适应热膨胀的喷头装备的制作方法

文档序号:7001185阅读:146来源:国知局
专利名称:适应热膨胀的喷头装备的制作方法
技术领域
本发明涉及适应热膨胀的喷头装备。
背景技术
电子器件,例如平板显示器和集成电路,通常用一系列料层被沉积到工件上的淀积工艺步骤以及沉积材料被蚀刻成预定图案的蚀刻工艺步骤来制造。这些工艺一般在真空室中完成。通常,用在淀积或蚀刻工艺中的化学试剂中含有一种或更多种气体,共同称为工艺气体,这些气体通过定位于工件正上方的喷头分配到真空室中。工艺气体通过分布在喷头表面上成百上千的孔口来分配以产生工件附近工艺气体的预定空间分布。在等离子体工艺中,喷头也可能与射频电源电气连接以被用作电极。这种情况下, 在喷头与射频电源之间必须形成可靠的低阻抗电气连接。上述由射频提供能量的喷头在于1989年8月8日授权给Chang等人的美国专利 4,854,263中进行了一般性的描述。典型地,工件是充分平整的,喷头有一个朝向工件的表面(在此称为喷头的“前表面”),该表面也充分平整。可选择地,喷头的前表面可能有轻微的凸或凹的曲率以使工件上进行的淀积或蚀刻工艺的空间一致性增到最大。喷头通常会被在真空室中完成的工艺加热。在非等离子体加工中,工件通过诸如电阻式加热或辐射加热之类的方法加热,这些方法通常产生到喷头的热传递。在等离子气体加工中,等离子气体是额外的热源。一般来说,加热会导致喷头的热膨胀,这会扭曲喷头前表面的原始外形(也即,平整度和曲率)。这种扭曲会削弱在工件上进行的工艺的空间一致性所以是不符合要求的。如许多常规设计中那样,当喷头的外周刚性连接到真空室壁时喷头前表面平整度或曲率的变形特别容易发生。因为外周是固定的,喷头的热膨胀将导致喷头表面弯曲。解决应热膨胀而产生的喷头前表面平整度或曲率的变形问题的一个方法是将喷头利用柔性板固定,如在前文提及本申请要求优先权的专利申请号09/922,219中描述的那样。柔性板要求一些小心的操作以避免对板的损坏。因此,需要更容易操作的替代设计。

发明内容
在优选实施例详细说明的第2,3部分中描述的本发明的第一种情况中,喷头或扩散器通过在支架设置喷头边缘而进行支撑。喷头边缘能够在支架的表面自由滑动,因此允许喷头应温度变化而径向膨胀或收缩时,几乎没有或者完全没有应力和扭曲力,这些力在喷头与室固定、无滑动地安装时将会产生。因此,本发明能够最小化或者消除由于热膨胀或收缩而产生的喷头前表面形状(例如平整度或曲率)的任何变形。在详细说明的第4部分中描述的本发明的第二种情况中,喷头通过许多附着于喷头、室壁或二者之上的吊钩悬挂于室壁,在狭槽中滑动的销钉允许吊钩径向滑动来适应喷头的径向热膨胀。在详细说明的第5部分中描述的本发明的第三种情况中,喷头由许多柔性线悬挂
于真空室的壁上。在详细说明的第6部分中描述的本发明的第四种情况中,喷头由许多杆悬挂在真空室的壁上。每根杆的上端通过第一铰接接头安装在真空室壁上,每根杆的下端通过第二铰接接头安装在喷头上。铰接接头允许杆应喷头的热膨胀而转动。在详细说明的第7部分中描述的本发明的第五种情况中,喷头于靠近其外周处连接到较喷头具有更大热膨胀系数的第二材料上。尽管第二材料一般不会如喷头那样被加热,但其较大的热膨胀系数可以使其在室中完成的工艺加热下而以与喷头大致相同的量膨胀。这种安装喷头的设计适应喷头的热膨胀而无需滑道或柔性悬挂装置。在详细说明的第8部分中描述的本发明的第六种情况中,一个加热器安装在喷头后方。该加热器的一个优点是升高喷头的温度减少从工件到喷头的热传递。加热器的另一个优点是它能防止由于室中工艺产生的热传递而使得喷头的前表面变得比其背面更热,从而减少或消除由于前表面和背面之间的温差而造成的前表面弯曲。


图1是包括一个由可滑动地置于支架上的喷头边缘支撑的喷头的等离子体室侧面的局部剖面示意图。图2是图1中喷头边缘以及支架的垂直剖面详图。图3是图2中仅矩形喷头以及支架的顶视图。图4是图3方案的一种变形的顶视图其中喷头是圆柱形,仅示出喷头以及支架。图5是喷头边缘和支架的一种改进型的垂直剖面详图其进一步包括凸缘以防止颗粒掉落。图6是图5中的喷头边缘和支架的另一种实施例的垂直剖面详图其中吊钩将支架连接到进气支管顶壁。图7是具有用以与具有在狭槽中滑动的销钉的吊钩紧密结合的狭槽的喷头的水平剖面视图。图8和9分别是由具有在狭槽中滑动的销钉的吊钩悬挂的喷头的垂直剖面图以及垂直剖面详图。图10是图9中实施例的一种变形的垂直剖面详图其中喷头边缘包括一个凹槽以捕捉颗粒。图11是图9中实施例的一种变形的垂直剖面详图其中销钉和狭槽是倒置的。图12是图8和9中进气支管的垂直剖面详图具有在喷头边缘和进气支管顶壁的外周之间延伸的气封。
图13和14分别是图8和9中进气支管的垂直剖面详图和分解透视图,在气体排出孔和边缘之间具有连接到喷头上的气封。图15是图8和9中进气支管的一种变形的垂直剖面视图其中吊钩足够宽以用作进气支管的气封侧壁。图16是图15中进气支管一种变化的水平剖面视图其中吊钩包括重叠的侧向延 伸。图17是一个实施例一角的垂直剖面详图其中喷头用线悬挂于进气支管的顶壁。图18是图17中实施例仅喷头、线和进气支管顶壁的分解透视图。图19是图17中实施例的一种变形的一角的垂直剖面详图其中用来密封进气支管侧边的板朝向悬挂线的内部。图20是一个实施例一角的垂直剖面详图其中喷头由安装有铰接接头的杆悬挂。图21和22分别是温度补偿元件和喷头的垂直剖面视图和分解透视图。图23是加热器和喷头的垂直剖面视图。
