高效能钾掺杂碲化铅-硫化铅合金热电材料及其制备方法

文档序号:7049586阅读:332来源:国知局
高效能钾掺杂碲化铅-硫化铅合金热电材料及其制备方法
【专利摘要】本发明提供了高效能钾掺杂碲化铅-硫化铅合金热电材料及其制备方法,所述高效能钾掺杂碲化铅-硫化铅合金热电材料具有如下式所示的组成:KyPb1-yTe1-xSx,其中,0.1≤x≤0.9,0.005≤y≤0.05。本发明的高效能钾掺杂碲化铅-硫化铅合金热电材料具有较高的塞贝克系数和电导率、非常低的热导率,因而,在300K到923K温度范围内具有非常高的热电性能优值和能量转换效率,其中,当x=0.3,y=0.025时,在673K至923K的较宽的温度范围内,热电性能优值(ZT)值均大于2,在300K到900K的温度梯度中,平均热电性能优值1.56,对应的能量转换效率达到20.7%。
【专利说明】高效能钾掺杂碲化铅-硫化铅合金热电材料及其制备方法

【技术领域】
[0001] 本发明涉及热电材料领域,具体的涉及高效能钾掺杂碲化铅-硫化铅合金热电材 料及其制备方法。

【背景技术】
[0002] 化石能源是目前全球消耗的最主要能源,2006年全球消耗的能源中化石能源占比 高达87. 9%,我国的比例高达93. 8%。但随着人类的不断开采,化石能源的枯竭是不可避 免的,大部分化石能源本世纪将被开采殆尽。此外,这种一次性化石能源为主的开发利用 在给我们带来便利的同时也造成了极大的环境污染,使人类社会的可持续发展受到严峻挑 战。因此,如何应对一次性化石能源即将枯竭带来的能源危机以及化石能源大量使用所带 来的环境危机,已经成为一个世界性的核心课题,寻找新的清洁可再生能源材料已经成为 世界各国科研人员研究的热点。
[0003] 热电材料可以直接实现热能和电能相互转换,能有效地将工业和生活废热转化为 亟需的电能。同时,利用热电材料制作出来的热-电转换器件还具有以下优点:(1)体积小, 重量轻,无机械传动,坚固,且工作中无噪音;(2)温度控制可在±0. 1°C之内;(3)无液态或 气态介质,不必使用氯氟碳类物质,不会造成任何环境污染;(4)响应速度快,使用寿命长, 易于控制。因而,在环境污染和能源危机日益严重的今天,进行新型热电材料的研究与国民 生活以及国家可持续发展息息相关,具有很重要的现实意义。然而,热电材料经过几十年的 发展,其能量转换效率一直徘徊在10%左右。低的能量转换效率极大地制约着热电材料的 大规模商业化应用。
[0004] 因而,目前关于热电材料的研究仍有待改善。


【发明内容】

[0005] 本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的 一个目的在于提出一种具有高的平均热电性能优值和高能量转换效率的高效能钾掺杂碲 化铅-硫化铅合金热电材料。
[0006] 在本发明的一个方面,本发明提供了一种高效能钾掺杂碲化铅-硫化铅合金热电 材料(在本文中,"高效能钾掺杂碲化铅-硫化铅合金热电材料"与"钾掺杂碲化铅-硫化 铅合金"可以互换使用)。根据本发明的实施例,所述钾掺杂碲化铅-硫化铅合金具有如下 式所示的组成:1^13 1_;^1_!^,其中,0.1彡叉彡0.9,0.005彡7彡0.05。发明人发现,本发明 的钾掺杂碲化铅-硫化铅合金具有斯宾那多分解全尺度分层结构,可以非常有效地对各个 波段的声子进行散射,从而具有极低的热导率,同时,本发明的钾掺杂碲化铅-硫化铅合金 具有较高的塞贝克系数和电导率,进而具有非常高的热电性能优值(ZT)和能量转换效率, 是一种非常高效的热电材料。
[0007] 根据本发明的实施例,0.24彡X彡0· 36,0· 02彡y彡0.03。由此,钾掺杂碲 化铅-硫化铅合金的塞贝克系数和电导率较高,热导率非常低,在非常宽的温度范围内 (300K-923K)热电性能优值很大,具有极高的平均热电性能优值,进而能量转换效率极高, 因此是一种非常高效能的热电材料。
