凸点形成用膜、半导体装置及其制造方法以及连接构造体与流程

文档序号:11452613阅读:193来源:国知局
凸点形成用膜、半导体装置及其制造方法以及连接构造体与流程

本发明涉及用于在ic芯片等的电极焊盘形成凸点的凸点形成用膜。



背景技术:

在布线基板倒装片安装无凸点ic芯片的情况下,为了实现较低的导通电阻和稳定的导通可靠性,提出了在未以钝化膜包覆的无凸点ic芯片的电极焊盘,预先利用钉头(stud)凸点法来设置金凸点,通过超声波加热来金属结合被期待作为凸点发挥功能的金属镀层包覆树脂粒子的方案(专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2005-286349号公报。



技术实现要素:

发明要解决的课题

然而,利用钉头凸点法来将金凸点设置在无凸点ic芯片的电极焊盘的情况,会显著增大ic芯片的制造成本,因此存在商业上难以采用的问题。另外,在通过超声波加热来使金属包覆树脂粒子的表面金属金属接合到无凸点ic芯片的电极焊盘的情况下,不仅要担心发生表面金属的剥离而导通可靠性显著降低的情况,而且还有制造工序变得烦琐的问题。

本发明的目的在于解决以上的现有技术的问题点,以能够在无凸点ic芯片等的半导体装置,形成低成本、而且能够实现稳定的导通可靠性的凸点。

用于解决课题的方案

本发明人们在只要能以凸点形成用膜简便地向半导体装置的电极供给能够期待作为半导体装置的凸点发挥功能的导电填充物,则能够解决上述问题这一假定下,发现通过使凸点用导电填充物在俯视观察下沿膜的长边方向以周期性重复单位规则排列在绝缘性粘接树脂层内,且使连结膜厚度方向的凸点用导电填充物的一个端部的直线与膜的表面大致平行,能够达到本申请的目的,以致完成了本发明。

即,本发明提供“凸点形成用膜,俯视观察下凸点用导电填充物规则排列在绝缘性粘接树脂层内,其中,该规则排列在膜的长边方向具有周期性重复单位,连结膜的厚度方向上的凸点用导电填充物的一个端部的直线,与膜的表面大致平行”。

另外,本发明提供上述本发明的凸点形成用膜的制造方法,该制造方法具有以下的工序(イ)~(ハ):

<工序(イ)>

准备在表面形成有规则排列的凹部的转印体的工序;

<工序(ロ)>

向转印体的凹部填充凸点用导电填充物的工序;以及

<工序(ハ)>

在该转印体的填充凸点用导电填充物的一侧的表面重叠绝缘性粘接树脂层并加以按压,从而使凸点用导电填充物转贴到绝缘性粘接树脂层的工序。

优选该制造方法还具有以下的工序(ニ):

<工序(ニ)>

对于转贴有凸点用导电填充物的绝缘性粘接树脂层,从凸点用导电填充物转贴面侧层叠绝缘性粘接盖层的工序。

另外,本发明提供“电子部件,在表面的凸点用的基底电极配置有凸点,其中,以使上述凸点形成用膜的凸点用导电填充物成为该基底电极的凸点的方式,该凸点形成用膜配置在该电子部件的基底电极形成表面”。具体而言,提供“半导体装置,在表面的凸点用的基底电极配置有凸点,其中,以使上述凸点形成用膜的凸点用导电填充物成为该基底电极的凸点的方式,该凸点形成用膜配置在该半导体装置的基底电极形成表面”。

进而,本发明提供“在表面的凸点用的基底电极配置有凸点的电子部件的制造方法,该制造方法中,

对于在表面具有凸点用的基底电极的无凸点电子部件的该基底电极,以使本发明的凸点形成用膜的凸点用导电填充物与该基底电极对置的方式,将该凸点形成用膜配置在该电子部件的基底电极形成表面之后,用构成凸点形成用膜的绝缘性粘接树脂,将凸点用导电填充物固定在基底电极”。具体而言,提供“在表面的凸点用的基底电极配置有凸点的半导体装置的制造方法,该制造方法中,

对于在表面具有凸点用的基底电极的无凸点半导体装置的该基底电极,以使本发明的凸点形成用膜的凸点用导电填充物与该基底电极对置的方式,将该凸点形成用膜配置在该半导体装置的基底电极形成表面之后,通过使构成凸点形成用膜的绝缘性粘接树脂层固化,将凸点用导电填充物固定在基底电极”。

