一种离子电池的制作方法

文档序号:7049523阅读:163来源:国知局
一种离子电池的制作方法
【专利摘要】本发明提供了一种离子电池,包括正极、负极、隔膜和电解液,其特征在于,所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种;所述负极的活性材料为锌;所述电解液的溶质包括锌盐和碱金属盐。本发明提供的离子电池负极的活性材料为锌,使离子电池的电压比和容量较高;本发明提供的离子电池以立方结构类普鲁士蓝化合物作为正极的活性材料,有利于电解液中碱金属离子的嵌入和脱出;使本发明提供的离子电池具有较高的工作电压。实验结果表明,本发明提供的离子电池的工作电压为1.6V~1.7V。
【专利说明】一种离子电池
【技术领域】
[0001 ] 本发明涉及电池【技术领域】,尤其涉及一种离子电池。
【背景技术】
[0002]离子电池通常为锂离子电池,以炭材料为负极,以含锂的化合物为正极,在电池的充放电过程中,没有金属锂存在,只有锂离子。当对锂离子电池进行充电时,锂离子电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极;负极中的炭材料呈层状结构,具有微孔,达到负极的锂离子就嵌入到炭材料的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对锂离子电池进行放电时,嵌在负极炭材料中的锂离子脱出,又运动回正极,回到正极的锂离子越多,放电容量越高。
[0003]申请号为201010546144.9的中国专利公开了一种锂离子电池,所述锂离子电池的组成包括正极、负极、隔膜层和电解液,正极由金属电极及金属电极上的正极材料组成,负极由金属电极及金属电极上的负极材料组成,正极材料包括钴酸锂、导电碳材料、聚偏二氟乙烯、聚六氟丙烯、邻苯二甲酸二丁酯;负极材料包括钛酸锂、导电碳材料、聚偏二氟乙烯、聚六氟丙烯、邻苯二甲酸二丁酯;电解液由碳酸乙烯酯、二甲基碳酸酯、乙基甲基碳酸酯组成。现有技术提供的这种离子电池内部不易发生短路,电池的安全性能较好,但是这种离子电池的成本较高。
[0004]钠离子电池原料的成本较低,开发钠离子电池比锂离子电池具有更大的经济优势。现有技术提供的水系钠离子电池主要有NaTi2(P04)3/Naa44Mn02类型的(Z.Li,D.Young, K.Xiang, ff.C.Caeter, Y.M.Chiang, Adv.Energy.Mater.2013, 3, 290-294)、ACZNath44MnO2 类型的(J.F.Whitacre, A.Tevar, S.Sharma, Electrochem.Commun.2010,12,463-466)、NaTi2 (PO4) 3/Na2NiFe (CN) 6类型的(X.Y.ffu, Y.L.Cao, X.P.Ai, J.F.Qian, Η.X.Yang, Electrochem.Commun.2013, 31, 145-148)、NaTi2 (PO4) 3/Na2CuFe (CN) 6 类型的(X.Y.ffu, Μ.Y.Sun, Y.F.Shen, J.F.Qian, Y.L.Cao, X.P.Ai, Η.X.Yang, ChemSusChem, 2014,7,407-411)、NaTi2 (PO4) 3/K0.27Mn02 类型的(Y.Liu, Y.Qiao, ff.X.Zhang, H.H.Xu, Z.Li, Y.Shen, L.X.Yuan, X.L.Hu, X.Dai, Y.H.Huang, Nano Energy2014, 5,97-104)、NaMn2 (CN) JNa2CuFe(CN)6 类型的(M.Pasta, C.D.ffessells, N.Liu, J.Nelson, Μ.T.McDowell, R.A.Huggins, M.F.Toney, Y.Cui, Nat.Commun.2014,5,3007)以及 PPy/KCuFe (CN)6 类型的(M.Pasta, C.D.ffessells, R.A.Huggins, Y.Cu1.Nat.Commun.2012, 3, 1149)。现有技术提供的这些钠离子电池虽然具有成本低的优势,但这些钠离子电池的工作电压在0.9V?1.4V的范围内,工作电压较低。

【发明内容】

[0005]有鉴于此,本发明的目的在于提供一种离子电池,本发明提供的离子电池具有较高的工作电压。