[0008] 根据本发明的实施例,X = 0. 3, y = 0. 025。由此,钾掺杂締化铅-硫化铅合金具 有非常高的热电性能优值和能量转换效率。
[0009] 在本发明的另一方面,本发明提供了一种制备前面所述钾掺杂碲化铅-硫化铅合 金的方法。根据本发明的实施例,该方法包括:将铅、碲、硫以及钾按照摩尔比为Ι-y :l-x : X :y的比例混合,以便获得原料混合物,其中,0. 1彡X彡0. 9,0. 005彡y彡0. 05 ;将所述原 料混合物进行封管处理,以便获得经过封管处理的原料混合物;将所述经过封管处理的原 料混合物进行熔炼,以便获得铸锭;将所述铸锭压碎后,进行球磨处理,以便获得微米级的 铸锭粉末;将所述铸锭粉末进行放电等离子烧结,以便获得所述钾掺杂碲化铅-硫化铅合 金。发明人发现,利用本发明的该方法,能够快速有效地制备获得前面所述的钾掺杂碲化 铅-硫化铅合金,且制备获得的钾掺杂碲化铅-硫化铅合金具有极低的热导率、较高的塞贝 克系数和电导率,进而具有非常高的热电性能优值和能量转换效率,是一种高效能的热电 材料。
[0010] 根据本发明的实施例,将铅、碲、硫以及钾按照摩尔比为l_y :l-x:X:y优选 0. 975 :0. 7 :0. 3 :0. 025 的比例混合,其中,0. 24 < X < 0. 36,0. 02 < y < 0. 03。由此,钾掺 杂碲化铅-硫化铅合金的塞贝克系数和电导率较高,热导率极低,进而热电性能优值较大, 能量转换效率较高。
[0011] 根据本发明的实施例,所述封管处理进一步包括:将所述原料混合物加入玻璃管 中;调节含有所述原料混合物的玻璃管中的压力为〇. 8X 10_4?1. 2X 10_4托优选IX 10_4 托;将经过压力调节的玻璃管密封,以便获得所述经过封管处理的原料混合物。由此,能够 有效防止原料混合物在后续熔炼步骤中氧化。
[0012] 根据本发明的实施例,所述玻璃管为碳涂层熔融石英管。
[0013] 根据本发明的实施例,以5K/min的升温速度,于1058?1588K优选1323K条件下, 将所述经过封管处理的原料混合物进行熔炼8?12小时优选10小时,然后炉冷至室温,以 便获得铸锭。由此,能够使得原料混合物在最适合的条件下进行熔炼,有利于提高制备获得 的钾掺杂碲化铅-硫化铅合金的热电性能优值和能量转换效率。
[0014] 根据本发明的实施例,将所述铸锭压碎至晶粒尺寸小于5mm3后,将所得到的颗粒 球磨至晶粒尺寸小于100 μ m3,以便获得铸锭粉末。由此,有利于后续放电等离子烧结步骤 的进行,从而有利于形成斯宾那多分解全尺度分层结构,进而能够有效降低制备获得的钾 掺杂碲化铅-硫化铅合金的热导率。
[0015] 根据本发明的实施例,于658?988K优选823K、轴向压力为48?72MPa优选 60MPa条件下,将所述铸锭粉末进行放电等离子烧结8?12分钟优选10分钟。由此,有利 于形成斯宾那多分解全尺度分层结构,从而降低制备获得的钾掺杂碲化铅-硫化铅合金的 热导率,进而提高钾掺杂碲化铅-硫化铅合金的热电性能优值和能量转换效率。

【专利附图】

【附图说明】
[0016] 图1显示了根据本发明的一个实施例,钾掺杂碲化铅-硫化铅合金材料的电导率 随温度变化规律;
[0017] 图2显示了根据本发明的一个实施例,钾掺杂碲化铅-硫化铅合金材料的塞贝克 系数随温度变化规律;
[0018] 图3显示了根据本发明的一个实施例,钾掺杂碲化铅-硫化铅合金材料的热导率 随温度变化规律;
[0019] 图4显示了根据本发明的一个实施例,钾掺杂碲化铅-硫化铅合金材料的热电性 能优值随温度变化规律;以及
[0020] 图5显示了根据本发明的一个实施例,钾掺杂碲化铅-硫化铅合金材料的微观结 构示意图。

【具体实施方式】
[0021] 下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发 明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文 献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均 为可以通过市购获得的常规产品。