同样地,本发明提供“在表面的凸点用的基底电极配置有凸点的半导体装置的制造方法,该制造方法中,

对于在表面具有凸点用的基底电极的无凸点半导体装置的该基底电极,以使本发明的凸点形成用膜的凸点用导电填充物与该基底电极对置的方式,将该凸点形成用膜配置在该半导体装置的基底电极形成表面之后,通过加热凸点用导电填充物来金属结合到基底电极而固定”。

进而,本发明提供“连接构造体,其中,配置在上述电子部件的表面的基底电极的凸点用导电填充物和其他电子部件的对应的端子,经由固化性或非固化性的导电粘接剂或绝缘性粘接剂而连接,或者通过在两者之间形成金属结合而连接”。具体而言,提供“连接构造体,其中,配置在上述半导体装置的表面的基底电极的凸点用导电填充物和其他电气部件的对应的端子,经由固化性或非固化性的导电粘接剂或绝缘性粘接剂而连接,或者通过在两者之间形成金属结合而连接”。

发明效果

本发明的凸点形成用膜在绝缘性粘接树脂层内具有俯视观察下以在膜的长边方向具有周期性重复单位的方式规则排列的凸点用导电填充物。因此,能够在ic芯片等的半导体装置的各个电极配置凸点用导电填充物。而且在本发明的凸点形成用膜中,连结膜的厚度方向的凸点用导电填充物的一个端部的直线,成为与膜的表面大致平行。因此,即便在应该形成半导体装置的凸点的电极存在一些高度不匀,也能对它们稳定配置凸点用导电填充物。

附图说明

[图1]图1是本发明的凸点形成用膜的截面图。

[图2]图2是本发明的凸点形成用膜的制造方法的工序说明图。

[图3]图3是本发明的凸点形成用膜的制造方法的工序说明图。

[图4]图4是本发明的凸点形成用膜的制造方法的工序说明图。

[图5]图5是本发明的凸点形成用膜的制造方法的工序说明图。

[图6]图6是本发明的半导体装置的截面图。

[图7]图7是导电粒子以1:5排列的实施例3的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图8]图8是导电粒子以1:4排列的实施例10的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图9]图9是导电粒子以1:16排列的实施例11的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图10]图10是导电粒子以1:3排列的实施例12的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图11]图11是导电粒子以1:9排列的实施例13的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图12]图12是导电粒子以1:6排列的实施例14的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图13]图13是导电粒子以1:20排列的实施例15的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图14]图14是导电粒子以1:2排列的实施例16的凸点形成用膜中的导电粒子和电极焊盘的关系图。

[图15]图15是导电粒子以1:8排列的实施例17的凸点形成用膜中的导电粒子和电极焊盘的关系图。

具体实施方式

以下,一边参照附图,一边对本发明进行说明。

<凸点形成用膜>

如图1所示,本发明的凸点形成用膜10是俯视观察下凸点用导电填充物2在绝缘性粘接树脂层1内规则排列的凸点形成用膜。该凸点用导电填充物2的规则排列在膜的长边方向具有周期性重复单位。该周期性重复单位能够对应于应该形成凸点的半导体装置的电极图案而适当选择。另外,在一个应该形成凸点的半导体装置的电极配置的凸点用导电填充物2的个数既可为一个,也可为二个以上。此外,在不损失发明的效果的范围内,凸点用导电填充物2彼此既可以接近配置,也可以连结配置。在凸点用导电填充物2彼此接近配置或连结配置的情况下,能够缓和配置偏移的影响,对准操作容易。

在本发明的凸点形成用膜10中,连结膜的厚度方向上的凸点用导电填充物2的一个端部的直线,成为与膜的表面大致平行。图1是在膜表面侧和背面侧的该直线在凸点形成用膜10的表面侧和背面侧分别平行的例子。由此,能够在应该形成凸点的半导体装置的电极可靠地稳定地配置凸点用导电填充物。此外大致平行的程度是指连结膜的厚度方向上的凸点用导电填充物2的一个端部的直线与膜的表面所成的角度在±5°以内。