[0006]本发明提供了一种离子电池,包括正极、负极、隔膜和电解液,其特征在于,[0007]所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种;
[0008]所述负极的活性材料为锌;
[0009]所述电解液的溶质包括锌盐和碱金属盐。
[0010]优选的,所述立方结构类普鲁士蓝化合物中的过渡金属离子包括Ni2+、Zn2+、Cu2+、Co2+、Cd2+或 Pb2+。
[0011]优选的,所述电解液的溶质中锌盐与碱金属盐的摩尔比为(I?10): (10?I)。
[0012]优选的,所述碱金属盐包括钾盐或钠盐。
[0013]优选的,所述电解液的摩尔浓度为0.lmol/L?10mol/L。
[0014]优选的,所述立方结构类普鲁士蓝化合物的制备方法为:
[0015]将过渡金属盐和氰化盐在水中反应,得到立方结构类普鲁士蓝化合物;所述氰化盐包括亚铁氰化盐或铁氰化盐。
[0016]优选的,所述过渡金属盐和氰化盐的摩尔比为(I?3):1。
[0017]优选的,所述立方结构类普鲁士蓝化合物的制备方法为:
[0018]将过渡金属盐水溶液和氰化盐水溶液反应,得到立方结构类普鲁士蓝化合物。
[0019]优选的,所述过渡金属盐水溶液的摩尔浓度为0.005mol/L?10mol/L ;所述氰化盐水溶液的摩尔浓度为0.005mol/L?5mol/L。
[0020]优选的,所述氰化盐包括亚铁氰化钾、亚铁氰化钠、铁氰化钾或铁氰化钠。
[0021]本发明提供了一种离子电池,包括正极、负极、隔膜和电解液,其特征在于,所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种;所述负极的活性材料为锌;所述电解液的溶质包括锌盐和碱金属盐。本发明提供的离子电池负极的活性材料为锌,使离子电池的电压比和容量较高;本发明提供的离子电池以立方结构类普鲁士蓝化合物作为正极的活性材料,有利于电解液中碱金属离子的嵌入和脱出;使本发明提供的离子电池具有较高的工作电压。实验结果表明,本发明提供的离子电池的工作电压为1.6V?1.7V。
【专利附图】

【附图说明】
[0022]图1为本发明实施例1制备得到的类普鲁士蓝化合物的XRD图;
[0023]图2为本发明实施例1得到的离子电池的充放电性能曲线;
[0024]图3为本发明实施例2得到的离子电池的充放电性能曲线。
【具体实施方式】
[0025]本发明提供了一种离子电池,包括正极、负极、隔膜和电解液,其特征在于,
[0026]所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种;
[0027]所述负极的活性材料为锌;
[0028]所述电解液的溶质包括锌盐和碱金属盐。
[0029]本发明提供的离子电池负极的活性材料为锌,使离子电池的电压比和容量较高;本发明提供的离子电池以立方结构类普鲁士蓝化合物作为正极的活性材料,有利于电解液中碱金属离子的嵌入和脱出;使本发明提供的离子电池具有较高的工作电压。
[0030]本发明提供的离子电池包括正极,所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种,优选为立方结构类普鲁士蓝化合物中的一种。在本发明中,所述立方结构类普鲁士蓝化合物中的过渡金属离子优选包括Ni2+、Zn2+、CU2+、Co2+、Cd2+或Pb2+,更优选包括Ni2+、Zn2+或Cu2+,最优选包括Ni2+或Cu2+。在本发明中,所述立方结构类普鲁士蓝化合物的制备方法优选为:
[0031]将过渡金属盐和氰化盐在水中反应,得到立方结构类普鲁士蓝化合物;所述氰化盐包括亚铁氰化盐或铁氰化盐。
[0032]本发明优选将过渡金属盐水溶液和氰化盐水溶液反应,得到立方结构类普鲁士蓝化合物;更优选将过渡金属盐水溶液加入到氰化盐水溶液中反应,得到立方结构类普鲁士蓝化合物。在本发明中,所述过渡金属盐水溶液的摩尔浓度优选为0.005mol/L?IOmol/L,更优选为0.0lmol/L?8mol/L,最优选为0.05mol/L?5mol/L,最最优选为0.lmol/L?2mol/L。在本发明中,所述氰化盐水溶液的摩尔浓度优选为0.005mol/L?5mol/L,更优选为 0.008mol/L ?4mol/L,最优选为 0.0lmol/L ?3mol/L,最最优选为 0.05mol/L ?2mol/L0
