用于消除四乙氧基硅烷氧化膜中的局部厚度不均匀性的增强升降杆设计的制作方法

文档序号:11101078阅读:258来源:国知局
用于消除四乙氧基硅烷氧化膜中的局部厚度不均匀性的增强升降杆设计的制造方法与工艺

本公开的实施方式总体涉及一种用于相对于基板支撑件定位基板的改善升降杆。



背景技术:

集成电路已经进化成在单一芯片上包括数百万个晶体管、电容器和电阻器的复杂设备。芯片设计的进化导致电路系统更快并且电路密度更大。随着对集成电路的需求持续上升,芯片制造已经需要具有增大的芯片产量,更大的产品产率和更稳健的处理设备的半导体工艺加工工具。为满足需求,正开发加工工具以最小化晶片交递误差、减少颗粒污染,以及延长工具部件的使用寿命。

升降杆一般用于在半导体工艺加工工具(诸如,处理腔室)中支撑基板。升降杆一般驻留在穿过设置在处理腔室内的基板支撑件设置的导向孔中。升降杆的上端一般是扩口的,以防止杆穿过导向孔。升降杆的下端在基板支撑件下方延伸并且由在杆的下端接触杆的升降板致动。升降板可在上部位置与下部位置之间沿垂直方向移动。在上部位置中,升降板使升降杆移动穿过穿过基板支撑件形成的导向孔而使升降杆的扩口端延伸至基板支撑件的上方,从而使基板上升成相对于基板支撑件处于空间分离的关系来促进基板传送。

已经观察到,当前的升降杆设计将导致在基板表面上升降杆所位于的区域处的高温点(热点)。基板上的热点可由于在导向孔区域中缺乏直接的基板支撑件而出现,这导致基板与升降杆之间的更大间隙并且由此减少来自等离子体的辐射热的耗散。来自等离子体的辐射热还升高升降杆温度而导致基板表面上的热点。这些热点不利地影响集于升降杆上方的沉积速率。因此,膜厚度的均匀性受损。

因此,在本领域中需要改善的升降杆组件。



技术实现要素:

本文描述的实施方式总体涉及一种用于支撑基板的升降杆组件。在一个实施方式中,提供了用于相对于基板支撑件定位基板的升降杆。所述升降杆包括具有第一末端和通过轴耦接至第一末端的第二末端的升降杆,所述第一末端包括:杆头,所述杆头具有顶表面,其中所述顶表面是平面且平坦的;以及扩口部分,所述扩口部分将杆头耦接至轴,所述扩口部分具有沿着相对于升降杆的纵轴成约110°至约140°的角度的方向延伸的外表面。

在另一实施方式中,升降杆包括具有第一末端和通过轴耦接至第一末端的第二末端的升降杆,所述升降杆包括杆头,所述杆头设置在第一末端处,所述杆头具有平面表面;扩口部分,所述扩口部分将杆头耦接至轴,所述扩口部分具有沿着相对于升降杆的纵轴成约120°至约135°的角度的方向延伸的外表面;以及台肩,所述台肩设置在第二末端处,所述台肩的直径大于轴的直径,其中所述台肩包括通孔。

在又一实施方式中,提供了用于处理基板的基板支撑组件。所述基板支撑件包括:升降杆组件,所述升降杆组件包括具有第一末端和通过轴耦接至第一末端的第二末端的升降杆,所述第一末端包括:杆头,所述杆头具有顶表面,其中所述顶表面是平面且平坦的;以及扩口部分,所述扩口部分将杆头耦接至轴,所述扩口部分具有沿着相对于升降杆的纵轴成约110°至约140°的角度的方向延伸的外表面;以及基板支撑件,所述基板支撑件具有穿过该基板支撑件设置的多个导向孔,每一导向孔用于容纳升降杆组件的升降杆;升降板;以及致动器,所述致动器用于控制升降板的高度,其中杆头的顶表面与将在工艺期间被设置在基板支撑件上的基板的底表面之间的距离小于约10密耳(mil)。

附图说明

上文简要概述并且在下文中更详细讨论的本公开实施方式可通过参考在附图中描述的本公开说明性实施方式来理解。然而,应注意,附图仅说明了本公开的典型实施方式并且因此不应被视为限制本公开的范围,因为本公开可许可其他同等有效的实施方式。

图1是根据本公开的一个实施方式的具有升降杆组件的沉积腔室的剖视图。

图2A是根据本公开的一个实施方式的升降杆的透视图。

图2B是根据本公开的一个实施方式的升降杆的侧视图。

图2C是根据本公开的一个实施方式的升降杆的侧视图。

图2D是图2C的杆头的一个实施方式的放大透视图。

图2E是图2C的杆头的另一实施方式的放大透视图。

图3是示出基板与升降杆之间的距离“G”的基板支撑件的局部视图。

为促进理解,已经在可能的地方使用相同的附图标记来指定诸图共有的相同元件。图式并非按比例描绘并且可为清晰起见而简化。应当构想,一个实施方式的元件和特征可被有利地并入其它实施方式中,而无需进一步叙述。