具体实施例方式1.等离子体室概述图1表示一个具有按照本发明一个实施例中的方式悬挂的喷头的真空室,其中连接到喷头上的吊钩是在连接到室壁上的支架上自由滑动的。在描述新的悬挂装置之前,先说明真空室的其他部件。真空室用来使工件或工件10经受化学加工,该加工是在工件上制造半导体或其他电子器件的一系列步骤中的一步。工件由工件支座12,也称为卡盘或基座支撑在室内。 在室内加工的工件10的通常的例子包括在上面制造平板显示器的矩形玻璃工件或在上面制造集成电路的圆形半导体晶片。真空室有外壳或室壁为内室提供真空封闭。在图示的实施例中,室的侧壁和底壁制成单一壁。室壁的顶部由铰接的盖子16和进气支管顶壁18形成。人员能够通过掀起盖子16接近内室。0形圈19 ( 一些没有示出)在侧壁14、盖子16和进气支管顶壁18之间形成真空密封。侧壁14和底壁13、盖子16和进气支管顶壁18都视为室壁的部分。当谈及本专利说明书中室的部件的不同侧面或表面时,我们用术语“前”和“背” 来分别指朝向和远离工件的侧面或表面。例如,工件支座12的顶表面称为工件支座的前表面,而喷头22的底表面和顶表面分别称为喷头的前表面23和喷头的背面。当在工件上进行制造半导体或其他电子器件的加工时,一种或更多种的气体通过进气支管分配到室内。进气支管包括进气支管顶壁18,通过它气体进入进气支管以及喷头 22 (也称作扩散器或气体分配盘),通过它气体从进气支管流入等离子体室内部。进气支管进一步包括进气支管侧壁,也称为气封侧壁,其在顶壁18和喷头22之间延伸形成气封。进气支管顶壁,侧壁和喷头共同圈起一个称为进气支管的内部区域或气室26的空间。一未示出的外部气源给进气支管顶壁18上的至少一个进气孔观提供工艺气体, 通过进气孔工艺气体流入进气支管的气室26。工艺气体此时通过喷头22上一个或更多个, 典型地成百上千个气体排出孔30从气室流入室的内部。图1-5所示的实施例中,进气支管的气封侧壁主要由覆盖室的盖子16内表面的绝
9缘衬里M组成。在图6所示的另一实施例中,进气支管侧壁主要包括将在下面描述的吊钩 70。在图12-14和17-20所示的各种实施例中,柔性板起到了进气支管气封柔性侧壁88的作用。进气支管的侧壁将形成充分的气密密封——即,对气体泄漏的充分的阻抗——所以大部分通过进气孔28流入气室的气体会流经喷头气体排出孔30进入真空室内部而不是通过进气支管侧壁的缝隙泄漏。可以接受的泄漏量取决于在工件上所进行的加工,但在大多数工艺中泄漏量应少于百分之十。也就是说,通过进气孔观进入气室的少于百分之十 (十分之一)的气体将通过进气支管侧壁泄漏,这样应有至少百分之九十的气体通过气体排出孔30分配进真空室。在最坏的情况下,应有不超过百分之四十的进入气室的气体通过进气支管侧壁泄漏。一个未示出的常规真空泵在室中保持预定水平的真空度并通过环形排气狭缝32 从室中排出工艺气体和反应产物,然后进入环形排气集气室33,最后通过未示出的排气通道到泵。在图示的优选实施例中,喷头22是一个3厘米厚的铝板。其最好应足够厚以便当室中形成真空时其不会在大气压力下有较大的变形。一些在这种室中进行的工件制造工艺,例如热化学气相淀积(thermal CVD)工艺, 在没有等离子体的情况下进行。许多其他的工艺,例如等离子体增强化学气相淀积(PECVD) 或等离子体蚀刻工艺,需要等离子体。用在等离子体工艺中的真空室称为等离子体室。在一种类型的等离子体室中,等离子体被在室中利用连接到电极上的射频(RF) 电源电容式地将电源与等离子体联系起来而在室中发生或持续。在上述等离子体室中,喷头一般起到了一个电极的作用,无论是被连接到电路接通的室壁,还是被与室壁电路绝缘并与RF电源的不接地的(RF hot)输出端电气连接。因此,提供喷头以充分的传导率和可靠性的电气接触来接触高电平,典型地千瓦数量级的射频电源是很重要的。喷头上的气体排出孔30应具有比等离子体暗区宽度小的直径以便防止等离子体室内的等离子体进入气室26,也就是,位于喷头22与顶壁或进气支管顶壁18之间的内部区域。暗区的宽度,以及由此气体排出孔的最佳直径,取决于室内压力和室内所要进行的特定的半导体制造工艺的其他参数。可选择地,为了进行使用特别难分离的试剂气体的等离子体加工,采用如上文引用的Chang等人的美国专利4,854,263中所描述的具有窄的入口和较宽的、喇叭形的出口的喷嘴是理想的。进气支管最好也包括由一个未示出的直径较进气孔观稍大并用柱悬挂于喷嘴下的圆盘34构成的气体入口导流片。导流片阻挡气体从进气口观直线流入位于喷头中心的直接相邻的气体排出孔30,从而有助于均衡通过喷头中心和外围的相应气体流速。在进气支管顶壁和喷头是强射频(RF hot)的应用中,绝缘衬里24,35安装于那些强射频(RF hot)元件和电接地的室盖子16之间。为了集中室中位于工件支座12和喷头之间区域的等离子体,室中靠近喷头或工件支座的其他金属表面通常用绝缘衬里覆盖。举例来说,图1显示了覆盖室盖子16下面的绝缘衬里36和覆盖室侧壁14的绝缘衬里38。罩39 —般连接在室盖子16的顶部以保护人员免于与强射频(RF hot)顶壁18或喷头意外接触。罩39不会深入讨论因为它对于此讨论的其他室部件的功能性是不重要的。室构件应由不会污染室中的半导体制造工艺并能抵抗工艺气体腐蚀的材料组成。铝是除将在下文描述的0形圈和绝缘垫片和衬里外的所有构件的首选材料。常规等离子体CVD和蚀刻室的设计和运行在下列通常授权的美国专利中说明,每个专利的全部内容作为本专利说明书的参考文献=White等人的1998年12月1日授权的美国专利5,844,205 ;以及Chang等人的1989年8月8日授权的美国专利4,854,26302.喷头的滑动支撑如在上文标题为“发明背景技术”的部分中叙述的那样,由在室加工所产生的热量导致喷头22的热膨胀。如果喷头刚性地并不可弯曲地固定在室壁18上,这种膨胀可导致喷头弯曲以致喷头的前表面或底表面23变形,也就是,以致底表面的平整度或曲率改变或变形。图1-3描述了该问题的一种解决办法,其通过在喷头支架M上设置喷头的环形边缘52来支撑喷头以使喷头边缘在支架顶表面可自由滑动。因此,当喷头应其自身温度变化而径向膨胀和收缩时,喷头边缘沿支架分别向外和向内滑动。这种滑动的自由基本上消除了喷头上应这种径向热膨胀和收缩而产生的应力。