一种多组分样品分析的多模式质谱电离源的制作方法

文档序号:14520900阅读:314来源:国知局

本发明涉及仪器分析领域,具体地说是涉及一种多组分样品分析的多模式质谱电离源技术。



背景技术:

电离源是质谱仪的重要组成部分之一,它不仅决定着所能得到的质谱图特征,而且在很大程度上也决定了整个仪器的灵敏度、分辨率和分析的准确度等,其性能是确定质谱仪应用范围的关键性因素。

随着近几十年的发展,质谱仪发展了数十种不同类型的电离技术。其中,电子电离(ei)电离效率高,适用于气体样品的检测与分析。化学电离源(ci)中的质子转移反应(ptr)和选择离子流动管(sift)以其高灵敏和软电离特性被广泛用于各类气体分析。光电离源(pi)中的共振增强多光子电离(rempi)谱图简单,特别适用于芳香烃的检测。单光子电离(spi)由于光子能量高于绝大多数有机物,因此通用性好,并且不受水、空气等高电离能物质的干扰。电喷雾解析电离(desi)、实时直接分析电离(dart)以及电喷雾辅助激光解析电离(eldi)等技术的发展将质谱的应用扩展到液体样品和生物样品。作为一种新型的常压环境电离源的低温等离子体电离(ltp)是一种介质阻挡放电(dbd)电离技术,其结构简单、功耗低,并且能够用于液相和固相样品的有效电离。每种电离技术都有其特定的优势及其应用范围,如何将适用于不同组分的电离技术有机的结合在一起,构成多模式电离源,以便实现不同组分待测物的快速电离,是进行多种组分样品快速在线检测的一个关键问题,能够有效拓宽质谱仪应用范围。



技术实现要素:

本发明的目的在于提供一种多组分样品分析的多模式质谱电离源。

为实现上述目的,本发明采用的技术方案为:

用于多组分样品分析的多模式质谱电离源,包括光电离源、卤素热解析灯、气相采样管、固或液相载样台、程序升温装置以及离子推斥电极、离子引出电极,其特征在于:

光电离源置于质谱的电离源腔体的侧壁上,光电离源所发出的光子位于质谱的电离源腔体内部,气相采样管穿过质谱的电离源腔体外壁,一端与气相待测样品相连,另一端位于光电离源下方光出射方向质谱的电离源腔体内;

于质谱的电离源腔体内、与光电离源相对一侧的位置处设置有固或液相载样台,光电离源光出射方向面向固或液相载样台,于固或液相载样台内部或远离光电离源一侧设有程序升温装置,于固或液相载样台的一侧上方设置有卤素热解析灯,卤素热解析灯出射方向朝向固或液相载样台处放置。

载气进样管穿过电离源腔体外壁,一端与载气相连,另一端朝向固或液相载样台。

质谱的电离源腔体位于质谱的离子推斥电极和离子引出电极之间,离子推斥电极、离子引出电极均为平板状环形电极,相互平行、间隔、环形通孔同轴放置,其轴与光电离源光子出射方向相垂直;

离子推斥电极与离子引出电极分别放置于光电离源光子出射区域两侧,离子引出电极靠近质量分析器一端;

离子引出电极不少于三块,相互平行、间隔、同轴放置;

于离子引出电极与质量分析器之间设置有差分电极,差分电极与离子引出电极同轴放置,差分电极上设置有差分接口小孔,差分接口小孔与质量分析器直接相连,差分接口小孔的内径为0.3~2mm。

气相待测样品经由气相采样管进入光电离源电离区域,于质谱的电离源腔体内实现电离;

固或液相待测样品置于固或液相载样台上方,利用程序升温装置,使可挥发性待测组分在不同温度下不同沸点的组分逐步挥发。固或液相载样台所放置的固或液相待测样品所挥发出的组分在载气的载带作用下进入光电离源电离区域实现电离;

固或液相待测样品中难挥发或者不挥发性待测组分利用卤素热解析灯进行闪蒸,使固或液相待测样品中难挥发或者不挥发性待测组分进入气相,再由载气的载带作用进入光电离源电离区域实现电离。

测试气相待测样品时,气相采样管通入气相待测样品,可将载气更换为试剂气体通过载气进样管通入电离源腔体;

测试固或液相样品时,载气进样管通入载气,可将气相待测样品更换为试剂气体通过气相采样管通入电离源腔体。

离子推斥电极与离子引出电极之间的区域为光电离区域或试剂离子反应区,间隔为5~45mm。

程序升温装置包括电加热装置,电加热装置为电加热棒、电加热丝、电加热管中的一种或二种以上,于固或液相载样台内设有温度传感器,电加热装置和温度传感器通过导线经温度控制器与外电源相连,程序升温装置可控升温范围在30~300℃;

卤素热解析灯可对样品加热温度范围在50~600℃,加热时间范围1~30s。

固或液相载样台距离光电离源的距离为30~80mm,固或液相载样台上设有位置微调板,控制固或液相待测样品位于程序升温装置、卤素热解析灯及光电离源有效工作范围内。

所述的质量分析器为飞行时间质量分析器或离子阱质量分析器。

离子推斥电极、离子引出电极的中心部位设置的离子通孔与差分电极上设置的差分接口小孔处于同一轴线上;