[0033]在本发明中,所述反应的方法优选为陈化处理。在本发明中,所述反应的时间优选为2小时?24小时,更优选为5小时?18小时,最优选为8小时?14小时,最最优选为10小时?12小时。在本发明中,所述反应的温度优选为20°C?30°C,更优选为24°C?28°C,最优选为25°C?26 °C。
[0034]在本发明中,所述过渡金属盐中的金属离子优选包括Ni2+、Zn2+、Cu2+、Co2+、Cd2+或Pb2+,更优选包括Ni2+、Zn2+或Cu2+,最优选包括Ni2+或Cu2+。在本发明中,所述过渡金属盐中的阴离子优选包括SO42' NO3-或Cl—,更优选包括SO42'本发明对所述过渡金属盐的来源没有特殊的限制,采用本领域技术人员熟知的上述种类的过渡金属盐即可,可由市场购买获得。
[0035]在本发明中,所述氰化盐包括亚铁氰化盐或铁氰化盐,优选包括亚铁氰化钾、亚铁氰化钠、铁氰化钾或铁氰化钠,更优选包括亚铁氰化钠或铁氰化钾。本发明对所述氰化盐的来源没有特殊的限制,采用本领域技术人员熟知的上述种类的氰化盐即可,可由市场购买获得。
[0036]在本发明中,所述过渡金属盐和氰化盐的摩尔比优选为(I?3):1,更优选为(I?
2):1,最优选为2:1。
[0037]所述过渡金属盐和氰化盐在水中反应完成后,本发明优选将得到的反应产物进行洗涤、干燥,得到立方结构类普鲁士蓝化合物。本发明对所述洗涤、干燥的方法没有特殊的限制,采用本领域技术人员熟知的洗涤、干燥的技术方案即可。
[0038]本发明对所述正极的制备方法没有特殊的限制,采用本领域技术人员熟知的离子电池正极制备技术方案即可。在本发明中,所述正极的制备方法优选为:
[0039]将上述技术方案制备得到的立方结构类普鲁士蓝化合物、离子电池导电剂和离子电池粘结剂混合,将得到的混合物涂覆在金属箔片上,得到正极。
[0040]本发明对所述混合的方法没有特殊的限制,采用本领域技术人员熟知的混合技术方案即可。本发明对所述涂覆的方法没有特殊的限制,采用本领域技术人员熟知的涂覆技术方案即可。
[0041]本发明对所述离子电池导电剂的种类和来源没有特殊的限制,采用本领域技术人员熟知的离子电池导电剂即可,可由市场购买获得。在本发明中,所述离子电池导电剂优选为碳黑、石墨或乙炔黑,更优选为乙炔黑。
[0042]本发明对所述离子电池粘结剂的种类和来源没有特殊的限制,采用本领域技术人员熟知的离子电池粘结剂即可,可由市场购买获得。在本发明中,所述离子电池粘结剂优选为聚乙烯醇、聚四氟乙烯或羧甲基纤维素钠,更优选为聚四氟乙烯。在本发明中,所述立方结构类普鲁士蓝化合物、离子电池导电剂和离子电池粘结剂的质量比优选为(5?9): (I?3): (0.5 ?1.5),更优选为(6 ?8): (1.5 ?2.5): (0.8 ?1.2),最优选为 7:2:1。
[0043]本发明对所述金属箔片的种类、形状和来源没有特殊的限制,采用本领域技术人员熟知的离子电池正极用金属箔片及形状即可,可由市场购买获得。在本发明中,所述金属箔片优选为铜箔、铝箔或不锈钢箔,更优选为不锈钢箔。
[0044]将所述立方结构类普鲁士蓝化合物、离子电池导电剂和离子电池粘结剂混合物涂覆在金属箔片上后,本发明优选将所述金属箔片进行干燥,得到正极。本发明对干燥所述正极金属箔片的方法没有特殊的限制,采用本领域技术人员熟知的干燥技术方案即可。在本发明中,所述正极金属箔片的干燥方法优选为真空烘干。
[0045]本发明提供的离子电池包括负极,所述负极的活性材料为锌。本发明对所述锌的形态没有特殊的限制,在本发明的实施例中,所述锌既可以为锌粉也可以为锌片。在本发明中,当所述锌为锌片时,本发明可将锌片直接作为负极。在本发明中,当所述锌为锌粉时,所述负极的制备方法优选为:
[0046]将锌粉、离子电池导电剂和离子电池粘结剂混合,将得到的混合物涂覆在金属箔片上,得到负极。
[0047]在本发明中,所述锌粉、离子电池导电剂和离子电池粘结剂的质量比优选为(5?9): (I ?3): (0.5 ?1.5),更优选为(6 ?8): (1.5 ?2.5): (0.8 ?1.2),最优选为 7:2:1。在本发明中,所述离子电池导电剂、离子电池粘结剂和金属箔片种类和来源与上述技术方案所述离子电池导电剂、离子电池粘结剂和金属箔片种类和来源一致,在此不再赘述。