作为凸点用导电填充物2,能够举出焊锡粒子、镍粒子、金属包覆树脂粒子等。其中,能够优选举出在比较低温下能够与铜等的端子材料金属结合的焊锡粒子、焊锡镀层树脂粒子。特别是,优选焊锡粒子。另外,从容易得到凸点用电极和与它对应的其他电子部件的端子之间的连接的导通可靠性这一观点来看,能够优选使用金属包覆树脂粒子。在此,金属包覆树脂粒子的金属包覆能够利用非电解镀法或溅射法等的公知的金属膜形成方法来形成。另外,为了提高导通可靠性,能够使构成金属包覆树脂粒子的芯树脂粒子含有导电微粒。

以凸点用导电填充物2的图像型粒度分布测定装置测定的平均粒子直径优选为3~60μm、更优选为8~50μm。如果为该范围,则容易与一般的半导体装置的端子尺寸匹配。另外,从使在各端子的按压状态一致的方面来看,凸点用导电填充物2的大小(平均粒子直径)优选大致相同。在此,大致相同意味着粒子直径相对于平均粒子直径的标准偏差的比例即cv值为20%以下,优选为10%以下。

此外,凸点用导电填充物2的形状优选正球形状,但是也可为与它近似的大致球形状或椭圆球形状等。另外,也可以在表面存在细微凹凸。如果存在细微凹凸,则能够期待表面积的增大效果或按压时的锚定(anchor)效果,能够期待导通时的低电阻化或稳定化。

另一方面,绝缘性粘接树脂层1的厚度优选为凸点用导电填充物2的平均粒子直径的0.5~20倍,更优选为0.8~15倍。如果为该范围,则对凸点位置能够实现稳定的固定。另外,在该范围中,优选将绝缘性粘接树脂层1的厚度设为凸点用导电填充物2的一部分从绝缘性粘接树脂层1露出。这是因为提高了后述的绝缘性粘接树脂层1的除去、或与其他绝缘性粘接树脂层的层叠化等操作性。

为了将凸点用导电填充物2固定在半导体装置的电极,这样的绝缘性粘接树脂层1优选具有粘着性,但是为了提高密合性,也可以具有光固化性或热固化性。如果使绝缘性粘接树脂层1固化从而凸点用导电填充物2与半导体装置的电极形成金属结合,则能够保留金属结合的凸点用导电填充物2而除掉绝缘性粘接树脂层1。

另外,在不使凸点用导电填充物2金属结合而以绝缘性粘接树脂层1固定的情况下,也可以与其他的绝缘性粘接树脂层一并接合其他电子部件。在该情况下,其他的绝缘性粘接树脂层既可以预先设置在其他电子部件,也可以预先层叠在具有凸点用导电填充物2的绝缘性粘接树脂层。在该情况下,如果凸点用导电填充物2为金属镀层包覆树脂粒子,则该粒子直径也可以大于绝缘性粘接树脂层的合计的厚度。这是因为因接合而跟随变形(扁平)之后,因树脂粒子的回弹而变得容易保持导通连接。在凸点用导电填充物2为容易扁平的材质的情况下,为了不阻碍扁平化,优选使凸点用导电填充物2彼此互相稍许分离。这是因为担心因扁平化而出现凸点用导电填充物2的位置偏移。作为一个例子,优选分离凸点用导电填充物2的大小(平均粒子直径)的20%以上,更优选为30%以上。另一方面,若分离50%以上则担心捕获效率下降,因此优选小于50%。这样的话,凸点用传导填充物就能够在所需场所较密地存在,从保证制造时的质量的方面来看是优选的(在使导通电阻值稳定化的方面上也是优选的)。

在以这样的水平使凸点用导电填充物2彼此分离的情况下,也可以由多个凸点用导电填充物2构成单元。通过构成单元,能够使导通电阻值稳定化,是优选的。

另外,这样的单元的外形优选为矩形或圆形。这是因为一般凸点形状其本身就是这样的形状。

在单元为矩形的情况下,要根据凸点所要求的高度和宽度(即高宽比例),但是凸点用导电填充物2的大小(平均粒子直径)相当于凸点所要求的高度。宽度只要将凸点用导电填充物2沿其方向形成列而单元化即可。在该情况下也优选保持上述距离间隔。另外,该列也可以偏离到凸点用导电填充物2的平均粒子直径的一半的大小。

