基片处理方法及设备与流程

文档序号:12598936阅读:294来源:国知局
基片处理方法及设备与流程

本发明涉及半导体加工领域,尤其涉及可提高刻蚀终点判断准确性的基片处理方法与设备。



背景技术:

集成电路制造工艺是一种平面制作工艺,其结合光刻、刻蚀、沉积、离子注入等多种工艺,在同一衬底上形成大量各种类型的复杂器件,并将其互相连接以具有完整的电子功能。其中,任何一步工艺出现偏差,都可能会导致电路的性能参数偏离设计值。目前,随着超大规模集成电路的器件特征尺寸不断地等比例缩小,集成度不断地提高,对各步工艺的控制及其工艺结果的精确度提出了更高的要求。

以刻蚀工艺为例,集成电路制造中,常需要利用刻蚀技术形成各种刻蚀图形,如接触孔/通孔图形、沟槽隔离图形或栅极图形等。而等离子体刻蚀(干法刻蚀)是现有刻蚀工艺中最为常用的方法之一,刻蚀的准确度直接关系到刻蚀图形的特征尺寸(CD,Critical Dimension)。因此,等离子体刻蚀中刻蚀终点的控制,成为等离子体刻蚀中的一个关键工艺。

光学发射光谱法(OES)是最常用的终点检测方法之一,是由于它可以很容易集成在刻蚀机上且不影响刻蚀过程的进行,对反应的细微变化可以进行非 常灵敏的检测,可以实时的提供刻蚀过程中的许多有用的信息。

OES技术主要是监视等离子体在光谱的UV/VIS(200nm - 1100nm)部分发 出的辐射。由发射辐射的光谱确定等离子体的成分,特别是反应性刻蚀物质或刻蚀副产物的存在。在刻蚀工艺中,特别是刻蚀终点,由于刻蚀的材料发生转换,导致等离子体的成分发生变化,导致发射光谱的改变。通过不断地监视等离子体发射,OES终点系统能够检测发射光谱的变化并确定何时所刻蚀的膜层被完全清除。

但是,随着时间的累积,OES终点监测的准确性会逐步降低。



技术实现要素:

本发明提供一种基片处理方法,包括:

将基片送入由多个壁围成的反应腔内;

向反应腔内通入刻蚀气体,以对基片进行刻蚀;

通过设置在所述壁上的检测窗口获取反应腔内的光学信号,以确定刻蚀终点;

在刻蚀过程中,在检测窗口处形成保护气流,以防止或减少刻蚀气体或刻蚀副产物到达检测窗口。

可选的,通过在检测窗口所在的壁上形成自上而下的气幕,而实现防止或减少刻蚀气体或刻蚀副产物到达检测窗口。

可选的,反应腔内设置有环,基片设置在所述环内,检测窗口所在的壁与所述环共同限定了保护气流的路径。

可选的,所述环之与检测窗口邻近处设置有开口,以保证在检测窗口处可获得反应腔内的光学信号。

可选的,形成保护气流的气体包括氩气或氦气。

本发明还提供一种基片处理设备,包括:

由多个壁围成的反应腔;

设置在反应腔内的基座,用于固定基片;

设置在反应腔内的气体喷淋头,用于引入气体至反应腔内,所述气体喷淋头与所述基座之间为等离子体处理区域;

检测窗口,设置在所述反应腔的所述壁上,用于获取反应腔内的光学信号,以确定刻蚀终点;

设置在反应腔内的环,所述等离子体处理区域位于所述环内,检测窗口所在的壁与所述环之间形成间隙;

保护气体入口,设置在所述间隙处,用于引入保护气体至所述间隙内。

可选的,所述环之与检测窗口邻近处设置有开口,以保证在检测窗口处可获得反应腔内的光学信号。

可选的,所述保护气体包括氩气或氦气。

可选的,还包括:

保护气体源,用于提供保护气体;

窗口清洗气体源,用于提供窗口清洗气体;

控制器,用于控制保护气体源在刻蚀过程中通过保护气体入口向间隙内提供保护气体,控制窗口清洗气体源在清洗阶段通过保护气体入口向间隙内提供清洗气体,以清洗检测窗口。

可选的,所述清洗气体包括氧气。

本发明另提供一种基片处理设备,包括:

由多个壁围成的反应腔;

设置在反应腔内的基座,用于固定基片;

设置在反应腔内的气体喷淋头,用于引入气体至反应腔内,所述气体喷淋头与所述基座之间为等离子体处理区域;

检测窗口,设置在所述反应腔的所述壁上,用于获取反应腔内的光学信号,以确定刻蚀终点;

保护气体入口,用于引入保护气体至所述反应腔内,自保护气体入口进入的保护气体在检测窗口的表面形成气流,以防止或减少刻蚀气体或刻蚀副产物到达检测窗口。

可选的,还包括:

保护气体源,用于提供保护气体;

窗口清洗气体源,用于提供窗口清洗气体;

控制器,用于控制保护气体源在刻蚀过程中通过保护气体入口向反应腔提供保护气体,控制窗口清洗气体源在清洗阶段通过保护气体入口向反应腔提供清洗气体,以清洗检测窗口。

附图说明

图1是依据本发明一个实施例的基片处理设备的结构示意图;

