燃料电池系统及燃料电池车辆的制作方法

文档序号:6925505阅读:117来源:国知局
专利名称:燃料电池系统及燃料电池车辆的制作方法
技术领域
本发明涉及一种燃料电池系统及具有该系统的燃料电池车辆,尤其涉及一种在燃 料电池系统中变换器对电动机的控制,上述电动机可接受电力供给而驱动且可产生再生电 力。
背景技术
近些年来,以通过燃料气体和氧化气体的电化学反应来发电的燃料电池作为能量 源的燃料电池系统受到瞩目。燃料电池系统从燃料罐向燃料电池的阳极供给高压的燃料气 体,并且向阴极加压供给作为氧化气体的空气,使这些燃料气体和氧化气体发生电化学反 应,产生电动势。搭载了这种燃料电池系统的车辆的开发也获得进展。车载用的燃料电池 系统以燃料电池、二次电池、行驶电动机、辅机作为主体而构成。然而,在通常的电动车辆中,当档位是“D(前进)”档时,通过变换器等从蓄电池 向行驶用电动机供给电力,进行旋转,并将该驱动力传送到驱动轮。另一方面,当档位变为 "N(空档)”档时,因停止变换器控制,所以行驶用电动机顺其自然地变为产生和转速对应 的反电动势的状态(称为关闭)。即,通过从驱动轮逆传送的驱动力使行驶用电动机旋转, 通过由此产生的反电动势,经由变换器对蓄电池充电。然而,在电动机转速较高的状态下档位变为“N”档时,产生过大的反电动势,过电 压施加到蓄电池及转换器,耐久性可能降低。因此在现有技术中,当档位变为“N”档的时进 行如下控制电动机的转速为规定阈值以下时,使之关闭,当转速大于该阈值时,使之不关 闭。作为相关技术,专利文献1中公开了如下内容选择“N”位置时,为了防止产生过 剩的反电动势、并避免再生制动力的产生造成的不适感,在“N”位置下,目标电力计算单元 将目标电压一律设定为零,使电动机不产生驱动扭矩,也不产生再生扭矩。专利文献1 日本特开平9-23508号公报

发明内容
但是,在搭载了燃料电池系统的电动车辆中,存在抑制燃料电池的总电压大于规 定阈值的高电位化回避控制、及和通常运转相比在较短时间内使燃料电池升温的预热运转 等各种发电状态(运转模式)。因此,和通常的电动车辆一样,根据电动机的转速一样地控 制允许/不允许关闭时,担心根据燃料电池的发电状态的不同反电动势比燃料电池的最大 输出电压大等给系统整体的供给控制造成影响。因此,本发明的目的在于,在具有可接受电力供给而驱动且可产生再生电力的电 动机的燃料电池系统中,降低对电力供给控制的影响。本发明的一个观点涉及的燃料电池系统具有燃料电池,通过燃料气体和氧化气 体的电化学反应进行发电;电动机,可接受电力供给而驱动且可产生再生电力;变换器,将 从上述燃料电池输出的直流电力变换为交流电力而供给到上述电动机,从而控制上述电动
3机的驱动;蓄电部,与上述燃料电池并联连接到上述电动机上,可将上述燃料电池的发电电 力及上述电动机的再生电力予以充电,且可将充电电力向上述电动机放电;转速检测器,检 测上述电动机的转速;及控制部,根据上述电动机的当前转速来决定是否允许停止上述变 换器对上述电动机的控制,上述控制部通过将上述电动机的当前转速与根据上述燃料电池 的运转模式而不同的转速阈值进行比较,来进行上述决定。根据本发明的一个观点,使用和燃料电池的运转模式对应的转速阈值,决定允许/ 不允许停止(关闭)对电动机的变换器控制,因此可抑制超过燃料电池的最大输出电压的 反电动势的产生。其中,上述控制部在上述电动机的当前转速比与上述燃料电池的当前运转模式相 对应的转速阈值小的情况下,允许停止上述变换器对上述电动机的控制。上述控制部具有内部存储器,所述内部存储器将与上述燃料电池的各运转模式下 的最大输出电压相对应的上述电动机的转速作为转速阈值与运转模式建立关联而存储,上 述控制部从多个转速阈值中,提取和上述燃料电池的当前运转模式相对应的一个转速阈 值,使用该转速阈值进行上述决定。因此,通过预先准备按照各运转模式设定的转速阈值,可基于易于测定且误差小 的转速进行上述决定。上述多个运转模式包括高电位化回避控制模式及预热运转模式中的至少一种、以 及通常的运转模式。高电位化回避控制模式及预热运转模式和通常的运转模式相比最大输 出电压较低,因此通过准备和这些运转模式相对应的转速阈值,可更安全地进行燃料电池 系统中的电力供给控制。并且,本发明涉及的燃料电池车辆具有上述燃料电池系统;及至少在上述燃料 电池的运转中使用的辅机。根据本发明,可抑制超过燃料电池的最大输出电压的反电动势的产生、及对蓄电 部的过度充电,因此可降低对燃料电池系统中的电力供给控制的影响。因此,在搭载了这种 燃料电池系统的电动车辆中,可在稳定的电力供给控制下行驶。