[0022] 在本发明的一个方面,本发明提供了一种钾掺杂碲化铅-硫化铅合金。根据本发 明的实施例,所述钾掺杂締化铅-硫化铅合金具有如下式所示的组成:KyPlVyTehSx,其中, 0· 1 < X < 0· 9,0· 005 < y < 0· 05。发明人发现,本发明的钾掺杂碲化铅-硫化铅合金具 有斯宾那多分解全尺度分层结构,可以非常有效地对各个波段的声子进行散射,从而具有 极低的热导率。同时,通过向碲化铅-硫化铅合金中掺杂钾,以及调节硫在碲化铅中的固溶 度,能够影响締化铅-硫化铅合金材料的费米能级,调节费米能级和导带之间的能隙以及 整体能带结构,从而可以抑制双极扩散效应、调节载流子的浓度,进而使得本发明的钾掺杂 碲化铅-硫化铅合金具有较高的塞贝克系数和电导率,由此,本发明的钾掺杂碲化铅-硫化 铅合金具有非常高的热电性能优值(ZT)和能量转换效率,是一种非常高效的热电材料。
[0023] 根据本发明的一些实施例,0.24彡X彡0·36,0· 02彡y彡0.03。由此,钾掺杂碲 化铅-硫化铅合金的塞贝克系数和电导率较高,热导率较低,进而热电性能优值较大,能量 转换效率较高,是一种非常高效的热电材料。
[0024] 根据本发明的实施例,X = 0. 3, y = 0. 025。由此,钾掺杂締化铅-硫化铅合金具 有非常高的热电性能优值和能量转化效率。具体地,在300K至900K的温度范围内,平均热 电性能优值(ZT)值达到1. 56,从673K至923K的较宽的温度范围内,热电性能优值(ZT)值 均大于2,对应的能量转换效率达到20. 7%。
[0025] 在本发明的另一方面,本发明提供了一种制备前面所述钾掺杂碲化铅-硫化铅合 金的方法。根据本发明的实施例,该方法包括以下步骤:
[0026] 首先,将铅、碲、硫以及钾按照摩尔比为l_y :l-x :X :y的比例混合,以便获得原料 混合物,其中,〇· 1彡X彡0.9,0.005彡y彡0.05。根据本发明的实施例,在0· 1彡X彡0.9 的成分范围内,碲化铅-硫化铅合金具有斯宾那多分解反应现象,其能够有效降低制备获 得的钾掺杂碲化铅-硫化铅合金的热导率,从而能够提高其热电性能优值。另外,通过向碲 化铅-硫化铅合金中掺杂钾,以及调节硫在碲化铅中的固溶度,能够影响碲化铅-硫化铅合 金材料的费米能级,调节费米能级和导带之间的能隙以及整体能带结构,从而可以抑制双 极扩散效应、调节载流子的浓度,进而能够提高制备获得的钾掺杂碲化铅-硫化铅合金的 塞贝克系数和电导率。
[0027] 根据本发明的实施例,可以将铅、碲、硫以及钾按照摩尔比为l_y :l-x :X :y的比例 混合,其中,〇. 24 < x < 0. 36,0. 02 < y < 0. 03。由此,钾掺杂碲化铅-硫化铅合金的塞贝 克系数和电导率较高,热导率较低,进而热电性能优值较大,能量转换效率较高。
[0028] 根据本发明的一个优选实施例,将铅、碲、硫以及钾按照摩尔比为0.975 :0.7 : 0. 3 :0. 025的比例混合。由此,制备获得的钾掺杂碲化铅-硫化铅合金在300K至900K的 温度范围内,平均热电性能优值(ZT)值达到1. 56,从673K至923K的较宽的温度范围内,热 电性能优值(ZT)值均大于2,对应的最高能量转换效率达到20. 7%。
[0029] 接着,将原料混合物进行封管处理,以便获得经过封管处理的原料混合物。由此, 可以有效防止原料混合物在后续熔炼步骤中氧化。
[0030] 根据本发明的实施例,所述封管处理进一步包括:将所述原料混合物加入玻璃管 中;调节含有原料混合物的玻璃管中的压力为ο. 8X 10_4?1. 2X 10_4托;将所述经过压力 调节的玻璃管密封,以便获得所述经过封管处理的原料混合物。由此,有利于后续熔炼步骤 的操作,能够有效防止原料混合物在熔炼步骤中氧化。
