可调电压源的制作方法

文档序号:11587138阅读:671来源:国知局
可调电压源的制造方法与工艺

本发明涉及一种可调(skalierbar)电压源。



背景技术:

由us4127862、us6239354b1、de102010001420a1、由naderm.kalkhoran等人所著的《cobaltdisilicideintercellohmiccontactsformultijunctionphotovoltaicenergyconverters》,应用物理学快报(appl.phys.lett.)64,1980(1994)以及由a.bett等人所著的《iii-vsolarcellsundermonochromaticillumination》,2008年第33届ieee光电专家会议(pvsc'08,33rdieee)论文集,第1-5页,isbn:978-1-4244-1640-0已知可调电压源或由iii-v族材料构成的太阳能电池。



技术实现要素:

在此背景下,本发明的任务在于,说明一种装置,所述装置对现有技术进行扩展。

所述任务通过具有权利要求1的特征的可调电压源来解决。本发明的有利的构型是从属权利要求的主题。

根据本发明的主题提出可调电压源,所述可调电压源具有:数量为n的相互串联连接的部分电压源,所述部分电压源构造为半导体二极管,其中,所述部分电压源中的每一个具有一个半导体二极管,所述半导体二极管具有p-n结,并且所述半导体二极管具有p掺杂的吸收层,其中,p吸收层被p掺杂的钝化层钝化,所述p掺杂的钝化层具有比所述p吸收层的带隙更大的带隙,并且所述半导体二极管具有n吸收层,其中,所述n吸收层被n掺杂的钝化层钝化,所述n掺杂的钝化层具有比所述n吸收层的带隙更大的带隙,并且各个部分电压源的部分电源电压相互间具有小于20%的偏差,并且在每两个彼此相继的部分电压源之间构造有一个隧道二极管,其中,所述隧道二极管具有多个半导体层,所述多个半导体层具有比所述p/n吸收层的带隙更高的带隙,并且具有更高带隙的半导体层分别由具有经改变的化学计量的材料和/或不同于所述半导体二极管的所述p/n吸收层的元素成分的材料制成,所述部分电压源和所述隧道二极管单片地集成在一起并且共同构成具有上侧和下侧的第一堆叠(stapel),并且所述部分电压源的数量n大于等于2,并且光在所述上侧处射到所述第一堆叠上,并且在堆叠上侧处的照射面的尺寸基本上相应于所述第一堆叠在所述上侧处的面的尺寸,并且所述第一堆叠具有小于12μm的总厚度,并且在300k的情况下,如果以光子流照射所述第一堆叠,则所述第一堆叠具有大于2.2伏特的电源电压,其中,在从所述第一堆叠的上侧向所述堆叠的下侧的光入射方向上,所述半导体二极管的p吸收层和n吸收层的总厚度从最上面的二极管朝最下面的二极管增加并且在所述第一堆叠的所述下侧附近构造有环绕的台阶并且所述台阶的高度大于100nm。

应注意,主要与堆叠上侧处的照射面与第一堆叠在上侧处的面的尺寸的比较有关的表述被理解为:所述面中的区别尤其小于20%或优选小于10%或优选小于5%或最优选所述两个面相等。

应注意,所述表述——用于照射堆叠上侧的“光”——被理解为如下的光:所述“光”具有在吸收层的吸收范围中的波长上的光谱。可以理解,单色光也是合适的,所述单色光具有确定的吸收波长、也就是说在吸收层的吸收范围中的波长。

可以理解,优选以确定波长的光照射所述第一堆叠的整个上侧,即整个表面或几乎整个表面。应注意,深入的研究以出人意料的方式表明:与现有技术不同地,借助当前的单片堆叠方案以有利的方式得到了2.2v以上的电源电压。应注意,以下将术语“二极管”和“半导体二极管”作为同义词使用。

根据本发明的装置的一个优点在于:通过多个部分电压源的串联连接也能够制造具有3伏以上或更大的电压值的电压源,借助单片集成结构能够制造简单的且成本上有利的及可靠的电压源。另一优点是:借助堆叠形式的布置与迄今硅二极管的横向布置相比实现了较大的面积节省。尤其由发射二极管或光源仅仅必须照射所述堆叠的小得多的接收面。

在一种扩展方案中,各个部分电压源的部分电源电压相互间偏差小于10%。由此,显著改进了作为可调电压源、尤其作为参考电压源的可应用性。可以理解,术语“可调”涉及整个堆叠的电源电压的高度。

在另一种扩展方案中,所述半导体二极管分别具有相同的半导体材料,其中,在此,所述二极管的半导体材料具有相同的结晶组成,并且化学计量优选几乎相等或优选精确相等。也有利的是,将所述第一堆叠布置在衬底上。在一种实施方式中,所述半导体材料和/或所述衬底由iii-v族材料制成。尤其优选的是,所述衬底包括锗或砷化镓,和/或,所述衬底上的半导体层具有砷和/或磷。换句话说,所述半导体层包括含砷的层和含磷的层,即由gaas或algaas或ingaas组成的层作为砷化物层的示例以及ingap作为磷化物层的示例。