图1是表示本发明的一个实施方式涉及的包括燃料电池系统的燃料电池车辆的 要部构成的系统构成图。图2是用于说明和运转模式相对应的转速阈值的设定方法的图。图3是表示由控制装置进行的关闭控制方法的流程图。标号说明10控制装置(控制部)11内部存储器20蓄电池(蓄电部)40燃料电池50辅机类(辅机)60变换器61牵引电动机(电动机)
4
64转速检测器
具体实施例方式以下参照

本发明涉及的实施方式。图1是表示本发明的一个实施方式涉及的具有燃料电池系统的燃料电池车辆的 要部构成的图。在本实施方式中,假设是燃料电池汽车(FCHV ;Fuel Cell HybridVehicle)、电动 汽车、混合动力汽车等车辆上搭载的燃料电池系统,但不仅是车辆,也可适用于各种移动体 (例如二轮车、船舶、飞机、机器人等)。该车辆100将经由减速齿轮12与车轮63L、63R连接的牵引电动机(以下也简称 为电动机)61作为驱动源来行驶。牵引电动机61的电源是电源系统1。从电源系统1输 出的直流通过变换器60变换为三相交流,供给到牵引电动机61。牵引电动机61可以在制 动时作为发电机起作用。电源系统1由燃料电池40、蓄电池(蓄电部)20、DC/DC转换器30 等构成。燃料电池40是通过从被供给的反应气体(燃料气体及氧化气体)产生电力的单 元,可利用固体高分子型、磷酸型、熔融碳酸盐型等各种类型的燃料电池。燃料电池40具有 由通过氟系树脂等形成的质子传导性的离子交换膜等构成的高分子电解质膜41,在高分子 电解质膜41的表面涂敷钼催化剂(电极催化剂)。此外,涂敷于高分子电解质膜41上的催化剂不限于钼催化剂,也可适用钼钴催化 剂(以下简称为催化剂)等。构成燃料电池40的各单体电池具有通过在高分子电解质膜 41的两个面上利用网板印刷等形成阳极42和阴极43而形成的膜/电极接合体44。燃料 电池40具有串联地层叠多个单电池的堆叠构造。从燃料气体供给源70向燃料电池40的燃料极(阳极)供给氢气等燃料气体,从 氧化气体供给源80向氧极(阴极)供给空气等氧化气体。燃料气体供给源70例如由氢罐、各种阀等构成,通过调整阀开度、开/关时间等, 控制供给到燃料电池40的燃料气体量。氧化气体供给源80例如由空气压缩机、驱动空气压缩机的电动机、变换器等构 成,通过调整该电动机的转速等,调整供给到燃料电池40的氧化气体量。该燃料电池40的输出电压(以下称FC电压)及输出电流(以下称FC电流)分 别由电压传感器92及电流传感器93检测出。并且,燃料电池40的内部温度(以下称FC 温度)由温度传感器94检测出。蓄电池20是可充电放电的二次电池,例如由镍氢蓄电池等构成。当然,也可替代 蓄电池20而设置二次电池以外的可充电放电的所有蓄电器(例如电容器)。该蓄电池20 插入到燃料电池40的放电路径,与燃料电池40并联连接。蓄电池20和燃料电池40与牵 引电动机用的变换器60并联连接,在蓄电池20和变换器60之间设置DC/DC转换器30。变换器60例如是由多个开关元件构成的脉冲宽度调制方式的PWM变换器,根据由 控制装置10给予的控制指令将从燃料电池40或蓄电池20输出的直流电力变换为三相交 流电力,供给到牵引电动机61。牵引电动机61是用于驱动车轮63L、63R的电动机,上述电 动机61的转速由变换器60控制。并且,电动机61的转速由转速检测器64检测得出,送出