支架M可连接到能够支持喷头重量的真空室的任何部分。最好,支架直接或间接连接到室壁18上,在图示的优选实施例中,支架是覆盖盖子16内表面的绝缘衬里M的向内突出伸出部。如在本专利申请要求优先权的美国专利6,477,980中说明的那样,最小化从喷头外周到喷头直接或间接安装于其上的真空室内任何冷的部件(例如室盖子16和室侧壁14) 的热传递是理想的。特别地,真空室内安装或支撑喷头的结构最好应在喷头和上述的冷的室部件之间介入高的热阻抗。最小化上述热传递有至少两方面的优点第一,使喷头温度达到最大值以致从工件到喷头的热损耗减到最小;第二,通过将喷头外周比喷头中心损失热快的程度减到最小将喷头底表面温度的空间一致性增到最大。将该原理应用到本发明中,支架讨或位于支架和室内任何大且冷的构件(例如室盖子16和室侧壁14)中的任何部件最好应在喷头和那些冷的构件之间介入高热阻抗。在图3所示的实施例中,这通过用具有低导热系数的绝缘材料制造绝缘衬里和其整体支架M 来实现,以致该绝缘衬里和支架在喷头和室盖子16之间介入高热阻抗。如在前面第1部分中描述的那样,一种或更多种工艺气体通过进气支管分配到室中。进气支管包括进气支管顶壁18,喷头22 (也称为扩散器或气体分配盘),和在顶壁18和喷头之间延伸的气封侧壁以便进气支管侧壁,顶壁和喷头共同圈起一个称为气室沈或进气支管内部区域的容积。在图1-5的实施例中,进气支管侧壁主要由绝缘衬里M,支架M, 和喷头边缘52组成。同样如在前面第1部分中描述的那样,进气支管的气封侧壁应形成充分的气密密封以致通过进气孔观流入气室的大部分气体将通过喷头气体排出孔30进入真空室内部而不是通过进气支管侧壁上的缝隙泄漏。因此,喷头边缘52和喷头支架M不应有过大的缝隙,无论在单一部件上或相邻部件之间,通过这些缝隙大量工艺气体会从气室泄漏。通过进气孔观进入气室的气体最好应少于百分之十(十分之一)通过进气支管侧壁泄漏,这样应有至少百分之九十的气体通过气体排出孔30分配到真空室中。因此,上述缝隙的总横截面积(“侧壁缝隙面积”)最好应小于喷头排出孔最窄部分的总横截面积(“喷头孔口面积”) 的百分之十(十分之一)。在最坏的情况下,侧壁缝隙面积应小于喷头孔口面积的百分之四十。边缘和支架都可作为一个连续件制造,也可作为紧密地邻接以便形成充分的气密密封的复合件制造。例如,图3图示了是连续件的喷头边缘52,而支架M从中突出的绝缘衬里M具有分别覆盖矩形室盖子16的四个内表面的四个不同部分。喷头边缘52可作为喷头的整体部分机械加工,或者它可以是连接到喷头外周附近的开口中心的矩形结构。图4表示了该设计怎样适应于圆柱形而非矩形的喷头22。在这个实施例中,喷头边缘52,喷头支架54,以及绝缘衬里24都是圆柱形的并且与喷头22同心。为了提供到喷头的可靠的,高导电性RF电连接,RF电缆56(称为上电缆)可电连接到进气支管的顶壁18上,而第二 RF电缆57 (称为下电缆)可直接连接在顶壁18和喷头之间,如图2所示。在喷头边缘52和喷头支架M之间的滑动接触的摩擦会磨损接触面而产生颗粒。 覆盖室盖子16下侧的绝缘衬里36最好在支架M下部分地延伸使得捕捉住大部分或全部上述颗粒以防止它们掉落到工件10上。可选地,喷头可包括位于之前所提到的喷头边缘52 之下的第二环形边缘或凹槽58用以捕捉可能被绝缘衬里36遗漏的颗粒。为了减少喷头边缘52底表面和喷头支架M顶表面间的摩擦和磨损,可将光滑、低摩擦的滑道或承座61连接到其中一个或两个表面上。例如,滑道可以是杆或一个或更多个嵌入其中一个表面的滚珠。可选地,滑道可与上述表面内可允许滑道在其中自由滚动的承窝配合。图5显示了图2设计的一种变形,其中喷头支架M的内端具有一个向上延伸的凸缘62以确保由支架和喷头边缘52之间的磨损产生的颗粒被支架捕捉以使其不会掉落到工件上。为了给支架的凸缘62形成空隙,喷头边缘52的外端应具有以至少稍大于支架凸缘 62的高度的量向下延伸的环形凸缘64,所以喷头凸缘64的下端是喷头边缘52和支架M 之间接触的唯一的点。喷头凸缘64应置于径向向外于支架凸缘62的支架M的面向上的表面上。优选地,如上文描述的滑道61连接到喷头凸缘64的底表面。为了防止支架的凸起的凸缘62撞击喷头的侧面并由此在喷头向外滑动时产生颗粒,喷头边缘52最好应具有比支架大的径向宽度。更准确地说,喷头边缘的凸缘64应以较喷头凸缘64所滑动的支架顶表面的径向宽度大的量由喷头侧面径向向外间隔。3.吊钩从顶壁悬挂喷头支架图6显示了与图5所示实施例一致的另一个实施例,除了喷头支架M不是连接到绝缘衬里M上。作为替代的,喷头支架M用吊钩70悬挂于进气支管的顶壁18上。图6 所示的实施例与图1-5所示的实施例一样通过允许喷头边缘52在其放置的支架M表面滑动而适应喷头的径向热膨胀。除下面描述的区别以外,所有与图1-5的实施例相关的变形和设计因素也适应图6的实施例。如果顶壁18,吊钩70,支架M,滑道61,和喷头边缘52都由诸如铝或其他金属一样的导电材料组成,这些构件将电气连接顶壁18与喷头22使得可靠地将RF电能从顶壁导通至喷头。置于支架上的喷头的重量有助于实现位于喷头边缘和支架间接触区域的可靠的、高导电性的电连接。因此,如图2的实施例中那样不需要在顶壁和喷头之间连接单独的电缆。和本发明要求优先权的美国专利6,477,980所描述的柔性悬挂装置不同,吊钩70