[0048]将所述锌粉、离子电池导电剂和离子电池粘结剂混合物涂覆在金属箔片上后,本发明优选将所述金属箔片进行干燥,得到负极。本发明对干燥所述负极金属箔片的方法没有特殊的限制,采用本领域技术人员熟知的干燥技术方案即可。在本发明中,所述负极金属箔片的干燥方法优选为真空烘干。
[0049]本发明提供的离子电池,包括隔膜。本发明对所述隔膜的种类和来源没有特殊的限制,采用本领域技术人员熟知的离子电池隔膜即可,可由市场购买获得。在本发明的实施例中,所述隔膜可以为聚烯烃多孔膜。
[0050]本发明提供的离子电池,包括电解液,所述电解液的溶质包括锌盐和碱金属盐。在本发明中,所述锌盐和碱金属盐的质量比优选为(I?10): (10?I),更优选为1: (0.5?5),最优选为1: (I?4.5),最最优选为1:4。
[0051 ] 在本发明中,所述锌盐优选包括硫酸锌、醋酸锌、高氯酸锌和氯化锌中的一种或几种,更优选包括硫酸锌和氯化锌中的一种或两种,最优选包括硫酸锌。在本发明中,所述碱金属盐优选包括钾盐或钠盐。在本发明中,所述钾盐优选包括硫酸钾、醋酸钾、高氯酸钾和氯化钾中的一种或几种,更优选包括硫酸钾和氯化钾中的一种或两种,最优选包括硫酸钾。在本发明中,所述钠盐优选包括硫酸钠、氯化钠、醋酸钠、高氯酸钠和双氟磺酰亚胺钠中的一种或几种,更优选包括硫酸钠和氯化钠中的一种或两种,最优选包括硫酸钠。本发明对所述锌盐和碱金属盐的来源没有特殊的限制,采用本领域技术人员熟知的上述种类的锌盐和碱金属盐即可,可由市场购买获得。
[0052]在本发明中,所述电解液的溶剂优选包括水或有机溶剂,更优选包括水。在本发明中,所述有机溶剂优选包括乙醚、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲基酯、碳酸二乙基酯、乙二醇二甲醚、碳酸甲乙基酯和四氢呋喃中的一种或几种,更优选包括乙醚、碳酸乙烯酯、碳酸二甲基酯、乙二醇二甲醚和四氢呋喃中的一种或几种,最优选包括乙醚、碳酸乙烯酯和四氢呋喃中的一种或几种。本发明对所述有机溶剂的来源没有特殊的限制,采用本领域技术人员熟知的上述种类的有机溶剂即可,可由市场购买获得。
[0053]在本发明中,所述电解液的摩尔浓度优选为0.lmol/L?10mol/L,更优选为
0.3mol/L ?8mol/L,最优选为 0.4mol/L ?6mol/L,最最优选为 0.5mol/L ?4mol/L。
[0054]在本发明中,上述技术方案所述离子电池的制备方法优选为:
[0055]将正极、负极、隔膜和电解液进行组装,得到离子电池。
[0056]本发明对所述组装的方法没有特殊的限制,采用本领域技术人员熟知的离子电池的组装技术方案即可。在本发明中,所述正极、负极、隔膜和电解液的种类和来源与上述技术方案所述正极、负极、隔膜和电解液的种类和来源一致,在此不再赘述。
[0057]将本发明提供的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果为本发明提供的离子电池的库伦效率较高,工作电压为1.6V?1.7V。
[0058]本发明提供了一种离子电池,包括正极、负极、隔膜和电解液,所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种;所述负极的活性材料为锌;所述电解液的溶质包括锌盐和碱金属盐。本发明提供的离子电池负极的活性材料为锌,使离子电池的电压比和容量较高;本发明提供的离子电池以立方结构类普鲁士蓝化合物作为正极的活性材料,有利于电解液中碱金属离子的嵌入和脱出;使本发明提供的离子电池具有较高的工作电压。
[0059]为了进一步了解本发明,下面结合实施例对本发明提供的离子电池进行详细描述,但不能将它们理解为对本发明保护范围的限定。
[0060]本发明以下实施例所用到的原料均为市售商品。
[0061]实施例1
[0062]称取1.54g的硫酸镍和1.52g的亚铁氰化钠;将所述硫酸镍配制成摩尔浓度为
0.lmol/L的硫酸镍水溶液,将所述亚铁氰化钠配制成摩尔浓度为0.05mol/L的亚铁氰化钠水溶液;将所述硫酸镍水溶液添加至亚铁氰化钠水溶液中,陈化处理10h,将得到的产物洗涤、干燥,得到类普鲁士蓝化合物。
[0063]将7g上述制备得到的类普鲁士蓝化合物、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到正极片。