5到控制装置10。DC/DC转换器30例如是由4个功率晶体管和专用的驱动电路(均省略图示)构成 的全桥转换器。DC/DC转换器30具有以下功能使从蓄电池20输入的DC电压升压或降压 并输出到燃料电池40侧的功能;使从燃料电池40等输入的DC电压升压或降压并输出到蓄 电池20侧的功能。并且,通过DC/DC转换器30的功能,实现蓄电池20的充电放电。在蓄电池20和DC/DC转换器30之间连接有车辆辅机、FC辅机等辅机类50。蓄电 池20成为这些辅机类50的电源。此外,车辆辅机是指车辆运转时等使用的各种电力设备 (照明设备、空调设备、油压泵等),FC辅机是指燃料电池40的运转中使用的各种电力设备 (用于燃料气体、氧化气体的供给的空气压缩机、泵等)。上述各要素的运转由控制装置(控制部)10控制。控制装置10作为内部具有CPU、 ROM、RAM的微型计算机构成。控制装置10根据输入的各传感器信号对设置在燃料气体通路的调压阀71、设置 在氧化气体通路的调压阀81、燃料气体供给源70、氧化气体供给源80、蓄电池20、DC/DC转 换器30、变换器60等系统各个部分进行控制。向该控制装置10中例如输入表示由压力传 感器91检测出的燃料气体的供给压力、由电压传感器92检测出的燃料电池40的FC电压、 由电流传感器93检测出的燃料电池40的FC电流、由温度传感器94检测出的FC温度、由 转速检测器64检测出的电动机61的转速等的信号。并且,控制装置10上连接有为了选择车辆的档位(例如P 停车模式,R 倒车模 式,N:空档模式,D 前进模式等)由用户操作的操作部2。当档位变更时,档位检测信号从 操作部2被送出到控制装置10。进一步,控制装置10在档位为“N”档时,决定是否停止牵引电动机61的变换器驱 动,即决定允许/不允许关闭(关闭控制)。此时,控制装置10根据该时刻的电动机61的 转速,与燃料电池40的运转模式相对应而使用不同的转速的阈值进行该决定。接着,参照图2说明在关闭控制中使用的转速的阈值。燃料电池40的运转模式除了通常的运转模式外,包括和通常相比输出电压的上 限设定得较低的高电位化回避控制模式、预热运转模式等。在通常的运转模式中,变换器电压的最大值VMAX(例如燃料电池组的开路端电 压)变为允许的反电动势的上限。因此,将和该上限电压VMAX对应的上限转速NCONST设 定为转速阈值。高电位化回避控制模式是指,为了抑制燃料电池的老化的进行,使燃料电池40的 输出电压强制性下降到规定的电压阈值(高电位回避电压阈值)以下的运转模式。高电位 回避电压阈值是比燃料电池40的开路电压低的电压,预先通过试验等求出,在制造出厂时 等存储到控制装置10的内部存储器11中。并且,向高电位化回避控制模式的转换例如根 据FC电压、FC电流进行控制。具体而言,在FC电压及FC电压包含于预先准备好的特性映 射的规定区域中时,控制装置10向各部送出控制信号,以进入到高电位化回避模式。在这样的高电位化回避控制模式中,高电位化回避控制模式中的燃料电池40的 最大输出电压Va、换言之高电位回避电压阈值成为允许的反电动势的上限。因此,设定和最 大输出电压Va对应的上限转速Na作为阈值。另一方面,预热运转模式是指,低温起动时,促进伴随着燃料电池40的发电的自身发热(即增大发热量),在和通常运转相比短的时间内使燃料电池40升温的运转模式。 预热运转例如通过以下运转方式实现和通常的运转相比,使反应气体(氧化气体或燃料 气体)不足,增大电力损失,即降低燃料电池40的发电效率来增加发热量的低效运转;及通 过增大燃料电池40的输出电流来增加伴随着发电的发热量的运转。并且,向预热运转模式 的转换例如根据FC温度进行控制。具体而言,在FC温度小于规定的温度阈值时,控制装置 10向各部分送出控制信号,以进入预热运转模式。在这样的预热运转模式中,预热运转时的最大输出电压Vb成为允许的反电动势 的上限。因此,设定和最大输出电压Vb对应的上限转速Nb作为阈值。将这些上限转速NMAX、Na、Nb与各运转模式建立关联,存储到控制装置10的内部 存储器11中。接着参照图3说明控制装置10的关闭控制动作。在步骤SOl中,从操作部2向控制装置10输入档位检测信号时,控制装置10判断 该信号是否是表示“N(空档)”档的信号(步骤S02)。当档位检测信号表示“N”档时,在步骤S03中,控制装置10判断燃料电池40当前 的运转模式是否是预热运转模式。