[0031] 根据本发明的一个优选实施例,调节含有原料混合物的玻璃管中的压力为IX ΚΓ4 托。由此,能够使得原料混合物在最适合的压力条件下进行熔炼。
[0032] 根据本发明的实施例,所述玻璃管的种类不受特别限制,本领域技术人员可以根 据实际情况灵活选择。根据本发明的一个具体示例,所述玻璃管为碳涂层熔融石英管。
[0033] 接下来,将所述经过封管处理的原料混合物进行熔炼,以便获得铸锭。
[0034] 根据本发明的实施例,以5K/min的升温速度,于1058?1588K条件下,将所述经 过封管处理的原料混合物进行熔炼8?12小时,然后炉冷至室温,以便获得铸锭。由此,能 够使得原料混合物在最适合的条件下进行熔炼,有利于提高制备获得的钾掺杂碲化铅-硫 化铅合金的热电性能优值。
[0035] 根据本发明的一个优选实施例,于1323K条件下,将所述经过封管处理的原料混 合物进行熔炼10小时。由此,制备获得的钾掺杂碲化铅-硫化铅合金的热电性能优值非常 商。
[0036] 随后,将所述铸锭压碎后,进行球磨处理,以便获得微米级的铸锭粉末。
[0037] 根据本发明的实施例,将所述铸锭压碎至晶粒尺寸小于5mm3后,将所得到的颗粒 球磨至晶粒尺寸小于ΙΟΟμπι 3,以便获得微米级的铸锭粉末。由此,有利于后续放电等离子 烧结步骤的进行,从而有利于形成斯宾那多分解全尺度分层结构,进而能够有效降低制备 获得的钾掺杂碲化铅-硫化铅合金的热导率。
[0038] 然后,将所述铸锭粉末进行放电等离子烧结,以便获得所述钾掺杂碲化铅-硫化 铅合金。
[0039] 根据本发明的实施例,于658?988Κ、轴向压力为48?72MPa条件下,将所述铸锭 粉末进行放电等离子烧结8?12分钟。由此,有利于形成斯宾那多分解全尺度分层结构, 从而降低制备获得的钾掺杂碲化铅-硫化铅合金的热导率,进而提高钾掺杂碲化铅-硫化 铅合金的热电性能优值和能量转换效率。
[0040] 根据本发明的实施例,于823K、轴向压力为60MPa条件下,将所述铸锭粉末进行放 电等离子烧结10分钟。由此,制备获得的钾掺杂碲化铅-硫化铅合金的热导率极低,进而 其热电性能优值和能量转换效率极高。
[0041] 发明人发现,利用本发明的该方法,能够快速有效地制备获得前面所述的钾掺杂 碲化铅-硫化铅合金,经熔炼、粉末化、放电等离子烧结步骤制备钾掺杂碲化铅-硫化铅合 金,能够在很短的烧结时间内有效获得亚微米级的晶粒,而亚微米级晶粒对降低热导率有 很大的作用。同时,利用该方法,制备获得的钾掺杂碲化铅-硫化铅合金具有包括1. 2微米 的碲化铅晶粒、400纳米的硫化铅晶粒、5纳米立方析出相及其内部的原子有序层结构、原 子尺度的位错应力等的斯宾那多分解全尺度分层结构。另外,通过该方法制备获得的钾掺 杂碲化铅-硫化铅合金具有极低的热导率、较高的塞贝克系数和电导率,进而具有非常高 的热电性能优值和能量转换效率,是一种非常高效的热电材料。
[0042] 实施例1 :钾掺杂締化铅-硫化铅合金材料的制备
[0043] 原料:Pb(99. 99%,美国元素公司,美国),Te(99. 999%,5N Plus公司,加拿大), S(99. 999%,5N Plus 公司,加拿大),K(99. 999%,Sigma-Aldrich 公司,美国)。
[0044] 制备步骤:在氮气氛围的手套箱中,按照Pb、Te、S和K的摩尔比为0.995 :0.7 : 0. 3 :0. 005的比例,将高纯度的Pb、Te、S和K原料在碳涂层熔融石英管中混合均匀,接着, 调节石英管中的压力为约ΚΓ4托,然后将碳涂层熔融石英管密封,接下来,于1323K条件下, 将密封好的含有原料混合物的碳涂层熔融石英管熔炼10小时,然后炉冷至室温,得到铸 块,随后,在研钵中将所得到的铸块压碎至晶粒尺寸小于5mm 3,接着,将所得到的颗粒进行 机械球磨至晶粒尺寸小于100 μ m3,然后将球磨得到的颗粒装入直径为20_的石墨模中,于 823K、轴向压力为60MPa条件下,进行放电等离子烧结lOmin,得到尺寸为20mmX9mm的高密 度块体钾掺杂碲化铅-硫化铅合金材料。其中,制备获得的钾掺杂碲化铅-硫化铅合金材 料的密度不低于理论密度的97%。