所述的光电离源为激光光源、同步辐射光源或气体放电灯光源。

本发明提供的多组分样品分析的多模式质谱电离源,基于光电离源。气相组分直接进入光电离区域实现电离,固(液)相组分通过程序升温装置与卤素热解析灯实现气化,在载气的作用下进入光电离区域实现电离。从而实现了针对不同形态(气相、液相和固相)的待测样品组分,采用不同模式的电离源和进样方式,得到目标特征离子,目标特征离子在离子推斥电极与离子引出电极的作用下进入质量分析器实现最终检测。本发明将具有互补性的多个不同模式的电离技术有机结合,结构简单,方便用于复杂样品中不同有机组分的快速电离,避免了单一电离源可电离物质种类以及可获取谱图信息不足的限制,具有使用方便、分析速度快等优点,有较为广阔的应用前景。

附图说明

图1为本发明的多组分样品分析的多模式质谱电离源结构示意图。

其中,1-光电离源、2-卤素热解析灯、3-气相采样管、4-气相待测样品、5-固或液相待测样品、6-固或液相载样台、7-程序升温装置、8-载气进样管、9-载气、10-离子推斥电极、11-离子引出电极、12-差分电极、13-质量分析器、14-差分接口小孔。

具体实施方式

请参阅图1,为本发明的结构示意图。本发明的多组分样品分析的多模式质谱电离源结构示意图,由光电离源1、卤素热解析灯2、气相采样管3、固或液相载样台6、程序升温装置7以及离子推斥电极10、离子引出电极11构成。

光电离源1置于质谱的电离源腔体的侧壁上,光电离源1所发出的光子位于质谱的电离源腔体内部,气相采样管3穿过质谱的电离源腔体外壁,一端与气相待测样品4相连,另一端位于光电离源1下方光出射方向质谱的电离源腔体内;

于质谱的电离源腔体内、与光电离源1相对一侧的位置处设置有固或液相载样台6,光电离源1光出射方向面向固或液相载样台6,于固或液相载样台6内部或远离光电离源1一侧设有程序升温装置7,于固或液相载样台6的一侧上方设置有卤素热解析灯2,卤素热解析灯2出射方向朝向固或液相载样台6处放置。

载气进样管8穿过电离源腔体外壁,一端与载气9相连,另一端朝向固或液相载样台6。

质谱的电离源腔体位于质谱的离子推斥电极10和离子引出电极11之间,离子推斥电极10、离子引出电极11均为平板状环形电极,相互平行、间隔、环形通孔同轴放置,其轴与光电离源光子出射方向相垂直;

离子推斥电极10与离子引出电极11分别放置于光电离源1光子出射区域两侧,离子引出电极11靠近质量分析器13一端;

离子引出电极11不少于三块,相互平行、间隔、同轴放置;

于离子引出电极11与质量分析器13之间设置有差分电极12,差分电极12与离子引出电极11同轴放置,差分电极12上设置有差分接口小孔14,差分接口小孔14与质量分析器13直接相连,差分接口小孔14的内径为0.3~2mm。

气相待测样品4经由气相采样管3进入光电离源1电离区域,于质谱的电离源腔体内实现电离;

固或液相待测样品5置于固或液相载样台6上方,利用程序升温装置7,使可挥发性待测组分在不同温度下不同沸点的组分逐步挥发。固或液相载样台6所放置的固或液相待测样品5所挥发出的组分在载气9的载带作用下进入光电离源1电离区域实现电离;

固或液相待测样品5中难挥发或者不挥发性待测组分利用卤素热解析灯2进行闪蒸,使固或液相待测样品5中难挥发或者不挥发性待测组分进入气相,再由载气9的载带作用进入光电离源1电离区域实现电离。

测试气相待测样品4时,气相采样管3通入气相待测样品4,可将载气9更换为试剂气体通过载气进样管8通入电离源腔体;

测试固或液相样品5时,载气进样管8通入载气9,可将气相待测样品4更换为试剂气体通过气相采样管3通入电离源腔体。

离子推斥电极10与离子引出电极11之间的区域为光电离区域或试剂离子反应区,间隔为5~45mm。

程序升温装置7包括电加热装置,电加热装置为电加热棒、电加热丝、电加热管中的一种或二种以上,于固或液相载样台6内设有温度传感器,电加热装置和温度传感器通过导线经温度控制器与外电源相连,程序升温装置7可控升温范围在30~300℃;

卤素热解析灯2可对样品加热温度范围在50~600℃,加热时间范围1~30s。

固或液相载样台6距离光电离源1的距离为30~80mm,固或液相载样台6上设有位置微调板,控制固或液相待测样品5位于程序升温装置7、卤素热解析灯2及光电离源1有效工作范围内。

所述的质量分析器13为飞行时间质量分析器或离子阱质量分析器。

离子推斥电极10、离子引出电极11的中心部位设置的离子通孔与差分电极12上设置的差分接口小孔14处于同一轴线上;

所述的光电离源1为激光光源、同步辐射光源或气体放电灯光源。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1