[0064]将7g的锌粉、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆在不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到负极片。
[0065]按照Zn2+与Na+摩尔比I:5称取1.61g的ZnSO4与0.14g的Na2SO4溶于水中,得到摩尔浓度为6mol/L的电解液。
[0066]将聚烯烃多孔膜、上述制备得到的正极片、负极片和电解液进行组装,得到离子电池。
[0067]通过电感耦合等离子体发射光谱仪对上述制备得到的类普鲁士蓝化合物进行成分分析,分析结果为本发明实施例1制备得到的类普鲁士蓝化合物的化学式为Na1.^i1.45Fe (CN)6 ;通过X射线衍射仪对本发明实施例1制备得到的类普鲁士蓝化合物进行结构测试,测试结果如图1所示,图1为本发明实施例1制备得到的类普鲁士蓝化合物的XRD图,由图1可知本发明实施例1制备得到的类普鲁士蓝化合物具有面心立方结构。
[0068]将本发明实施例1制备得到的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果如图2所示,图2为本发明实施例1得到的离子电池的充放电性能曲线,图2中a为全电池充放电性能曲线,b为正极充放电性能曲线,c为负极充放电性能曲线。由图2可知,本发明实施例1得到的离子电池具有较高的库伦效率,其工作电压为1.6V。
[0069]实施例2
[0070]称取1.60g的硫酸铜和1.65g的铁氰化钾;将所述硫酸铜配制成摩尔浓度为
0.lmol/L的硫酸铜水溶液,将所述铁氰化钾配制成摩尔浓度为0.05mol/L的铁氰化钾水溶液;将所述硫酸铜水溶液添加至铁氰化钾水溶液中,陈化处理10h,将得到的产物洗涤、干燥,得到类普鲁士蓝化合物。
[0071]将7g上述 制备得到的类普鲁士蓝化合物、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到正极片。
[0072]将7g的锌粉、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆在不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到负极片。
[0073]按照Zn2+与K.摩尔比2:1称取1.61g的ZnSO4与0.44g的K2SO4溶于水中,得到摩尔浓度为0.5mol/L的电解液。
[0074]将聚烯烃多孔膜、上述制备得到的正极片、负极片和电解液进行组装,得到离子电池。
[0075]通过电感耦合等离子体发射光谱仪对上述制备得到的类普鲁士蓝化合物进行成分分析,分析结果为本发明实施例2制备得到的类普鲁士蓝化合物的化学式为Ka Auh45Fe(CN)6,通过X射线衍射仪对本发明实施例2制备得到的类普鲁士蓝化合物进行结构测试,测试结果为本发明实施例2制备得到的类普鲁士蓝化合物具有面心立方结构。
[0076]将本发明实施例2制备得到的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果如图3所示,图3为本发明实施例2得到的离子电池的充放电性能曲线,图3中a为全电池充放电性能曲线,b为正极充放电性能曲线,c为负极充放电性能曲线。由图3可知,本发明实施例2得到的离子电池具有较高的库伦效率,其工作电压为1.7V。
[0077]实施例3
[0078]称取0.Sg的硫酸锌和1.4g的铁氰化钠;将所述硫酸锌配制成摩尔浓度为
0.005mol/L的硫酸锌水溶液,将所述铁氰化钠配制成摩尔浓度为0.005mol/L的铁氰化钠水溶液;将所述硫酸锌水溶液添加至铁氰化钠水溶液中,陈化处理2h,将得到的产物洗涤、干燥,得到类普鲁士蓝化合物。
[0079]将7g上述制备得到的类普鲁士蓝化合物、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到正极片。
[0080]将7g的锌粉、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆在不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到负极片。
[0081]按照Zn2+与K+摩尔比1:10称取1.61g的ZnSO4与8.71g的K2SO4溶于乙醚中,得到摩尔浓度为0.lmol/L的电解液。