燃料电池40是预热运转模式时,在步骤Sll中,控制装置10将预热运转模式下的 上限转速Nb设定为转速阈值。另一方面,当燃料电池40不是预热运转模式时,在步骤S04中,控制装置10判断 燃料电池40的运转模式是否是高电位化回避模式。燃料电池40是高电位化回避控制模式时,在步骤S12中,控制装置10将高电位化 回避控制模式中的上限转速Na设定为转速阈值。燃料电池40既不是预热运转模式也不是高电位化回避控制模式时,在步骤S05 中,控制装置10将通常的运转模式下的上限转速NCONST设定为转速阈值。在步骤S06中,控制装置10比较当前的电动机61的转速及在步骤Sl 1、S12、S05 任意一个中设定的转速阈值。并且,在当前的转速小于转速阈值时,允许关闭(步骤S07)。 由此,停止对电动机61的变换器控制。另一方面,在当前的转速为转速阈值以上时,不允许关闭(步骤S13)。由此,防止 产生超过各运转模式下的最大输出电压(VMAX、Vb、Va)的反电动势。这种情况下,在燃料 电池40的运转模式切换或因刹车操作、自然减速造成电动机61的转速小于阈值时,允许关 闭。如上所述,根据本实施方式,可防止产生燃料电池的各运转模式下的最大输出电 压(VMAX、Va、Vb)以上的逆电压。因此,可抑制过电压施加到蓄电池、转换器。此外,在本实施方式中,如图1所示,是辅机类相对于DC/DC转换器连接到蓄电池 侧的构成,但对于辅机相对于DC/DC转换器连接到燃料电池侧的构成,也可适用本发明。这 种情况下,也可抑制过大的反电动势造成的超过辅机变换器的额定电压。
权利要求
一种燃料电池系统,具备燃料电池,通过燃料气体和氧化气体的电化学反应进行发电;电动机,可接受电力供给而驱动且可产生再生电力;变换器,将从上述燃料电池输出的直流电力变换为交流电力而供给到上述电动机,从而控制上述电动机的驱动;蓄电部,与上述燃料电池并联连接到上述电动机上,可将上述燃料电池的发电电力及上述电动机的再生电力予以充电,且可将充电电力向上述电动机放电;转速检测器,检测上述电动机的转速;及控制部,根据上述电动机的当前转速来决定是否允许停止上述变换器对上述电动机的控制,上述控制部通过将上述电动机的当前转速与根据上述燃料电池的运转模式而不同的阈值进行比较,来进行上述决定。
2.根据权利要求1所述的燃料电池系统,在上述电动机的当前转速比与上述燃料电池的当前运转模式相对应的转速阈值小的 情况下,上述控制部允许停止上述变换器对上述电动机的控制。
3.根据权利要求1或2所述的燃料电池系统,上述控制部具有内部存储器,所述内部存储器将与上述燃料电池的各运转模式下的最 大输出电压相对应的上述电动机的转速作为转速阈值与运转模式建立关联而存储,上述控制部从多个转速阈值中提取与上述燃料电池的当前运转模式相对应的一个转 速阈值,使用该转速阈值进行上述决定。
4.根据权利要求1 3的任意一项所述的燃料电池系统,上述多个运转模式包含高电位化回避控制模式及预热运转模式中的至少一种、以及通 常运转模式。
5.一种燃料电池车辆,具备如权利要求1 4中任意一项所述的燃料电池系统;及至少在上述燃料电池的运转中使用的辅机。
全文摘要
燃料电池系统具有燃料电池(40),通过燃料气体和氧化气体的电化学反应进行发电;电动机(61),可接受电力供给而驱动且可产生再生电力;变换器(60),将从燃料电池输出的直流电力变换为交流电力而供给到电动机,从而控制电动机的驱动;蓄电池(20),与燃料电池并联连接到电动机上,可将燃料电池的发电电力及电动机的再生电力予以充电,且可将充电电力向电动机放电;转速检测器(64),检测电动机的转速;及控制装置(10),根据电动机的当前转速来决定是否允许停止变换器对电动机的控制,该控制装置将电动机的当前转速与根据燃料电池的运转模式而不同的阈值进行比较,来进行决定。
文档编号H01M8/10GK101909923SQ200880122768
公开日2010年12月8日 申请日期2008年12月11日 优先权日2007年12月26日
发明者吉田道雄, 小川朋也 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1