另外,在单元为圆形的情况下,也可为以一个凸点用导电填充物2为中心,沿其周边照着圆形配置其他凸点用导电填充物2的形状。在该情况下也优选保持上述距离间隔。该形状也可为在正三角形或正方形等的正多边形的各角和中心配置导电粒子的形状。此外,该正多边形的形状也可以变形。是为了例如在同一面内存在多个凸点形成部的情况下,使利用工具的按压均匀。

要使绝缘性粘接树脂层1为光固化性或者热固化性,则向构成绝缘性粘接树脂层1的树脂组合物,不仅配合公知的光或热固化性低聚物或单体还配合光或热聚合引发剂即可。作为这样的绝缘性粘接树脂层,能够适用热塑性丙烯类或者环氧类树脂膜、热固化或者光固化丙烯类或者环氧类树脂膜等。这样的绝缘性粘接树脂层1的厚度通常为10~40μm厚。

<凸点形成用膜的制造方法>

本发明的凸点形成用膜能够通过以下的工序(イ)~(ハ)、优选具有(ニ)的制造方法来制造。一边参照附图,一边按每个工序详细地进行说明。

(工序(イ))

首先,如图2所示,准备在表面形成有规则排列的凹部50(例如与平面格子图案的格子点相当的柱状的凹部)的转印体100。能够根据应该形成凸点的ic芯片等的半导体装置的电极(电极焊盘、通孔、通路孔等)的电极间距、电极宽度、电极间间隔宽度、凸点用导电填充物的平均粒子直径等决定凹部50的深度。

*转印体的具体例

该工序(イ)中应该准备的转印体能够利用公知的方法来制作,例如,可以加工金属板而制作母版,对它涂敷固化性树脂,并使之固化而制作。具体而言,对平坦的金属板进行切削加工,还制作形成了与凹部对应的凸部的转印体母版,对该母版的凸部形成面涂敷构成转印体的树脂组合物,并使之固化后,从母版拉开而得到转印体。

(工序(ロ))

接着,如图3所示,向转印体100的凹部50填充凸点用导电填充物2。具体而言,从转印体100的凹部50的上方分散凸点用导电填充物2,以刷子或刮刀、或者鼓风除掉未被填充的填充物即可。

(工序(ハ))

接着,如图4所示,对转印体100的填充有凸点用导电填充物2的一侧的表面,重叠绝缘性粘接树脂层1并进行按压,从而在绝缘性粘接树脂层1的单面转贴凸点用导电填充物2。在该情况下,能够使得凸点用导电填充物2埋没于绝缘性粘接树脂层1。由此,能得到如图1所示的凸点形成用膜10。

此外,通过以上的工序(イ)~(ハ)能得到本发明的凸点形成用膜,但是也可以进一步实施以下的工序(ニ)。

(工序(ニ))

如图5所示,对于转贴凸点用导电填充物2的绝缘性粘接树脂层1,能够从凸点用导电填充物转贴面侧层叠绝缘性粘接盖层6。由此,能得到具有2层构造的绝缘性粘接树脂层的凸点形成用膜20。绝缘性粘接盖层6既可以使用由与绝缘性粘接树脂层1相同的原料形成的层,一般也能使用粘着树脂膜、热固化性树脂膜及光固化性树脂膜。

(半导体装置等的电子部件)

本发明的凸点形成用膜能够适用于在电子部件的电极形成凸点的情况。即,电子部件具有在表面的凸点用的基底电极配置了凸点的构造,以使凸点形成用膜的凸点用导电填充物成为该基底电极的凸点的方式,该凸点形成用膜配置在该电子部件的基底电极形成表面。具体而言,本发明的凸点形成用膜能够优选适用于将凸点形成在ic芯片、半导体晶圆等的半导体装置的电极(焊盘、通孔、通路孔等)的情况。在适用于通孔或通路孔的情况下,凸点嵌入孔中也可。在适用于电极焊盘的情况下,例如,如图6所示,半导体装置200在表面具有在被钝化膜30包围的凸点用的基底电极60配置凸点的构造,以使本发明的凸点形成用膜10的凸点形成用填充物2成为该基底电极60的凸点的方式,该凸点形成用膜10配置在该半导体装置200的基底电极形成表面。该半导体装置也是本发明的一种方式。