具体实施方式

本文描述的实施方式总体提供了一种用于处理半导体基板的装置。本文描述的实施方式说明性地用于处理系统中,诸如可购自加利福尼亚州圣克拉拉市的应用材料公司(Applied Materials,Inc.)的CVD处理系统。然而,应理解,本文描述的实施方式可并入其他腔室构造,诸如物理气相沉积腔室,蚀刻腔室,离子注入腔室,以及其他半导体处理腔室。本公开的细节和各种实施方式在下文中讨论。

图1描绘了处理系统100的剖视图。系统100一般包括耦接至气体源104的腔室主体102。腔室主体102一般是由刚性材料块(诸如铝)制造的整体机器结构。腔室主体102内是喷头106和基板支撑组件108。喷头106耦接至腔室主体102的上表面或盖并提供来自气体源104的均匀气流,所述均匀气流分散在位于基板支撑组件108上的基板101上。

基板支撑组件108一般包括基板支撑件110和芯柱112。芯柱112将基板支撑件110定位在腔室主体102内。在处理期间基板101被放置于基板支撑件110上。基板支撑件110可为基座、加热器、静电卡盘或真空卡盘。通常,基板支撑件110是由选自陶瓷、铝、不锈钢,以及它们的组合的材料制造的。基板支撑件110具有穿过该基板支撑件110设置的多个导向孔118,每一孔118容纳升降杆组件114的升降杆120。

升降杆组件114与基板支撑件110相互作用以相对于基板支撑件110定位基板101。升降杆组件114通常包括升降杆120,升降板124,以及致动器116,所述致动器116用于控制升降板124的高度。升降板124的高度是由致动器116控制的。致动器116可为气动缸、液压缸、导螺杆、螺线管、步进电机,或者通常位于腔室主体102外部并且被适配成移动升降板124的其他运动设备。当使升降板124朝基板支撑件110移动时,升降板124接触升降杆120的下端以移动升降杆120穿过基板支撑件110。升降杆120的上端移动远离基板支撑件110并且使基板101上升成相对于基板支撑件110处于空间分离的关系。

所述多个升降杆120设置为轴向穿过穿过基板支撑件110形成的升降杆导向孔118。导向孔118可一体形成于基板支撑件110中,或者可替代地由设置在基板支撑件110中的导套(未示出)的内部通道限定。升降杆120通常由陶瓷、不锈钢、铝、氮化铝、氧化铝,或者其他合适的材料组成。在一个实施方式中,升降杆120由氮化铝(AlN)组成。用AlN制造出的升降杆由于其较高的导热性而改善了升降杆的散热能力。如果需要的话,则升降杆120可为含有约2重量%至约5重量%氧化钇(Y2O3)的AlN,以进一步增强导热性。升降杆120的圆柱形外表面可另外经处理以减少摩擦和表面磨损。例如,升降杆120的圆柱形外表面可经电镀,等离子火焰喷涂,或者电抛光,以减少摩擦,改变表面硬度,改善光滑度,或者改善抗刮伤性和抗腐蚀性。

图2A是根据本公开的一个实施方式的升降杆120的透视图。图2B是根据本公开的一个实施方式的升降杆120的侧视图。图2C是根据本公开的一个实施方式的升降杆120的又一侧视图。图2D是图2C的杆头204的一个实施方式的放大透视图。

参照图2A,升降杆120包括轴202,所述轴202与第一末端206和第二末端208耦接。升降杆120的第一末端206包括杆头204和扩口部分212。杆头204是杆轴202的末端部分,所述末端部分将与基板101的底表面接触。杆头204充当热传递界面。扩口部分212将杆头204耦接至轴202。升降杆120的扩口部分212的大小设定为防止升降杆120因重力而下降穿过穿过基板支撑件110(参见图1)设置的导向孔118。导向孔118可为埋头孔,被配置用于当杆120在正常位置(即,相对于基板支撑件110缩回)时允许第一末端206被定位为与基板支撑件110齐平或从基板支撑件110略凹入。在一个实施方式中,第一末端206的顶表面203是平面且平坦的(即,垂直于升降杆120的纵轴236取向)。

顶表面203可任选地在顶表面203的周缘处具有圆角228(参见图2D)。杆头204的直径“B”的尺寸被设定为配合在导向孔118内。应构想,可调整顶表面203的大小或直径,以使得期望量的热可被均匀地传送至基板,从而避免基板表面上存在热点和冷点。