[0045] 实施例2 :钾掺杂締化铅-硫化铅合金材料的制备
[0046] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0. 99 :0. 7 :0. 3 :0. 01。
[0047] 实施例3 :钾掺杂碲化铅-硫化铅合金材料的制备
[0048] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0· 985 :0· 7 :0· 3 :0· 015。
[0049] 实施例4 :钾掺杂碲化铅-硫化铅合金材料的制备
[0050] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0. 98 :0. 7 :0. 3 :0. 02。
[0051] 实施例5 :钾掺杂碲化铅-硫化铅合金材料的制备
[0052] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0· 975 :0· 7 :0· 3 :0· 025。
[0053] 实施例6 :钾掺杂碲化铅-硫化铅合金材料的制备
[0054] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0. 97 :0. 7 :0. 3 :0. 03。
[0055] 实施例7 :钾掺杂碲化铅-硫化铅合金材料的制备
[0056] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0· 975 :0· 9 :0· 1 :0· 025。
[0057] 实施例8 :钾掺杂碲化铅-硫化铅合金材料的制备
[0058] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0. 975 :0. 1 :0. 9 :0. 025。
[0059] 实施例9 :钾掺杂締化铅-硫化铅合金材料的制备
[0060] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0. 975 :0. 76 :0. 24 :0. 025。
[0061] 实施例10 :钾掺杂碲化铅-硫化铅合金材料的制备
[0062] 按照实施例1的方法制备钾掺杂碲化铅-硫化铅合金材料,区别在于Pb、Te、S和 K 的摩尔比为 0· 975 :0· 64 :0· 36 :0· 025。
[0063] 实施例11 :表征
[0064] 按照以下步骤测量实施例1-10中制备获得的钾掺杂碲化铅-硫化铅合金材料的 电导率、塞贝克系数和热导率,并观察其微观结构:
[0065] 1)电导率和塞贝克系数测试:将实施例1-10中制备获得的块体钾掺杂碲化 铅-硫化铅合金材料,切割成尺寸为18mmX3mmX3mm的棒状,然后,于氦气气氛下、室温 (300K)至923K温度范围内,利用Ulvac-Riko ZEM-3仪器同时测量所得到的棒状样品的电 导率和塞贝克系数。部分测试结果见图1和图2。其中,图1为实施例1-5中制备获得的钾 掺杂碲化铅-硫化铅合金材料的电导率随温度变化规律,图2为实施例1-5中制备获得的 钾掺杂碲化铅-硫化铅合金材料的塞贝克系数随温度变化规律。
[0066] 由图1可以看出,随温度升高,实施例1-5中制备获得的钾掺杂碲化铅-硫化铅合 金材料的电导率逐渐降低,室温和923K处,实施例5中制备获得的钾掺杂碲化铅-硫化铅 合金材料的电导率分别为1461. 2SCHT1和161. 3SCHT1。
[0067] 由图2可以看出,随温度升高,实施例1-5中制备获得的钾掺杂碲化铅-硫化铅 合金材料的塞贝克系数先增加后降低,室温和923K处,实施例5中制备获得的钾掺杂碲化 铅-硫化铅合金材料的塞贝克系数分别为70. 6 μ VIT1和297. 3 μ VK'