12不必是柔性的,因为喷头边缘是在支架上自由滑动的。吊钩70可以与顶壁18作为一个单一的,整体的部分一起制造,或是一个单独部分栓固于,或是附着于顶壁18上。如前面第2部分说明的那样,进气支管最好应形成足够的气密封以防止大量工艺气体从气室沈泄漏。如上面叙述的那样,过度的泄漏量值取决于工件上进行的加工,但在几乎所有应用中泄漏量应小于从喷头气体排出孔30流过的气体的40%,最好小于10%。在图6所述的吊钩70将喷头支架连接到进气支管顶壁18上的实施例中,吊钩70与喷头支架 54和喷头边缘52协同起到进气支管侧壁的作用。因此,这些构件的每一个不论在任一构件中还是相邻的构件间最好不应有过大的缝隙,通过这些缝隙多于上述份额的工艺气体会从气室泄漏。任何这些构件可被作为一个连续件制造,也可作为紧密邻接以便形成充分的气密密封的复合件制造。两种制造方法的例子都在前面第2部分中提供。如在图1-5的实施例的讨论中说明的那样,在真空室中固定和支撑喷头的结构最好应在喷头和上述冷的室构件间介入高热阻抗。在具有吊钩70的图5所示的实施例中,这可以通过使吊钩在喷头和顶壁18间介入的热阻抗增到最大而实现。可通过使吊钩非常薄或用例如不锈钢那样的具有低导热系数的材料来制造吊钩以使上述热阻抗最大化,不锈钢具有比大多数其他适宜用在等离子体室内部的导电体低的导热系数。在我们的优选实施例中使用了前一方法,也就是,使吊钩足够的薄以致其具有预期的低导热系数。我们推荐用厚度为3毫米或更少,最好1毫米或更少的铝板来制造吊钩70。4.具有在槽中滑动的销钉的吊钩图7-9显示了一个实施例其中喷头22用由许多用滑入狭槽82的销钉81连接到喷头和顶壁18上的吊钩80组成的悬挂装置悬挂在进气支管的顶壁18上使得允许吊钩径向滑动来适应喷头径向的热膨胀。如图7所示,喷头22的顶表面有许多狭槽82在喷头外周附近呈环形分布。每个狭槽的最长尺寸(长度)相对于喷头纵轴(见图1和7)径向延伸。尽管狭槽可在喷头本体上制造,但是如图7-9所示在喷头向外延伸的边缘78上制造狭槽更容易些。在图示的矩形喷头中,喷头在其顶表面四角的每个角附近具有一个狭槽并在四角间中间位置具有一个狭槽。可选择地,喷头可具有更多或更少的狭槽,例如仅邻近角的四个狭槽,或仅位于各角中间位置的四个狭槽,或仅在喷头顶表面对边的两个狭槽,或仅三个圆周分布的狭槽。对喷头上的每一个狭槽82来说,对应的吊钩80具有贯穿狭槽的销钉81。从销钉 81的底端横向延伸的挂耳83宽于狭槽的横向宽度,也即,平行于喷头方位角或外周的狭槽尺寸。因此,如图9所示,挂耳83啮合并支持横向限定狭槽的喷头部分85的下面。(我们称横向限定狭槽的喷头部分为狭槽侧壁85。)每个销钉81和其挂耳83可具有任何截面形状,例如圆形或矩形截面。举例来说, 每个销钉可以采用螺栓,而每个销钉的挂耳可以是螺栓头。如刚才所述的直接啮合并支持喷头的吊钩80称为吊钩的第一或最低“层”。在一个可能的实施例中,悬挂装置仅包括吊钩的单层,在这种情况下,每个吊钩应足够长以在喷头22和顶壁18间延伸。更优选地,如图8和9所示,悬挂装置包括吊钩80的多层,所以当层的数目是整数 N时,每个吊钩的高度近似为喷头和顶壁间距离的N等分。在图示的实施例中,喷头和顶壁间有吊钩的两层;也即,N = 2。每个吊钩80的顶表面有与喷头上相对应的狭槽具有相同方向的狭槽82。特别地, 每个吊钩的狭槽的最长尺寸朝向平行于喷头半径,也即,垂直于喷头纵轴阳(图1)。直接在其下方并邻接狭槽82,每个吊钩也具有比贯穿狭槽的销钉81的挂耳83宽的凹槽84,以便形成当销钉在狭槽中滑动时能使挂耳83在其中滑动的空腔。进气支管顶壁18的底表面包括许多向下突出的销钉81和表层上吊钩80的数量相同。销钉81在靠近顶壁外周处圆周分布以使顶壁18上的每个销钉啮合表层上的每个吊钩。每个吊钩的底表面也有向下突出的销钉81。顶壁的每个销钉81和吊钩的每个销钉81 具有如上文描述的挂耳83。顶壁18的每个销钉通过与其对应吊钩80的狭槽82。我们将每个吊钩的狭槽称作如喷头的每个狭槽的侧壁85 —样具有侧壁85。也就是说,我们称横向限定狭槽82,并垂直悬于凹槽84之上的吊钩的部分为狭槽侧壁85。每个吊钩的狭槽侧壁85置于通过狭槽的销钉81的挂耳83上因为销钉的挂耳比狭槽的横向宽度宽,如图9所示。因此,销钉和挂耳支撑狭槽的侧壁85,而侧壁反过来支撑狭槽是其一部分的吊钩。同样地,如果吊钩的层数多于一层,在最低层上的一层或更多层的每个吊钩支撑低于它的吊钩因为每个上述吊钩具有穿过直接位于其下的吊钩狭槽的销钉,且每个销钉具有比直接位于狭槽下的吊钩的相应狭槽82的横向宽度宽的挂耳83。因此,最低层吊钩的挂耳和销钉共同支撑喷头的全部重量。顶壁的挂耳和销钉共同支撑吊钩最上层的重量。除最低层外的吊钩每层的挂耳和销钉共同支撑直接位于其下的下一吊钩层的重量。因为销钉和狭槽允许每个吊钩相对于下面的喷头和上面的进气支管顶壁径向滑动,喷头可以应温度变化而自由膨胀和收缩。图10说明,如果想要捕捉因喷头边缘78和将喷头边缘置于其上的销钉挂耳之间的磨损而产生的颗粒,边缘可作以下修改(1)位于狭槽82下的凹槽84,以及(2)位于凹槽下的固体部分79。图11显示了另一种实施例其中销钉和狭槽是相对于图7-10所示的实施例倒置的,所以每个销钉81向上延伸进入其上的吊钩80或顶壁18的狭槽82,所以每个销钉的挂耳83的下面置于,并支撑于,位于其上的横向限定吊钩80或顶壁的狭槽82的狭槽侧壁85。 无论如何,其中每个销钉81向下延伸到狭槽82中的图示实施例是优选的因为面朝上的凹槽84可捕捉由挂耳83和狭槽侧壁85间磨损而产生的颗粒,以便上述颗粒不会掉落到工件上。如在前面第1部分中叙述的那样,一种或更多种的工艺气体通过进气支管被分配到室中。进气支管包括进气支管顶壁18,喷头22 (也称为扩散器或气体分布盘),和在顶壁 18和喷头间延伸的进气支管侧壁以致进气支管侧壁,顶壁和喷头共同圈起一个称为气室 26或进气支管内部区域的容积。在图8-11的任何一个实施例中,每个吊钩80的横向宽度不需比吊钩中凹槽84的横向宽度大许多。(我们用横向宽度表示在垂直于吊钩滑动方向的吊钩宽度,在图8中是吊钩从左至右的宽度。)因此,吊钩80用作进气支管的侧向密封可能是不够宽的。也就是说,如果在相邻吊钩间有大的横距,吊钩将不会形成进气支管的气封侧壁。