[0082]将聚烯烃多孔膜、上述制备得到的正极片、负极片和电解液进行组装,得到离子电池。
[0083]通过电感耦合等离子体发射光谱仪对上述制备得到的类普鲁士蓝化合物进行成分分析,分析结果为本发明实施例3制备得到的类普鲁士蓝化合物的化学式为Na0.^nh45Fe (CN) 6,通过X射线衍射仪对本发明实施例3制备得到的类普鲁士蓝化合物进行结构测试,测试结果为本发明实施例3制备得到的类普鲁士蓝化合物具有面心立方结构。
[0084]将本发明实施例3制备得到的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果为本发明实施例3得到的离子电池具有较高的库伦效率,其工作电压为1.7V。
[0085]实施例4 [0086]称取1.54g的硫酸钴和1.84g的亚铁氰化钾;将所述硫酸钴配制成摩尔浓度为10mol/L的硫酸钴水溶液,将所述亚铁氰化钾配制成摩尔浓度为5mol/L的亚铁氰化钾水溶液;将所述硫酸钴水溶液添加至亚铁氰化钾水溶液中,陈化处理24h,将得到的产物洗涤、干燥,得到类普鲁士蓝化合物。
[0087]将7g上述制备得到的类普鲁士蓝化合物、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到正极片。
[0088]将7g的锌粉、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆在不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到负极片。
[0089]按照Zn2+与K.摩尔比10:1称取1.61g的ZnSO4与0.087g的K2SO4溶于碳酸乙烯酯中,得到摩尔浓度为lmol/L的电解液。
[0090]将聚烯烃多孔膜、上述制备得到的正极片、负极片和电解液进行组装,得到离子电池。
[0091]通过电感耦合等离子体发射光谱仪对上述制备得到的类普鲁士蓝化合物进行成分分析,分析结果为本发明实施例4制备得到的类普鲁士蓝化合物的化学式为K1.Ao1.45Fe (CN) 6,通过X射线衍射仪对本发明实施例4制备得到的类普鲁士蓝化合物进行结构测试,测试结果为本发明实施例4制备得到的类普鲁士蓝化合物具有面心立方结构。
[0092]将本发明实施例4制备得到的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果为本发明实施例4得到的离子电池具有较高的库伦效率,其工作电压为1.7V。
[0093]实施例5
[0094]称取3.03g的硫酸铅和1.4g的铁氰化钠;将所述硫酸铅配制成摩尔浓度为2mol/L的硫酸铅水溶液,将铁氰化钠配制成摩尔浓度为0.08mol/L的铁氰化钠水溶液;将所述硫酸铅水溶液添加至铁氰化钠水溶液中,陈化处理16h,将得到的产物洗涤、干燥,得到类普鲁士蓝化合物。
[0095]将7g上述制备得到的类普鲁士蓝化合物、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到正极片。
[0096]将7g的锌粉、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆在不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到负极片。
[0097]将3.48g的K2SO4与1.61g的ZnSO4溶于四氢呋喃中,得到摩尔浓度为0.4mol/L的电解液。
[0098]将聚烯烃多孔膜、上述制备得到的正极片、负极片和电解液进行组装,得到离子电池。
[0099]通过电感耦合等离子体发射光谱仪对上述制备得到的类普鲁士蓝化合物进行成分分析,分析结果为本发明实施例5制备得到的类普鲁士蓝化合物的化学式为Na1.^b1.45Fe (CN) 6,通过X射线衍射仪对本发明实施例5制备得到的类普鲁士蓝化合物进行结构测试,测试结果为本发明实施例5制备得到的类普鲁士蓝化合物具有面心立方结构。 [0100]将本发明实施例5制备得到的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果为本发明实施例5得到的离子电池具有较高的库伦效率,其工作电压为1.7V。
[0101]实施例6