优选的是,在所述第一堆叠的下侧上构造第二电压连接端,尤其是,所述第二电压连接端穿过衬底地构造。

在另一种实施方式中,所述半导体二极管由与所述衬底相同的材料制成。优点是,尤其这两部分的膨胀系数相同。有利的是,所述半导体二极管基本上由iii-v族材料制成。尤其优选使用gaas。

在一种优选的实施方式中,在所述第一堆叠的上侧上构造有第一电压连接端作为边缘附近的环绕的金属接触部或作为边缘处的单个接触面。

此外优选的是,所述第一堆叠具有小于2mm2或小于1mm2的基面。研究已表明:有利的是,所述基面以四边形构造。优选所述堆叠的基面以正方形构造。

进一步的研究已表明,为了实现特别高的电压,有利的是,构造第二堆叠并且将所述两个堆叠相互串联连接,从而所述第一堆叠的电源电压和所述第二堆叠的电源电压相加。优选地,所述第一堆叠与所述第二堆叠并排布置在共同的载体上。

在一种扩展方案中,所述第一堆叠的电源电压与所述第二堆叠的电源电压偏差小于15%。

此外优选的是,在堆叠的最下面的半导体二极管的下面构造有半导体镜。研究已表明:能够将多个堆叠并排构造在一个半导体晶片或半导体衬底片上,其方式是,在全面积地、优选外延地制造所述层之后,实施所谓的台面蚀刻为此,借助掩膜工艺产生漆掩膜,然后优选实施湿化学蚀刻以产生台面沟槽。所述台面蚀刻优选终止在衬底中或终止在衬底上。

在一种扩展方案中优选的是,每个堆叠在下侧附近具有环绕的、凸台形的边缘,其中,在两个堆叠直接相邻的情况下在堆叠结构的外侧上构成环绕的边缘作为共同的环绕边缘,从而所述电压源具有环绕的边缘。

所述边缘优选是台阶形的或构造为台阶。在此,所述边缘的或所述台阶的表面优选最大部分地具有平坦的面,其中,所述边缘的或所述台阶的表面的法线与第一堆叠的表面的法线或与相应堆叠的表面的法线平行地或几乎平行地构造。应注意的是,所述边缘的或所述台阶的侧面主要或精确地垂直于所述边缘的或所述台阶的表面地构造。所述台阶的高度大于100nm,也就是说,所述环绕的侧面具有大于100nm的高度,以便达到足够的机械稳定。所述台阶尤其具有小于1000μm的高度。

所述边缘的或所述台阶的棱边分别距离第一堆叠的四个侧面的中的每一个或分别距离所述多个堆叠的侧面至少5μm且最大500μm。优选地,所述棱边分别至所述直接邻接的侧面的距离范围在10μm至300μm之间。所述距离范围尤其在50μm至250μm之间。

优选地,第一堆叠的侧面和所述堆叠的尤其所有侧面平坦地且尤其垂直或几乎垂直地构造。这些侧面上的法线与邻接的边缘面的法线相比或与堆叠表面的法线相比在80°至100°的角度范围中,也就是说,一个侧面的法线与直接邻接的边缘面的法线基本上互相正交。所述角度范围优选地处于85°至105°之间。

在一种扩展方案中,在至少一个半导体二极管中的p吸收层与n吸收层之间构造有本征层。在一种实施方式中,所述本征层构造在最下面的半导体二极管中。在另一种扩展方案中,所述本征层构造在所有半导体二极管中。在此,本征层应理解为具有低于1e161/cm2、优选小于5e151/cm2、最优选小于1.5e151/cm2的掺杂的半导体层。

在一种实施方式中,在锗衬底上布置有恰好两个半导体二极管,其中,所述半导体二极管分别包括与所述锗衬底栅格匹配的ingaas化合物作为吸收材料。

附图说明

以下参照附图来详细阐述本发明。在此,相同的部分标以相同的标记。所示出的实施方式是高度示意性的,即距离和横向延展与竖直延展不是按比例的,并且只要不另作说明,相互间也不具有可推导的几何关系。其中示出:

图1:根据本发明的具有一个堆叠和两个部分电压源的可调电压源的第一实施方式;

图2:具有多个堆叠的可调电压源的第二实施方式,所述多个堆叠具有各两个部分电压源;

图3:根据本发明的具有一个堆叠的可调电压源的第三实施方式,所述堆叠具有三个部分电压源;

图4:具有多个堆叠的可调电压源的第四实施方式,所述多个堆叠具有各三个部分电压源;

图5:具有总共五个二极管的实施方式,所述五个二极管具有不同厚度的吸收区;