在那种情况下,进气支管的柔性气封侧壁88最好应当通过在进气支管顶壁18和喷头22之间增加一个或更多柔性气封构件形成。进气支管的柔性气封侧壁88应圈起在顶壁18的进气孔观和喷头的气体排出孔30之间延伸的容积或气室26。进气支管的柔性气封侧壁88应充分柔软以适应喷头径向的热膨胀。图12显示了进气支管的一种合适的柔性气封侧壁88,其包含一个或更多连接到, 并在进气支管顶壁18的外周和喷头22的边缘78间延伸的柔性板或膜。喷头55纵轴方向上板或膜的长度或高度应比横跨顶壁18和喷头之间的必要距离为大以以使柔性气封侧壁 88具有足够的驰度或松度来适应喷头的热膨胀。就图示的矩形喷头来说,柔性气封侧壁88 可以是围绕整个顶壁外周和喷头延伸的单层板,或它可以包括分别附着于顶壁和喷头四面的四个不同的板。图13和14显示了另一个实施例其中柔性气封侧壁88的柔性板或膜的下端沿着径向向内于吊钩80并径向向外于气体排出孔30的表面附着于喷头22上。喷头的重量完全由吊钩80而不是柔性气封侧壁88承受。因此,柔性气封侧壁的板88仅需足够强以经受住输入进气支管的气体和室内真空之间压差,而不需承受沉重的喷头。于是,板可以由足够薄以高度柔软的的材料组成。图15显示了另一个实施例其中吊钩80起到进气支管气封侧壁的作用,消除了对附加柔性气封侧壁88的需求。这要求每个吊钩80具有足够大的横向宽度以致相邻吊钩的侧向端部充分地相互靠近来防止气室26中的大量工艺气体从吊钩间的缝隙泄漏而不是从喷头的气体排出孔30流过。如在前面第1部分中叙述的那样,可接受的泄漏量取决于在工件上的加工,但在大多数加工中泄漏应少于百分之十。也就是说,应少于通过进气孔观进入气室沈的百分之十(十分之一)的气体从进气支管侧壁泄漏,以使应至少百分之九十的气体通过气体排出孔30分配到真空室中。在最坏的情况下,应不多于进入气室气体的百分之四十通过进气支管侧壁泄漏。因此,优选地,吊钩的横向宽度应足够大,并且吊钩间缝隙应足够小,以使吊钩间缝隙的总横截面积(“侧壁缝隙面积”)应小于喷头排出孔的最窄部分的总横截面积(喷头孔口面积)的百分之十(十分之一)。在最坏的情况下,侧壁缝隙面积应小于喷头孔口面积的百分之四十。如果吊钩的相邻端部附着到柔性密封或弥合相邻吊钩间缝隙的膜盒(未示出) 上,气体通过相邻吊钩横向端部间的缝隙的泄漏可以进一步减少。图16显示了另一个设计其中吊钩80包括足够宽的侧向延伸89以致每一对相邻吊钩侧向延伸重叠。每一对重叠的延伸应间隔得足够靠近以使它们之间的缝隙阻碍气体从气室泄漏使得防止多于40% (五分之二),并最好少于10% (十分之一),的进入气室的气体通过所有上述缝隙泄漏而不是流经喷头气体排出孔30。可选择地,吊钩间缝隙的总横截面积应小于喷头排出孔最窄部分的总横截面积的40% (五分之二),并最好小于10% (十分之一)。5.线悬挂装置图17和18显示了一个实施例其中喷头22用三根或多根柔性线86悬挂。每根线的上端连接到进气支管顶壁18外周附近的一点上,而每根线的下端连接到喷头外周附近的一点上。上部连接点在顶壁18上圆周分布,而下部连接点在喷头上圆周分布。在图示的优选实施例中,喷头和进气支管顶壁18是矩形的,线的数目是四,而线的连接点靠近喷头和进气支管顶壁四角。(为更清楚地显示四根线和它们的连接点,图17 和18省略了除下面所述的四根线,喷头,进气支管顶壁,和柔性气封侧壁88外的全部构件。)因为线是柔性的,喷头可以应温度变化自由膨胀和收缩而没有应力。优选地,线由导电材料组成,以使线能够从进气支管顶壁传导RF电能到喷头。因为线的直径是喷头的横向宽度的微小部分,线不能作为圈起气室或进气支管内部区域沈的侧壁。因此,必须提供单独的柔性气封侧壁88来圈起进气支管的侧面。气封应充分柔软以适应喷头的热膨胀。在前面第4部分(图12-14)中描述的柔性气封侧壁88的任何设计同样适合于与线悬挂装置86结合使用。图17和18显示了一个与图12所示类似的外周柔性气封侧壁 88。图19显示了沿线86径向向内并沿气体排出孔30径向向外的表面附着于喷头22另一种柔性气封侧壁88,类似于图13和14所示的柔性气封侧壁88。6.带有铰接接头的悬挂杆图20显示了一个与图19类似的实施例,除了喷头是由杆90而不是线悬挂。每根杆的下端和上端分别用铰接接头91连接到喷头和进气支管顶壁上。铰接接头消除了对于杆应当柔软的任何要求,所以杆可以是粗的并且刚性的。铰接接头可以是任何允许杆于节点处转动的常规设计,例如习用的滚珠和承窝连接。一个较便宜的滚珠和承窝接头的近似方法可将挂耳头拧入滚珠中以及承窝中的孔或狭槽中,如图20所示。狭槽可在横向或径向拉长以允许杆除转动外还有横向或径向滑动。板应被提供以形成如前面标题为“线悬挂装置”的第5部分所述的进气支管侧向柔性气封侧壁。7.具有高热膨胀系数的支撑用刚性固定件图21和22显示了另一个设计其允许喷头被刚性固定,而不需要任何柔性或滑动构件,然而当它经受径向热膨胀和收缩时减少了喷头上的应力。这个设计的独特部件是由比喷头22所用材料具有更高的热膨胀系数的材料组成的喷头支撑件100。喷头刚性悬挂于高热膨胀系数的支撑件100上。悬挂装置包括至少一个垫片102,每个垫片具有一个附着在支撑件100外周附近的上端和一个附着在喷头22的外周附近的下端。喷头支撑件100,垫片102,和喷头22共同圈起一个工艺气体在其经过喷头气体排出孔30分配进入真空室内部区域之前所流入的容积或气室101。这些构件应在气室周围提供充分的气密密封以致不超过可忽略量的气体不经喷头气体排出孔30而从气室内泄漏到真空室内部。如果喷头为圆形,垫片102最好是圆柱形的。在图示的优选实施例中,喷头是矩形的,而垫片102是围绕一个开口中心的矩形结构。可选择地,多重垫片102可圆周分布于喷头22的外周,但此时在相邻垫片间应提供气封。气体导管106具有一个附着于真空室顶壁18上的上端在那里其与进气孔观连在一起。气体导管106的下端附着于喷头支撑件100上在那里其与喷头支撑件上的至少一个气孔104连在一起。因此,气体导管106形成了一个工艺气体从进气孔28通过喷头支撑件