[0102]称取2.0Sg的硫酸镉和1.4g的铁氰化钠;将所述硫酸镉配制成摩尔浓度为2mol/L的硫酸镉水溶液,将铁氰化钠配制成摩尔浓度为lmol/L的铁氰化钠水溶液;将所述硫酸镉水溶液添加至铁氰化钠水溶液中,陈化处理16h,将得到的产物洗涤、干燥,得到类普鲁士蓝化合物。
[0103]将7g上述制备得到的类普鲁士蓝化合物、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到正极片。
[0104]将7g的锌粉、2g的乙炔黑与Ig的聚四氟乙烯搅拌均匀后涂覆在不锈钢箔上,将所述不锈钢箔剪裁成边长为4cm的正方形,将所述不锈钢箔在真空中烘干,得到负极片。
[0105]将11.0g的NaClO4与2.64g的Zn (ClO4) 2溶于水中,得到摩尔浓度为IOmoI/L的电解液。
[0106]将聚烯烃多孔膜、上述制备得到的正极片、负极片和电解液进行组装,得到离子电池。
[0107]通过电感耦合等离子体发射光谱仪对上述制备得到的类普鲁士蓝化合物进行成分分析,分析结果为本发明实施例6制备得到的类普鲁士蓝化合物的化学式为Na0.Adh45Fe (CN) 6,通过X射线衍射仪对本发明实施例6制备得到的类普鲁士蓝化合物进行结构测试,测试结果为本发明实施例6制备得到的类普鲁士蓝化合物具有面心立方结构。
[0108]将本发明实施例6制备得到的离子电池在60mA/g的恒电流下进行充放电性能测试,测试结果为本发明实施例6得到的离子电池具有较高的库伦效率,其工作电压为1.6V。
[0109]由以上实施例可知,本发明提供了一种离子电池,包括正极、负极、隔膜和电解液,所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种;所述负极的活性材料为锌;所述电解液的溶质包括锌盐和碱金属盐。本发明提供的离子电池负极的活性材料为锌,使离子电池的电压比和容量较高;本发明提供的离子电池以立方结构类普鲁士蓝化合物作为正极的活性材料,有利于电解液中碱金属离子的嵌入和脱出;使本发明提供的离子电池具有较高的工作电压。
[0110]以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的上述说明,使本领域专技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。
【权利要求】
1.一种离子电池,包括正极、负极、隔膜和电解液,其特征在于, 所述正极的活性材料为立方结构类普鲁士蓝化合物中的一种或几种; 所述负极的活性材料为锌; 所述电解液的溶质包括锌盐和碱金属盐。
2.根据权利要求1所述的离子电池,其特征在于,所述立方结构类普鲁士蓝化合物中的过渡金属离子包括Ni2+、Zn2+、Cu2+、Co2+、Cd2+或Pb2+。
3.根据权利要求1所述的离子电池,其特征在于,所述电解液的溶质中锌盐与碱金属盐的摩尔比为(I?10): (10?I)。
4.根据权利要求1所述的离子电池,其特征在于,所述碱金属盐包括钾盐或钠盐。
5.根据权利要求1所述的离子电池,其特征在于,所述电解液的摩尔浓度为0.1mol/L ?10mol/Lo
6.根据权利要求1所述的离子电池,其特征在于,所述立方结构类普鲁士蓝化合物的制备方法为: 将过渡金属盐和氰化盐在水中反应,得到立方结构类普鲁士蓝化合物;所述氰化盐包括亚铁氰化盐或铁氰化盐。
7.根据权利要求6所述的离子电池,其特征在于,所述过渡金属盐和氰化盐的摩尔比为(I ?3):1。
8.根据权利要求6所述的离子电池,其特征在于,所述立方结构类普鲁士蓝化合物的制备方法为: 将过渡金属盐水溶液和氰化盐水溶液反应,得到立方结构类普鲁士蓝化合物。
9.根据权利要求8所述的离子电池,其特征在于,所述过渡金属盐水溶液的摩尔浓度为0.005mol/L?10mol/L ;所述氰化盐水溶液的摩尔浓度为0.005mol/L?5mol/L。
10.根据权利要求6所述的离子电池,其特征在于,所述氰化盐包括亚铁氰化钾、亚铁氰化钠、铁氰化钾或铁氰化钠。
【文档编号】H01M4/38GK103972479SQ201410229786
【公开日】2014年8月6日 申请日期:2014年5月27日 优先权日:2014年5月27日
【发明者】陈亮, 周旭峰, 刘兆平, 张乐园 申请人:中国科学院宁波材料技术与工程研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1