一般,凸点用导电填充物用构成凸点形成用膜的固化性或非固化性的绝缘性粘接树脂固定在基底电极,但是在图6的方式中,优选通过使构成凸点形成用膜10的绝缘性粘接树脂层1固化,使得凸点用导电填充物2固定在基底电极60。

此外,也可以利用电阻加热或超声波加热等加热凸点形成用填充物2而金属结合到基底电极60,从而将凸点用导电填充物2固定在基底电极60。在该情况下,也可以在金属结合形成后,使构成凸点形成用膜10的绝缘性粘接树脂层1固化,然后进行剥离。

(半导体装置等的电子部件的制造方法)

在表面的凸点用的基底电极配置有凸点的电子部件,能够通过如下制造方法来制造:对于在表面具有凸点用的基底电极的无凸点电子部件的该基底电极,以使本发明的凸点形成用膜的凸点用导电填充物与该基底电极对置的方式,将该凸点形成用膜配置在该电子部件的基底电极形成表面之后,用构成凸点形成用膜的绝缘性粘接树脂,将凸点用导电填充物固定在基底电极。具体而言,在表面的凸点用的基底电极配置有凸点的本发明的半导体装置,能够通过如下制造方法来制造:对于在表面具有凸点用的基底电极的无凸点半导体装置的该基底电极,以使本发明的凸点形成用膜的凸点形成用填充物与该基底电极对置的方式,将该凸点形成用膜配置在该半导体装置的基底电极形成表面之后,通过加热或者通过光照射来使构成凸点形成用膜的绝缘性粘接树脂层固化,由此将凸点用导电填充物固定在基底电极。

另外,在表面的凸点用的基底电极配置有凸点的本发明的半导体装置,也能通过如下制造方法来制造:对于在表面具有凸点用的基底电极的无凸点半导体装置的该基底电极,以使本发明的凸点形成用膜的凸点形成用填充物与该基底电极对置的方式,将该凸点形成用膜配置在该半导体装置的基底电极形成表面之后,通过加热凸点形成用填充物来金属结合到基底电极而固定。这些制造方法也是本发明的一种方式。

(连接构造体)

通过将配置在本发明的电子部件的表面的基底电极的凸点用导电填充物和其他电子部件的对应的端子,经由固化性或非固化性的导电粘接剂或绝缘性粘接剂而连接,或者通过在两者之间形成金属结合而连接,从而得到连接构造体。具体而言,通过将配置在本发明的半导体装置的表面的基底电极的凸点用导电填充物和其他电子部件的对应的端子,经由固化性或非固化性的导电粘接剂或绝缘性粘接剂而连接,或者通过在两者之间形成金属结合而连接,从而得到连接构造体。这些连接构造体也是本发明的一种方式。

实施例

以下,通过实施例来具体说明本发明。

实施例1

准备厚度2mm的镍板,形成圆柱状的凸部(外径35μm、高度30μm),作为转印体母版。凸部的配置为在7mm四方形的200μm内侧外围配置280处,另外,凸部的密度为5.7个/mm2

以使干燥厚度成为30μm的方式向所得到的转印体母版涂敷含有苯氧基树脂(yp-50、新日铁住金化学(株))60质量份、丙烯酸树脂(m208、东亚合成(株))29质量份、光聚合引发剂(irgacure184、basfjapan(株))2质量份的光聚合性树脂组合物,在80℃干燥5分钟后,利用高压水银灯进行1000mj光照射,从而制作了转印体。

对从转印体母版剥下的转印体的表面,作为凸点用导电填充物分散平均粒子直径30μm的焊锡粒子(微粉焊锡粉、三井金属矿业(株))后,通过鼓风来向凹部填充焊锡粒子。

对于转印体的焊锡粒子填充面,承载成膜在pet膜上的厚度20μm的绝缘性粘接树脂膜,在温度50℃、压力0.5mpa下按压,从而向绝缘性粘接树脂膜边埋入边转印焊锡粒子。导电粒子的排列图案为1:1排列(在一个电极焊盘配置一个导电粒子的方式)。由此,得到了总厚30μm的凸点形成用膜。此外,在该凸点形成用膜中导电粒子的一个端部和膜界面大致一致。