图6:具有环绕的凸台形的台阶的堆叠。

具体实施方式

图1的示图示出具有两个部分电压源的第一实施方式的示意性视图,其具有可调电压源vq,所述可调电压源具有第一堆叠st1,所述第一堆叠具有上侧和下侧并且具有数量n等于2的二极管。所述第一堆叠st1具有由第一二极管d1和第一隧道二极管t1和第二二极管d2构成的串联电路。在堆叠st1的上侧处构造有第一电压连接端vsup1,并且在堆叠st1的下侧处构造有第二电压连接端vsup2。在此,所述第一堆叠st1的电源电压vq1由各个二极管d1至d2的部分电压组成。为此,所述第一堆叠st1经受光子流、即光l。

二极管d1至d2与隧道二极管t1的第一堆叠st1被实施为单片构造的、优选由相同的半导体材料构成的块。

在图2的示图中构造有第一堆叠st1和第二堆叠st2的有利的接连排列(aneinanderreihung)的另一种实施方式。两个堆叠st1和st2分别具有两个部分电压源。以下仅阐述与图1的示图的区别。所述第二堆叠st2如所述第一堆叠st1那样具有由两个二极管和构造在这两个二极管之间的隧道二极管组成的串联电路。两个堆叠st1及st2相互串联连接,从而如果两个堆叠st1与st2经受光子流l,则所述第一堆叠st1的电源电压vq1与所述第二堆叠st2的电源电压vq2相加。

图3的示图示出具有三个部分电压源的第一实施方式的示意性视图,其具有可调电压源vq,所述可调电压源具有第一堆叠st1,所述第一堆叠具有上侧和下侧并且具有数量n等于3的二极管。所述第一堆叠st1具有由第一二极管d1和第一隧道二极管t1和第二二极管d2和第二隧道二极管t2和第三二极管d3构成的串联电路。在堆叠st1的上侧处构造有第一电压连接端vsup1,并且在堆叠st1的下侧处构造有第二电压连接端vsup2。在此,所述第一堆叠st1的电源电压vq1基本上由各个二极管d1至d3的部分电压组成。为此,所述第一堆叠st1经受光子流、即光l。

二极管d1至d3与隧道二极管t1及t2的第一堆叠st1被实施为单片构造的、优选由相同的半导体材料构成的块。

在图4的示图中构造有第一堆叠st1和第二堆叠st2的有利的接连排列的另一种实施方式。在此,两个堆叠st1和st2分别具有三个部分电压源。以下仅阐述与图3的示图的区别。所述第二堆叠st2如所述第一堆叠st1那样具有由三个二极管和构造在这三个二极管之间的隧道二极管组成的串联电路。两个堆叠st1及st2相互串联连接,从而如果两个堆叠st1与st2经受光子流l,则所述第一堆叠st1的电源电压vq1与所述第二堆叠st2的电源电压vq2相加。

在一种未示出的实施方式中,所述两个堆叠st1及st2彼此具有不同数量的分别以串联电路连接的二极管。在另一种未示出的实施方式中,至少第一堆叠st1和/或第二堆叠st2具有多于三个以串联电路连接的二极管。由此可调节电压源vq的电压幅值。优选地,数量n在4与8之间的范围中。在另一种未示出的实施方式中,所述两个堆叠st1及st2相互并联连接。

在图5的示图中示出半导体层有利地接连排列成所述第一堆叠st1的实施方式。以下仅阐述与图1的示图的区别。所述第一堆叠st1总共包括五个串联连接的部分电压源,所述部分电压源构造为二极管d1至d5。光l射到第一二极管d1的表面ob上。所述表面ob几乎或完全被照亮。在两个彼此相继的二极管d1-d5之间分别构造有一个隧道二极管t1-t4。随着各个二极管d1至d5与所述表面ob的距离增加,吸收区的厚度增大,从而最下面的二极管d5具有最厚的吸收区。所述第一堆叠st1的总厚度总共小于等于12μm。在最下面的二极管d5的下面构造有衬底sub。

在图6的示图中示出半导体层有利地接连排列成所述第一堆叠st1的实施方式,其具有环绕的凸台形的台阶。以下仅阐述与图3的示图的区别。在所述第一堆叠st1的表面ob上,在边缘r处构造有金属的第一连接接触部k1。所述第一连接接触部k1与所述第一电压连接端vsup1连接——未示出。所述衬底sub具有上侧os,其中,所述衬底sub的上侧os材料锁合地与最下面的二极管、即第五二极管d5连接。在此应理解,在将第五二极管布置在所述衬底上以及材料锁合地与所述衬底的上侧os连接之前,在所述衬底上外延地产生一个薄的成核层(nukleationsschicht)和一个缓冲层。所述衬底sub的上侧os具有比在所述第一堆叠st1的下侧处的面更大的表面。由此构成了环绕的台阶stu。台阶stu的边缘距离所述台阶的第一堆叠st1的直接邻接的侧面多于5μm且少于500μm,示出为所述附图标记stu的长度。台阶stu的侧面的高度大于100nm。在所述衬底sub的下侧处构造有全面积的金属的第二接触部k2。所述第二连接接触部k2与所述第二电压连接端vsup2连接——未示出。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1