16上的气孔104,通过气室101,然后通过喷头气体排出孔30的流动路径。这个设计的操作原理如下。通过气室101内的工艺气体的热传导和对流在喷头22 和喷头支撑件100间传递热量。因此,喷头支撑件100的温度随着喷头温度的上升和下降而上升和下降。垫片102同样会在喷头和支撑件间传递热量。因为通过气体和垫片传递的热量低于百分之百的效率,支撑件一般比喷头温度低。因此,如果支撑件和喷头具有相同的热膨胀系数,支撑件将不会应在室中进行的工序而来的热量产生与喷头一样的膨胀和收缩。尽管按照我们的发明,支撑件100的热膨胀系数应超出喷头热膨胀系数一个最恰当的量,以致支撑件将以近似喷头的量径向膨胀。换句话说,支撑件100应由热膨胀系数超出喷头一个最恰当的量的材料组成以使支撑件以与喷头应其较高的温度而产生的径向膨胀近似相等的量径向膨胀。支撑件的最佳热膨胀系数可通过用不同的材料制造支撑件100 并选择使支撑件以与喷头应在室中进行的加工过程中可能遇到的温度变化而产生的近似相同的量的膨胀和收缩的材料来经验确定。因为气体导管106于支撑件100中心附近处连接到的喷头支撑件上,那一点处的支撑件的径向膨胀与它的外周附近的径向膨胀相比是可以忽略的。因此,气体导管可以被刚性地连接到喷头支撑件上。在一个预期实施例中,气体导管支撑喷头支撑件和喷头的全部重量。更优选地,加热器和喷头重量的另外的支撑可由于支撑件100的外周和顶壁18间安装任何在前面第2-6部分中描述的柔性或滑动悬挂装置来提供。可选择地,在如本专利说明书开头标题为“相关申请参照”的部分中确定的,本申请要求优先权的两个在先申请中描述的任何柔性悬挂装置的设计,可附加在支撑件100和顶壁18之间。在图21和22所示的优选实施例中,如第5部分描述的图17-19的实施例中那样,上述支撑是由四根分别连接到喷头四角的柔性线来提供的。气体导管106,支撑件100,和垫片102当它们均由导电材料组成时可以在室顶壁 18和喷头间传导RF电能。因为任何这些构件可被刚性连接,任何上述连接点可被容易地实现以形成良好的RF电导。8.喷头后方的加热器上述的各种悬挂装置的设计试图防止喷头应整个喷头温度的增加和减小的径向膨胀和收缩而产生的应力。并未完全被前述设计提到的另外一个问题是喷头的前(低)表面一般比喷头的背(顶)面热,因为前面面对室中的主热源(1)工件支座12,其典型地包括一个加热器来给工件10加热;和( 在等离子加工的情况下,位于喷头和工件支座间区域内的等离子体。相反地,喷头的背面暴露于典型地比喷头冷的面,例如进气支管顶壁18。当喷头的前表面比背面热的时候,前表面将比背面膨胀更多,导致喷头朝向热源向外弯曲。也就是说,前表面变得更凸起。如上面标题为“背景技术”的部分所述的那样, 喷头前表面的任何外形(平整度或曲率)的变化是不符合要求的,因为它可以削弱工件上进行的加工的空间一致性。图23显示了弯曲问题的一个解决办法。图23的设计与图16中所示的设计相似, 除了具有高温度系数的喷头支撑件100被加热器110取代。加热器通过给喷头的背面加热从而克服了喷头背面比正面冷的问题。加热器具有另一个优点是提升整个喷头的温度,这有利于减少工件的热损耗。加热器可采用任何习用的热源,例如嵌入加热器本体中的电热元件,或穿过加热器本体泵送热流体的管道。热量以辐射,传导和对流的方式通过流经加热器和喷头间的气室区域101的工艺气体从加热器110被传递到喷头22的背面。这些传热机构足够好所以垫片102不需是良好的热导体。因为前面段落中描述的热传递,喷头的温度几乎和加热器的温度一样或仅稍冷些。因此,如果加热器本体是由与喷头具有相同,或稍低的热膨胀系数的材料组成,加热器和喷头将应温度而经受近似相同的径向膨胀量。因此,垫片102可被刚性附加在加热器和喷头之间。加热器110应具有至少一个像上面第7部分中描述的喷头支撑件100上的气孔 104那样的气孔104。同样地,如在第7部分中描述的那样,气体导管106可被刚性附加在真空室顶壁18和加热器110之间,使二者共同承受加热器和喷头的重量,并且从进气孔观通过加热器的气孔104,气室101,然后通过喷头气体排出孔30传送工艺气体进入内室。气体导管106,加热器110,和垫片102可从室顶壁18向喷头传导RF电能如果它们都是由导电材料组成。因为每个这些构件可被刚性连接,每个上述连接点可被容易地实现以致形成良好的RF电导。垫片102可如上述第7部分中那样作业从而与加热器110和喷头22 —起为气室 101形成充分的气封包围。如同样在第7部分中描述的那样,对加热器和喷头重量的额外的支撑可由在加热器和顶壁18之间附加如前述第2-6部分中描述的任何柔性或滑动悬挂装置提供。可选择地,在如本专利说明书开头标题为“相关申请参照”部分中确定的,本申请要求优先权的两个在先申请中描述的任何柔性悬挂装置的设计,可附加在加热器110和顶壁18之间。在图23所示的优选实施例中,上述支撑是由四根分别连接矩形加热器110和顶壁18四角的柔性线来提供的。可选择地,图23所示的悬挂线86可用前面第2_4部分中描述的一种悬挂装置代替,其中支撑喷头的构件(支架M或吊钩70或80),与室壁18联合密封圈起进气支管气室沈。在此情况下,不需要另外的密封的气体导管106。这种选择在希望提供许多在加热器上空间分布的气孔104以在气室101中实现工艺气体的预期的空间分布和混合时是特别有用的。一般地说,在前面第2-6部分或在上述在先申请中描述的柔性或滑动悬挂装置的任何设计中,其中描述的喷头22可被在这第8部分中描述的包含加热器110,垫片102,和喷头22的全套装置代替。在前面的设计中柔性或滑动悬挂装置构件或吊钩连接到喷头上的位置,上述悬挂装置构件或吊钩可代替地连接到第8部分描述的组合中的加热器110,垫片102,或喷头22上。