已经观察到,在热循环期间基板可能不利地在杆头204上滑动,这增大了机械应力并且潜在地引起基板滑脱。因此,在一些实施方式中,可将第一末端206的顶表面203处理成具有约1.0微米或更小,例如约0.4微米至约0.6微米的表面光洁度或者粗糙度,以减少基板滑动。

扩口部分212具有外表面214,所述外表面214沿着相对于轴202的外表面216成角度“α”的方向延伸。轴202的外表面216与升降杆120的纵轴236(参见图2C)平行。在一个实施方式中,角度“α”是约110°至约140°,诸如约120°至约135°,例如约130°至约131°。改变角度“α”可有效控制基板101与升降杆120之间的距离“G”,如图3中可见。这是因为升降杆120的第一末端206位于导向孔118内的周内壁230上并且内壁230的斜率是固定的,所以基板101的底部232与升降杆120的第一末端206的顶表面203之间的距离“G”可通过增大或者减小角度“α”来调整。在本公开的各种实施方式中,距离“G”被控制成低于10密耳或更少,例如约9密耳或更少。应构想,距离“G”可被控制为在约0.001密耳至约21密耳的范围内,诸如约0.002密耳至约18密耳,例如约2密耳至约8.5密耳。在一个示例性方面,距离“G”在约3密耳至约6.2密耳之间。另外或替代地,还可调整内壁230的斜率以改变基板101与升降杆120之间的距离“G”。缩小距离“G”增大了基板101与升降杆120之间的散热,这有助于最小化基板表面上的“热点”,并由此增大了升降杆区域上方的沉积速率和膜均匀性。

升降杆120的第二末端208延伸超过基板支撑件110的下侧并且被适配成由升降板124推动以使升降杆120的第一末端206伸长至高于基板支撑件110。第二末端208可为圆形的、平坦的或者具有另一形状。在一个实施方式中,第二末端208是平面且平坦的(即,垂直于升降杆120的中心线取向)。

参照图2B,轴202具有直径“D”。升降杆120的第二末端208可包括台肩220,所述台肩220具有直径“H”,其中直径"H"大于轴202的直径“G”。升降杆头204具有直径“F”,所述直径"F"大于轴202的直径“D”。台肩220包括两个相对的锥形末端222和224。锥形末端222使台肩220与轴202转接。台肩220具有通孔226,所述通孔226的尺寸被设定为容纳锁销128,所述锁销128将脚机构130(参见图1)与升降杆120耦接。脚机构130使升降杆120竖立在升降板124上并且允许将升降杆120容易地定位在升降杆导向孔118内的中心处,从而降低了升降杆120将在导向孔118中倾斜或偏斜的可能性。在图2C中示出的一个实施方式中,台肩220的长度“I”为升降杆120的总长度“J”的大约1/3。在一个实施方式中,从通孔226的中心至升降杆的第二末端208的距离“K”为台肩220的长度“I”的大约1/4。升降杆204具有厚度“T1”,而扩口部分212具有厚度“T2”。厚度“T2”相对大于厚度“T1”。

图2E是图2C的杆头202的另一实施方式的放大透视图。升降杆的第一末端206在此实施方式中与图2B中示出的实施方式基本上相同,区别在于杆头204的顶表面203上设置一个或多个突出部234来进一步缩小基板101与升降杆120之间的距离“G”。突出部234可为任何合适的形状,诸如矩形、菱形、正方形、半球形、六角形、三角形突出物,或者为不同形状突出物的混合。在如图所示的一个实例中,突出部234是设置在顶表面203的中心区域处的正方形的突出部。突出部234可具有约0.03至约0.06英寸的直径和约0.002英寸的高度“T”。突出部234的高度被配置为使得基板101的底部232与突出部234的上表面238之间的距离“G”(参见图3)为约2密耳至约8.5密耳,而基板101的底部232与无突出部234存在的顶表面203之间的距离"G"为约4密耳至约11密耳。

本公开的益处包括通过缩小升降杆与基板之间的距离而获得的升降杆区域上方改善的沉积速率和均匀膜厚度。使升降杆的顶表面为平面且平坦的(即,垂直于升降杆的中心线取向),并且升降杆的扩口部分的外表面沿着相对于杆轴的外表面成一定角度的方向延伸以使得升降杆与基板之间的距离小于约10密耳,例如约6密耳或更少。另外,升降杆由具有较高导热性的材料(诸如氮化铝)组成以改善基板与升降杆之间的升降杆散热能力,这使基板表面上的“热点”最小化并且由此增大了升降杆区域上方的沉积速率和膜均匀性。

虽然上述内容是针对本公开的实施方式,但是可在不背离本公开的基本范围的情况下设计本公开的其他和进一步实施方式。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1