阈值电压以容易地在沟道形成区中产生电流。因此,薄膜晶体管(TFT)37可以以更快的速度或利用低电压工作。
如以上所述的,通过控制施加到底部栅电极的偏压,可以改变薄膜晶体管(TFT)36和37的阈值电压以降低关断电流。因此,可以抑制ID芯片本身的功耗。因此,即使在执行复杂的过程例如编码时,也可以提供稳定的电源。另外,由于不必输入电磁波,所以可以改善ID芯片和读写器之间的通信距离。注意,优选根据通过天线的电源的状态利用专用控制驱动器来切换偏压的施加。
注意,在该实施例中描述了使用具有双栅结构的薄膜晶体管的情况;然而,可以采用如图16中所示的具有单栅结构的薄膜晶体管。图16示出均具有单栅结构的n沟道薄膜晶体管86和p沟道薄膜晶体管87。
注意,在图16中,薄膜晶体管、天线和保护层的总厚度是20到40μm,而第一衬底53和第二衬底54的各自厚度是15到35μm。
该实施例可以自由地结合前述的实施例模式和实施例来实施。
根据本发明制造的ID芯片具有广泛的应用范围,并且可以安装在多种物体上。例如,ID芯片可以附着到票据、硬币、有价证券、不记名债券、证书(例如驾驶证或居住证见图21A)、包装容器(例如包装纸或瓶见图21B)、记录介质(例如DVD软件或录像带见图21C)、车辆(例如自行车等见图21D)、衣服附属品(例如包或眼镜见图21E)、食品、衣服、日常用品、电子器具等。电子器具指的是液晶显示装置、EL显示装置、电视机(也简称为电视或电视接收器)、便携式电话等。
通过附着到物体的表面或被嵌入物体中,ID芯片被固定在该物体上。例如,它被嵌入书的厚纸中,或被嵌入包装的有机树脂中。此外,它被附着到票据、硬币、有价证券、不记名债券、证书等的表面或嵌入其中。通过在前述的物体中,例如在包装容器、记录介质、个人附属品、食品、衣服、日常用品、电子器具等中设置该ID芯片,可以改善检查系统或租赁店中的系统的效率。
另外,通过将该ID芯片应用到商品管理或流通系统,可以实现该系统的更大的作用。例如,存在读写器295设置在包括显示部分294的便携式终端的侧面上并且ID芯片296设置在产品297的侧面上的情况(见图22A)。在该情况下,当该ID芯片296被放得接近读写器295时,关于产品297的原材料或原产地、流通记录等的数据显示在显示部分294上。可替换地,存在读写器295设置在带式运输机旁边的情况(见图22B)。在该情况下,安装有ID芯片的标签被附着到产品297上,并且因此可以容易地实施检查。
此外,该ID芯片可以用于动物的管理。例如,当ID芯片被植入动物等中时,可以管理其健康状态等。可替换地,当该ID芯片被附着到宠物颈圈等时,当它丢失时可以容易地获得该宠物的行踪。
该实施例可以自由地结合前述的实施例模式或实施例来实施。
本申请基于2004年8月27日向日本专利局提交的日本优先权申请No.2004-247735,在此并入其全部内容作为参考。
权利要求
1.一种无线芯片,包括具有用来输出两个信号的第一端子和第二端子的天线电路,和升压电源电路,其中该升压电源电路包括具有用来从天线电路的第一端子接收信号的第三端子、用来从天线电路的第二端子接收信号的第四端子、和用来输出电势的第五端子的整流电路;以及具有用来从天线电路的第一端子接收信号的第六端子、用来从天线电路的第二端子接收信号的第七端子、用来接收所述电势的第八端子、用来输出电源电势的第九端子、以及用来输出地电势的第十端子的升压电路;其中天线电路的第一端子连接到整流电路第三端子和升压电路的第六端子;其中天线电路的第二端子连接到整流电路的第四端子和升压电路的第七端子;其中整流电路的第五端子连接到升压电路的第八端子;并且其中所述电源电势比所述电势高。
2.一种无线芯片,包括具有用来输出两个信号的第一端子和第二端子的天线电路,以及升压电源电路,其中该升压电源电路包括具有用来从天线电路的第一端子接收信号的第三端子、用来从天线电路的第二端子接收信号的第四端子、用来输出第一电势的第五端子、以及用来输出第二电势的第十一端子的整流电路;以及具有用来从天线电路的第一端子接收信号的第六端子、用来从天线电路的第二端子接收信号的第七端子、用来接收所述第一电势的第八端子、用来接收所述第二电势的第十二端子、用来输出电源电势的第九端子、以及用来输出地电势的第十端子的升压电路;其中天线电路的第一端子连接到整流电路第三端子和升压电路的第六端子;其中天线电路的第二端子连接到整流电路的第四端子和升压电路的第七端子;其中整流电路的第五端子和第十一端子分别连接到升压电路的第八端子和第十二端子;并且其中所述电源电势比所述第一电势高。
3.一种无线芯片,包括用来整流和升高天线电路的输出的电路。
4.一种无线芯片,包括天线电路和升压电路,其中升压电路的时钟信号输入端子直接或通过电容器连接到天线的输出。
5.一种无线芯片,包括具有用来输出两个信号的第一端子和第二端子的天线电路,和具有用来接收两相时钟信号的两个端子的升压电路,其中升压电路的该两个端子直接或通过电容器分别连接到天线电路的第一端子和第二端子。
6.根据权利要求1和2中的任何一个的无线芯片,其中该升压电路包括多个升压单元;其中通过利用从天线电路的第一端子输入的信号在奇数级的升压单元中使电压升高;以及其中通过利用从天线电路的第二端子输入的信号在偶数级的升压单元中使电压升高。
7.根据权利要求1到5中的任何一个的无线芯片,其中构成该无线芯片的逻辑电路利用所述电源电势作为电源。
8.根据权利要求1到5中的任何一个的无线芯片,其中升压电源电路由模拟电路构成。
9.根据权利要求1到5中的任何一个的无线芯片,其中升压电源电路仅接收来自天线电路的端子的信号,并且输出所述电源电势和所述地电势。
10.根据权利要求1到5中的任何一个的无线芯片,其中随时间输入到升压电路的输入端子的信号的电势差显示出模拟AC波形。
11.根据权利要求1到5中的任何一个的无线芯片,其中输入到升压电路的输入端子的信号之间的电势差周期性地并且连续地变化。
全文摘要
无线芯片的尺寸经常根据其天线电路来确定。利用更大的天线可以更容易地接收电源电压或提供给无线芯片的功率。另一方面,存在日益增加的对致密无线芯片的需要,并且因此必需使天线小型化。鉴于此,本发明提供能够利用小天线进行数据通信的无线芯片,即具有改善的可传达距离的致密无线芯片。通过利用具有升压电路和整流电路的升压电源电路,本发明的ID芯片的电源电路产生比常规ID芯片中产生的电源电压更高的电源电压。
文档编号H01L29/78GK101084616SQ200580038339
公开日2007年12月5日 申请日期2005年9月7日 优先权日2004年9月9日
发明者加藤清 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1