权利要求
1.用于支撑喷头的装置,包括具有至少一个进气孔的一进气支管顶壁; 具有一个或多个气孔的喷头;包括一个或多个吊钩的第一吊钩层,其中每个吊钩包括一上部和一下部,并且每个吊钩的上部连接在所述进气支管顶壁上;以及多个滑动接头,其中每个滑动接头包括可在一狭槽中滑动的一销钉; 其中,所述第一吊钩层的每个吊钩的下部由至少一个滑动接头连接在所述喷头上,以便所述第一吊钩层的每个吊钩与喷头之间能相对滑动,并使所述第一吊钩层的吊钩支撑所述喷头。
2.根据权利要求1所述的装置,其特征在于,每个滑动接头的销钉连接在其中一个吊钩的下部上,并从该下部向下延伸;并且每个滑动接头的狭槽形成在所述喷头中。
3.根据权利要求2所述的装置,其特征在于,每个销钉包括一挂耳,所述挂耳的宽度比其在里面滑动的所述狭槽的横向宽度要宽;并且所述喷头安置在所述销钉的挂耳上。
4.根据权利要求1所述的装置,其特征在于,每个滑动接头的销钉连接在所述喷头上,并从该喷头向上延伸;并且每个滑动接头的狭槽形成在其中一个吊钩的下部中。
5.根据权利要求4所述的装置,其特征在于,每个狭槽由位于其中形成有所述狭槽的吊钩的下部中的狭槽侧壁所限定;每个销钉包括一挂耳,所述挂耳的宽度比其在里面滑动的所述狭槽的横向宽度要宽;并且每个销钉的挂耳安置在其在里面滑动的所述狭槽的侧壁上。
6.根据权利要求1所述的装置,其特征在于,所述滑动接头在所述喷头的外周附近的分布位置上连接在该喷头上。
7.根据权利要求1所述的装置,其特征在于,所述喷头具有一纵轴;并且,每个狭槽具有垂直于所述喷头的纵轴取向的最长尺寸。
8.根据权利要求1所述的装置,其特征在于,所述第一吊钩层的每个吊钩的上部直接连接在所述进气支管顶壁上。
9.根据权利要求1所述的装置,其特征在于,所述第一吊钩层的每个吊钩的上部可滑动地连接在所述进气支管顶壁上。
10.根据权利要求1所述的装置,其特征在于,所述第一吊钩层的每个吊钩的上部由一个或多个滑动接头连接在进气支管顶壁上,所述滑动接头允许所述第一吊钩层的每个吊钩与所述进气支管顶壁之间相对运动。
11.根据权利要求1所述的装置,其特征在于,还包括第二吊钩层,所述第二吊钩层包括一个或多个吊钩,其中所述第二吊钩层的每个吊钩连接在所述第一吊钩层的其中一个吊钩上,并位于该第一吊钩层的其中一个吊钩与所述进气支管顶壁之间;所述第二吊钩层的每个吊钩包括一上部和一下部;所述第二吊钩层的每个吊钩的上部连接在所述进气支管顶壁上;并且,所述第二吊钩层的每个吊钩的下部由至少一个滑动接头连接在所述第一吊钩层的其中一个对应的吊钩的上部上,以便允许所述第二吊钩层的每个吊钩与所述第一吊钩层的相对应的吊钩之间相对滑动,从而使所述第二吊钩层的吊钩支撑所述第一吊钩层的吊钩。
12.用于支撑喷头的装置,包括具有至少一个进气孔的一进气支管顶壁; 具有一个或多个气孔的喷头;包括一个或多个吊钩的第一吊钩层,其中,每个吊钩包括一上部和一下部,并且,每个吊钩的下部连接在所述喷头上;以及多个滑动接头,其中每个滑动接头包含可在一狭槽中滑动的一销钉; 其中,所述第一吊钩层的每个吊钩的上部由至少一个滑动接头连接在所述进气支管顶壁上,以便允许所述第一吊钩层的每个吊钩与所述进气支管顶壁之间相对滑动,从而使所述进气支管顶壁支撑所述第一吊钩层的吊钩。
13.用于支撑喷头的装置,包括具有至少一个进气孔的进气支管顶壁; 具有一个或多个气孔的喷头;三根或更多根柔性线,其中每根线连接在所述进气支管顶壁与所述喷头之间,以便这些柔性线将所述喷头自所述进气支管顶壁悬挂。
14.根据权利要求13所述的装置,其特征在于,还包括连接在所述进气支管顶壁与所述喷头之间的一个或多个柔性板,这些板被定位成圈起在所述进气支管顶壁与所述喷头之间延伸的一容积,其中所述容积与至少一个进气孔和所述喷头的气孔流体连通。
15.根据权利要求14所述的装置,其特征在于,所述柔性线位于所述容积的外部。
16.根据权利要求14所述的装置,其特征在于,所述柔性线位于所述容积的内部。
17.根据权利要求13所述的装置,其特征在于,所述进气支管顶壁、所述柔性线和所述喷头均是导电的,并串联在一起,以便在所述进气支管顶壁与所述喷头之间形成导电连接。
18.用于支撑喷头的装置,包括具有至少一个进气孔的进气支管顶壁; 具有一个或多个气孔的喷头; 三根或多根杆;其中,每根杆具有连接在所述进气支管顶壁上的第一端和连接在所述喷头上的第二端,以便这些杆将所述喷头自所述进气支管顶壁悬挂;并且每根杆包括至少一个铰接接头。
19.根据权利要求18所述的装置,其特征在于,每根杆包括在所述第一端和第二端之间延伸的一中央部;并且每根杆的至少一个铰接接头定位在所述杆的第一端处、介于所述杆的中央部与所述进气支管顶壁之间。
20.根据权利要求18所述的装置,其特征在于,每根杆包括在所述第一端和第二端之间延伸的一中央部;并且每根杆的至少一个铰接接头定位在所述杆的第二端处、介于所述杆的中央部与所述喷头之间。
21.根据权利要求18所述的装置,其特征在于,还包括连接在所述进气支管顶壁与所述喷头之间的一个或多个柔性板,这些板被定位成圈起在所述进气支管顶壁与所述喷头之间延伸的一容积,其中所述容积与至少一个进气孔和所述喷头的气孔流体连通。
22.根据权利要求21所述的装置,其特征在于,所述柔性杆位于所述容积的外部。
23.根据权利要求21所述的装置,其特征在于,所述柔性杆位于所述容积的内部。
24.根据权利要求18所述的装置,其特征在于,所述进气支管顶壁、所述柔性杆和所述喷头均是导电的,并串联在一起,以便在所述进气支管顶壁与所述喷头之间形成导电连接。
25.用于支撑喷头的装置,包括 具有一个或多个排气孔的喷头; 具有至少一个气孔的支撑件;以及连接在所述支撑件与喷头之间的垫片,其中,所述垫片被定位成使所述垫片、支撑件和喷头共同圈起一容积,气体可通过该容积从所述支撑件的气孔流到所述喷头的排气孔;所述支撑件具有比所述喷头高的热膨胀系数。