此外,实施例1中所使用的绝缘性粘接树脂膜,是调制包含苯氧基树脂(yp-50、新日铁住金化学(株))60质量份、环氧树脂(jer828、三菱化学(株))40质量份、及阳离子类固化剂(si-60l、三新化学工业(株))2质量份的混合溶液,并将它涂敷到膜厚度50μm的pet膜上,在80℃的烤箱干燥5分钟而得到的膜。

实施例2

除了使用将凸部的外径变更为25μm、高度变更为20μm的转印体母版以外,通过重复进行与实施例1同样的操作而准备转印体,对于该转印体,分散平均粒子直径20μm的焊锡粒子(微粉焊锡粉、三井金属矿业(株))后,通过鼓风来向凹部填充焊锡粒子。

对于填充了焊锡粒子的转印体的两面,与实施例1同样地适用绝缘性粘接树脂膜,从而得到总厚30μm的凸点形成用膜。此外,在该凸点形成用膜中也与实施例1同样,导电粒子的一个端部与膜界面大致一致。

实施例3

使转印体母版的凸部的密度平均而为28.5个/mm2,进而使导电粒子的排列图案为如图7所示1:5排列,除此以外,重复进行与实施例2同样的操作而得到凸点形成用膜。在本实施例中,采用1:5排列,在俯视观察膜的情况下,配置了应该转印的电极焊盘p和与它接近的共5个导电粒子2。

比较例1

除了使用随机配置凸部的转印体母版(凸部的密度为60个/mm2)以外,重复进行与实施例1同样的操作而得到凸点形成用膜。

实施例4~6及比较例2

作为适用于转印体的焊锡粒子填充面的绝缘性粘接树脂膜,承载成膜在pet膜上的厚度30μm的绝缘性粘接树脂膜,并在温度50℃、压力0.5mpa下进行按压,从而向绝缘性粘接树脂膜边埋入边转印焊锡粒子,除此以外,重复进行与实施例1~3及比较例1同样的操作,从而分别得到总厚30μm的凸点形成用膜。此外,在这些凸点形成用膜中也与实施例1同样,导电粒子的一个端部与膜界面大致一致。

此外,在实施例4~6及比较例2中使用的绝缘性粘接树脂膜,是调制包含苯氧基树脂(yp-50、新日铁住金化学(株))30质量份、丙烯单体(lightacrylate3ega、共荣社化学(株))60质量份、及光自由基聚合引发剂(irgacure184、basfjapan(株))3质量份的混合溶液,并将它涂敷到膜厚度50μm的pet膜上,在80℃的烤箱干燥5分钟而得到的膜。

实施例7~9及比较例3

作为适用于转印体的焊锡粒子填充面的绝缘性粘接树脂膜,承载成膜在pet膜上的厚度30μm的绝缘性粘接树脂膜,并在温度50℃、压力0.5mpa下进行按压,从而向绝缘性粘接树脂膜边埋入边转印焊锡粒子,除此以外,重复进行与实施例1~3及比较例1同样的操作,从而分别得到总厚30μm的凸点形成用膜。此外,在这些凸点形成用膜中也与实施例1同样,导电粒子的一个端部与膜界面大致一致。

此外,在实施例7~9及比较例3中所使用的绝缘性粘接树脂膜,是调制包含苯氧基树脂(yp-50、新日铁住金化学(株))30质量份、丙烯单体(lightacrylate3ega、共荣社化学(株))60质量份、脱模剂(byk3500、byk-chemiejapan(株))3质量份及光自由基聚合引发剂(irgacure184、basfjapan(株))3质量份的混合溶液,并将其涂敷到膜厚度50μm的pet膜上,在80℃的烤箱干燥5分钟而得到的膜。

(评价)

使用实施例1~9及比较例1~3的凸点形成用膜,如以下说明的那样制作连接构造体,测定并评价凸点形成时的导通电阻值(初始导通电阻值)、和在温度85℃、湿度85%的环境下施加电压50v时的导通电阻值(高温高湿偏压实验后电阻值)。导通电阻值是利用数字万用表(34401a、agilenttechnologies(株))以4端子法在1ma的通电条件下测定的。

对于初始导通电阻值,设5ω以下为良好(g)、越过它的情况为不良(ng)。另外,对于高温高湿偏压实验后导通电阻值,设20ω以下为良好(g)、超过它的情况为不良(ng)。将得到的结果示于表1中。