[0068] 实施例6-10中制备获得的钾掺杂碲化铅-硫化铅合金材料具有与实施例1-5中 制备获得的钾掺杂碲化铅-硫化铅合金材料相似的表征结果。
[0069] 2)热导率测试:将实施例1-10中制备获得的块体钾掺杂碲化铅-硫化铅合金 材料制成直径为8mm、厚度为l-2mm的硬币状,得到的硬币状样品表面涂覆较薄的一层石 墨以降低材料自身辐射系数引起的误差,接着,于300K至923K温度范围内,采用Netzsch LFA457激光导热仪测定硬币状样品的热扩散系数(D),通过标准样微晶玻璃9606获得比热 容C p,采用MicromeriticsAccuPycl340仪器测量硬币状样品的密度P,然后,通过公式κ =D · Cp · P计算热导率。实施例1-5中制备获得的钾掺杂碲化铅-硫化铅合金材料的热 导率随温度变化规律见图3。
[0070] 由图3可以看出,随温度升高,实施例1-5中制备获得的钾掺杂碲化铅-硫化铅合 金材料的热导率逐渐降低,室温和923K处,实施例5中制备获得的钾掺杂碲化铅-硫化铅 合金材料的热导率分别为1. sewn^r1和〇. ewn^r1。并且,通过测量其横向和纵向的电荷输 送性质,没有观察到明显的各向异性。与现有技术相比,本发明的钾掺杂碲化铅-硫化铅合 金材料的热导率显著低于已经报道的碲化铅及合金热电材料的热导率,获得了预料不到的 技术效果。
[0071] 实施例6-10中制备获得的钾掺杂碲化铅-硫化铅合金材料具有与实施例5中制 备获得的钾掺杂碲化铅-硫化铅合金材料相似的表征结果。
[0072] 3)热电性能优值(ZT):基于上述测量获得的电导率、塞贝克系数和热导率,根据 公式ZT = S2T σ / K计算实施例1-10中制备获得的钾掺杂碲化铅-硫化铅合金材料的热 电性能优值,其中,S为塞贝克系数,Τ为绝对温度,σ为电导率,κ为热导率。实施例1-5 中制备获得的钾掺杂碲化铅-硫化铅合金材料的热电性能优值随温度变化规律见图4。
[0073] 由图4可以看出,随温度增加,实施例1-5中制备获得的钾掺杂碲化铅-硫化铅 合金材料的热电性能优值(ΖΤ)增加,室温和923Κ处,实施例5中制备获得的钾掺杂碲化 铅-硫化铅合金材料的热电性能优值(ΖΤ)分别为0. 14和2. 2,而且,其中从673Κ到923Κ 的250Κ的温度范围内,热电性能优值(ΖΤ)均大于2,这么宽温度范围都能达到热电性能优 值(ΖΤ)大于2,以及300Κ到900Κ的平均热电性能优值(ΖΤ)值为1. 56,对应的理论热电转 换效率值为20. 7%,均是世界上首次报道,表明本发明的钾掺杂碲化铅-硫化铅合金材料 的性能最1?。
[0074] 实施例6-10中制备获得的钾掺杂碲化铅-硫化铅合金材料具有与实施例1-5中 制备获得的钾掺杂碲化铅-硫化铅合金材料相似的表征结果。
[0075] 4)微观结构观察:
[0076] 利用透射电子显微镜观察实施例1-10中制备获得的块体钾掺杂碲化铅-硫化铅 合金材料的微观结构。部分实验结果见图5。图5为实施例5中制备获得的钾掺杂碲化 铅-硫化铅合金材料的微观结构示意图,其中,位于中间的图为实施例5中制备获得的钾掺 杂碲化铅-硫化铅合金材料的微观结构示意图,四周的六幅图为实施例5中制备获得的钾 掺杂碲化铅-硫化铅合金材料的透射电子显微镜照片。由图5可以看出,本发明的钾掺杂 碲化铅-硫化铅合金材料具有斯宾那多分解全尺度分层结构,具体地,包括1. 2 μ m左右的 碲化铅晶粒、〇. 4 μ m左右的硫化铅晶粒、5nm左右立方纳米析出相、立方纳米析出相中的层 状结构、以及原子级的位错和应力。该斯宾那多分解全尺度分层结构可以有效地对各个波 长范围的声子进行散射,进而极大地降低热导率。
[0077] 实施例1-4、6_10中制备获得的钾掺杂碲化铅-硫化铅合金材料具有与实施例5 中制备获得的钾掺杂碲化铅-硫化铅合金材料相似的表征结果。