26.根据权利要求25所述的装置,其特征在于,还包括 具有至少一个进气孔的进气支管顶壁;以及连接在所述进气支管的进气孔与所述支撑件的气孔之间的气体导管。
27.根据权利要求沈所述的装置,其特征在于,所述进气支管顶壁、气体导管、支撑件、 垫片和喷头均是导电的,并串联在一起,以便在所述进气支管顶壁与所述喷头之间形成导电连接。
28.根据权利要求25所述的装置,其特征在于,每个垫片的第二端于所述喷头的外周附近连接到该喷头上。
29.根据权利要求25所述的装置,其特征在于, 所述喷头是矩形的;并且所述垫片包括具有一开口中心的矩形框架。
30.根据权利要求25所述的装置,其特征在于, 所述喷头是具有四个侧面的矩形;并且所述垫片包括分别邻接所述喷头的四个相应侧面的四个垫片段。
31.用于支撑喷头的装置,包括 具有一个或多个排气孔的喷头; 具有至少一个气孔的加热器;以及连接在所述加热器与所述喷头之间的垫片,其中,所述垫片被定位成使所述垫片、加热器和喷头共同圈起一容积,气体可通过所述容积从所述加热器的气孔流到所述喷头的排气孔。
32.根据权利要求31所述的装置,其特征在于,还包括 具有至少一个进气孔的进气支管顶壁;以及连接在所述进气支管的进气孔与所述加热器的气孔之间的气体导管。
33.根据权利要求32所述的装置,其特征在于,所述进气支管顶壁、气体导管、加热器、 垫片和喷头均是导电的,并且串联在一起,以便在进气支管顶壁和喷头之间形成导电连接。
34.根据权利要求31所述的装置,其特征在于,每个垫片的第二端于所述喷头的外周附近连接到该喷头上。
35.根据权利要求31所述的装置,其特征在于所述喷头是矩形的;并且所述垫片包括具有一开口中心的矩形框架。
36.根据权利要求31所述的装置,其特征在于, 所述喷头是具有四个侧面的矩形;并且所述垫片包括分别邻接所述喷头的四个相应侧面的四个垫片段。
37.根据权利要求31所述的装置,其特征在于,所述加热器包括嵌入到本体中的电热元件。
38.根据权利要求31所述的装置,其特征在于,所述加热器包括具有一个或多个可泵送热流体的管道的本体。
39.用于支撑喷头的装置,包括喷头,具有顶表面、底表面和一个或多个在所述顶表面和底表面之间延伸的气体孔;以及气体导管,具有上端和下端,其中该气体导管提供从该气体导管的上端至该气体导管的下端的气体流动路径;其中该气体导管的下端间隔设置在该喷头的顶表面的上方,以及其中该气体导管的下端连接至该喷头以支撑该喷头的至少一部分重量并且提供从该气体导管的气体出口至该喷头的气体孔之间的气体流动路径。
40.如权利要求39所述的装置,还包括 真空室顶壁;其中该气体导管的下端连接至顶壁以使得该气体导管自该顶壁悬挂该喷头。
41.如权利要求39所述的装置,还包括 具有进气支管顶壁的真空室;其中该喷头设置在该真空室中;以及其中该气体导管的下端连接至顶壁以使得该气体导管自该顶壁悬挂该喷头。
42.如权利要求39所述的装置,其特征在于, 具有至少一个气体通道的支撑件;其中该支撑件连接在该气体导管与该喷头之间以在气体导管与喷头的所述一个或多个气体孔之间形成气室;其中该支撑件通过支撑件至少一个气体通道附着于从该气体导管至该喷头的气体孔的气体流动通道。
43.如权利要求42所述的装置,其特征在于,该支撑件连接在该气体导管与该喷头之间以使得该气体导管通过该支撑件支撑该喷头的至少一部分重量。
44.如权利要求42所述的装置,其特征在于,该气体导管连接至该支撑件的一面朝上的表面的中央。
45.如权利要求42所述的装置,还包括 具有进气支管顶壁的真空室;其中该喷头设置在该真空室中;以及其中该气体导管的下端连接至顶壁以使得该气体导管自该顶壁悬挂该喷头。
46.用于支撑喷头的装置,包括喷头,具有顶表面、底表面和一个或多个在所述顶表面和底表面之间延伸的气体孔; 进气支管顶壁,具有进气孔;气体导管,具有连接至该进气支管顶壁上端和在该进气支管顶壁下方延伸的下端;以及喷头支撑件,具有连接至该气体导管的下端的中央部分和连接至该喷头的外周部分, 以使得该气体导管通过该支撑件支撑该喷头的至少一部分重量,其中该喷头支撑件具有热膨胀系数以使得该喷头支撑件根据温度变化以与该喷头大致相同的量膨胀和收缩; 其中该气体导管的下端包括气体排出孔,气体排出孔设置在该喷头上方; 其中该气体导管提供气体流动路径从该进气支管顶壁的进气孔,经过该气体导管的气体排出孔,经过该喷头的顶表面上方的空间,至该喷头的气体孔;以及其中该进气支管顶壁、该气体导管、该喷头支撑件和该喷头电连接以从该进气支管顶壁传导RF电能至该喷头。
47.如权利要求46所述的装置,其特征在于,该气体导管连接至该支撑件的一面朝上的表面的中央。
48.如权利要求46所述的装置,其特征在于, 该进气支管顶壁是一等离子室的壁;以及该喷头支撑件和该喷头是在该等离子室之内。
全文摘要
用于适应喷头热膨胀的装置。在本发明的第一种情况中,喷头通过在支架上设置一个喷头边缘被可移动地支撑。第二种情况中,喷头通过许多用狭槽中滑动的销钉附着于喷头、室壁或二者之上的吊钩悬挂于室壁,以允许吊钩径向滑动来适应喷头的径向热膨胀。第三种情况中,喷头通过许多杆或柔性线悬挂在真空室的壁上。第四种情况中,喷头于其外周附近固定到一具有较喷头大的热膨胀系数的第二材料上。第五种情况中,喷头后安装一加热器以减少喷头的顶表面和底表面之间的温差或者减少从工件到喷头的热传递。
文档编号H01L21/205GK102212798SQ201110128778
公开日2011年10月12日 申请日期2005年2月24日 优先权日2004年2月24日
发明者J·M·怀特, W·N·斯特林 申请人:应用材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1