图2是图1所示设备的变更例的结构示意图;

图3是依据本发明一个实施例的基片处理方法的流程图。

具体实施方式

为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。

在常规的基片处理设备中,刻蚀过程所产生的刻蚀副产物(比如,氟碳气体)可扩散至并沉积于检测窗口的内侧。沉积于检测窗口的刻蚀副产物可吸收等离子体发出的光学信号(特定波长的光谱)。刻蚀副产物累积的厚度越大,吸收光学信号的能力越强。然而,位于反应腔外的传感器正是通过自检测窗口处获取的光学信号来判断反应腔内化学反应状态的变化,进而及时、准确地确定刻蚀终点。由于检测窗口表面附着的刻蚀副产物对光学信号的吸收,使得透过检测窗口被检测到的光学信号强度明显小于它的实际强度。这个偏差可明显影响终点监测的准确度。

根据发明人的上述理论,刻蚀持续的时间越长,检测窗口表面累积的刻蚀副产物越厚,终点监测的准确度理论上会越差。生产实践的经验也与这个推论相符。

基于上述认识和理论,发明人提出一种新的基片处理设备与方法,其通过在检测窗口内侧的表面形成气流,防止或减少刻蚀副产物到达检测窗口,以避免或减少刻蚀副产物在检测窗口的沉积,从而保证终点监测的准确性。

图1是依据本发明一个实施例的基片处理设备的结构示意图。所述基片处理设备可为等离子体刻蚀设备,比如,电容耦合式等离子体设备或电感耦合式等离子体设备。如图1所示,基片处理设备包括由多个壁21、22与23围成的反应腔2,其中,壁21为底壁,壁22为侧壁,壁23为顶壁。反应腔2内设置有用于固定基片W的基座3、用于引入刻蚀气体至反应腔2内的气体喷淋头4,所述气体喷淋头4与所述基座3之间为等离子体处理区域PS。基片处理设备还可包括等离子体产生装置,用于将等离子体处理区域PS的刻蚀气体解离为等离子体与自由基。到达基片W上表面的等离子体与自由基可将基片W刻蚀成预定的图案。刻蚀所产生的刻蚀副产物与未来得及参与反应的刻蚀气体会被泵9抽出反应腔2。

反应腔2的壁22上设置有检测窗口5,用于获取反应腔2内的光学信号,以确定刻蚀终点(何时结束刻蚀)。为避免或减少刻蚀副产物累积在检测窗口5上,基片处理设备还设置有环6与保护气体入口7。其中,环6设置在反应腔2内,并环绕等离子体处理区域PS(即,等离子体处理区域PS位于环6内)。检测窗口5所在的壁22与环6之间形成间隙G。

保护气体入口7设置在间隙G处,用于引入保护气体至间隙G内。保护气体可包括氩气、氦气或其它不活泼的气体。自保护气体入口7进入的保护气体可在间隙G内形成自上而下的气流(也可称之为气幕或保护层),该气流可避免或减少刻蚀副产物到达检测窗口5。另外,环6的存在也可减少到达检测窗口5的刻蚀副产物或等离子体、自由基。

环6在与检测窗口5相邻近的位置处可设置开口65,开口65大小与位置的设置与检测窗口5处传感器采集光学信号的角度相关,以保证在检测窗口处可充分获得反应腔内的光学信号。

为保护气体入口7供应气体的源可包括两个:用于提供保护气体的保护气体源(未图示),用于提供窗口清洗气体的窗口清洗气体源(未图示)。所述清洗气体包括氧气或其它可去除刻蚀副产物的气体。一控制器(未图示)可用于控制该两气体源与保护气体入口7的连通状态。比如,在刻蚀过程中,可使保护气体入口7仅被保护气体源供应保护气体,以减少副产物在检测窗口5表面的累积;在窗口清洗阶段,可使保护气体入口7仅被窗口清洗气体源供应清洗气体,以清洗检测窗口5。

图2是图1所示设备的变更例。除不包含图1所示的环6外,图2所示设备的结构、工作机理与工作流程与图1所示设备相同,这里不再赘述。图2中,虽无部件严格约束自保护气体入口7进入的保护气体的路径,但通过设定进入的保护气体的气流强度(即,保护气体的流量),也可保证保护气体主要沿壁22自上向下流动,藉此可避免或减少刻蚀副产物到达检测窗口5,进而保证终点检测的准确性和可靠性。

图3是基片处理方法的流程图。图1与图2所示设备均可依该方法进行操作。所述方法主要包括以下步骤:

将基片送入由多个壁围成的反应腔内;

向反应腔内通入刻蚀气体,以对基片进行刻蚀;

通过设置在所述壁上的检测窗口获取反应腔内的光学信号,以确定刻蚀终点;

在刻蚀过程中,在检测窗口处形成保护气流,以防止或减少刻蚀气体或刻蚀副产物接近检测窗口。

虽然本发明已以较佳实施例揭示如上,然所述诸多实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1