[0078] 在本说明书的描述中,参考术语"一个实施例"、"一些实施例"、"示例"、"具体示 例"、或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特 点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不 必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任 一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技 术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结 合和组合。
[0079] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例 性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述 实施例进行变化、修改、替换和变型。
【权利要求】
1. 一种高效能钾掺杂碲化铅-硫化铅合金热电材料,其特征在于,所述高效能钾掺杂 締化铅-硫化铅合金热电材料具有如下式所示的组成:KyPlVyTehSp 其中, 0. 1 ^ X ^ 0. 9, 0. 005 彡 y 彡 0. 05。
2. 根据权利要求1所述的高效能钾掺杂碲化铅-硫化铅合金热电材料,其特征在于, 0· 24 彡 X 彡 0· 36, 0. 02 彡 y 彡 0. 03。
3. 根据权利要求2所述的高效能钾掺杂碲化铅-硫化铅合金热电材料,其特征在于, X = 0. 3, y = 0. 025〇
4. 一种制备权利要求1-3任一项所述高效能钾掺杂碲化铅-硫化铅合金热电材料的方 法,其特征在于,包括 : 将铅、碲、硫和钾按照摩尔比为1-y :l-x :x :y的比例混合,以便获得原料混合物,其中, 0· 1 彡 X 彡 0· 9,0· 005 彡 y 彡 0· 05 ; 将所述原料混合物进行封管处理,以便获得经过封管处理的原料混合物; 将所述经过封管处理的原料混合物进行熔炼,以便获得铸锭; 将所述铸锭压碎后,进行球磨处理,以便获得铸锭粉末; 将所述铸锭粉末进行放电等离子烧结,以便获得所述钾掺杂碲化铅-硫化铅合金。
5. 根据权利要求4所述的方法,其特征在于,将铅、碲、硫和钾按照摩尔比为1-y :l-x : X :y 优选 〇. 975 :0. 7 :0. 3 :0. 025 的比例混合, 其中,0· 24 彡 X 彡 0· 36,0· 02 彡 y 彡 0· 03。
6. 根据权利要求4所述的方法,其特征在于,所述封管处理进一步包括: 将所述原料混合物加入玻璃管中; 调节含有所述原料混合物的玻璃管中的压力为〇. 8X 10_4?1. 2X 10_4托优选IX 10_4 托; 将经过压力调节的玻璃管密封,以便获得所述经过封管处理的原料混合物。
7. 根据权利要求6所述的方法,其特征在于,所述玻璃管为碳涂层熔融石英管。
8. 根据权利要求4所述的方法,其特征在于,以5K/min的升温速度,于1058?1588K 优选1323K条件下,将所述经过封管处理的原料混合物进行熔炼8?12小时优选10小时, 然后炉冷至室温,以便获得铸锭。
9. 根据权利要求4所述的方法,其特征在于,将所述铸锭压碎至晶粒尺寸小于5mm3后, 将所得到的颗粒球磨至晶粒尺寸小于100 μ m3,以便获得铸锭粉末。
10. 根据权利要求4所述的方法,其特征在于,于658?988K优选823K、轴向压力为 48?72MPa优选60MPa条件下,将所述铸锭粉末进行放电等离子烧结8?12分钟优选10 分钟。
【文档编号】H01L35/34GK104064666SQ201410231522
【公开日】2014年9月24日 申请日期:2014年5月28日 优先权日:2014年5月28日
【发明者】何佳清, 武海军 申请人:南方科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1