(使用实施例1~3、比较例1的凸点形成用膜的连接构造体的制作)

在具有外围配置的铝电极焊盘(直径30μm、85μm间距、280端子(pin))的无凸点ic芯片(尺寸:7mm纵×7mm横×200μm厚)的该电极焊盘配置凸点形成用膜,在温度50℃、压力0.5mpa进行按压,从而粘贴固定。在实施例1~2的情况下使得对一个电极焊盘对应一个凸点用导电填充物(焊锡粒子)。将粘贴有该凸点形成用膜的ic芯片,在温度180℃、压力40mpa、加热加压时间10秒这一条件下连接到ic安装用环氧玻璃基板(材质:fr4)。由此得到了连接构造体。

(使用实施例4~6、比较例2的凸点形成用膜的连接构造体的制作)

与实施例1同样地将凸点形成用膜粘贴在ic芯片后,照射波长365nm的紫外线(照射强度100mw、照射量2000mw/cm2),进行光自由基聚合,从而固定。在实施例3~4的情况下使得对一个电极焊盘对应一个凸点用导电填充物(焊锡粒子)。隔着阳离子聚合性绝缘性粘接树脂膜(苯氧基树脂(yp-50、新日铁住金化学(株))60质量份、环氧树脂(jer828、三菱化学(株))40质量份、及阳离子类固化剂(si-60l、三新化学工业(株))2质量份构成的膜),将粘贴有该凸点形成用膜的ic芯片,在温度180℃、压力40mpa、加热加压时间20秒这一条件下连接到ic安装用环氧玻璃基板(材质:fr4)。由此得到了连接构造体。

(使用实施例7~9、比较例3的凸点形成用膜的连接构造体的制作)

与实施例1同样地将凸点形成用膜粘贴在ic芯片后,照射波长365nm的紫外线(照射强度100mw、照射量2000mw/cm2),进行光自由基聚合,从而固定。在实施例5~6的情况下使得对一个电极焊盘对应一个凸点用导电填充物(焊锡粒子)。将该凸点形成用膜从ic芯片剥下,在ic芯片的电极焊盘接合有凸点形成用导电填充物。接着,将该状态的ic芯片,在温度180℃、压力40mpa、加热加压时间20秒这一条件下连接到ic安装用环氧玻璃基板(材质:fr4)。由此得到了连接构造体。

[表1]

由表1可知,实施例1~9的凸点形成用膜能够在无凸点ic芯片的电极焊盘配置作为凸点发挥功能的导电填充物,“初始导通电阻”及“高温高湿偏压实验后导通电阻”的评价为良好。另外,也没有发生短路。特别是,在实施例3、6及9的凸点形成膜的情况下,在无凸点ic芯片的一个电极焊盘及其附近存在的导电填充物的个数成为5个。因此,在制造连接构造体时,能够提高凸点形成膜与无凸点ic芯片的电极焊盘之间的对位精度。相对于此,比较例1~3的凸点形成用膜,“初始导通电阻”及“高温高湿偏压实验后导通电阻”的评价均为不良。还发生了短路。

实施例10

从实施例1,将转印体母版的凸部变更为外径12μm、高度10μm,并将导电粒子的排列如图8所示变更为1:4排列,进而将凸点用导电填充物变更为平均粒子直径10μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),并使绝缘性粘接树脂膜的厚度为8μm,除此以外,通过重复进行与实施例1同样的操作,得到总厚10μm的凸点形成用膜。此外,转印体母版中的凸部的密度为22.9个/mm2。另外,凸部的最接近距离为4.9μm。

实施例11

从实施例1,将转印体母版的凸部变更为外径12μm、高度10μm,并将导电粒子的排列如图9所示变更为1:16排列,进而将凸点用导电填充物变更为平均粒子直径10μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),除此以外,通过重复进行与实施例1同样的操作,得到总厚10μm的凸点形成用膜。这样使凸点用导电填充物也存在于凸点的外周部,从而能够扩大膜的粘合工序的偏移的容许范围。此外,转印体母版中的凸部的密度为91.4个/mm2。另外,凸部的最接近距离为4.9μm。

实施例12

从实施例1,将转印体母版的凸部变更为外径12μm、高度10μm,并将导电粒子的排列如图10所示变更为1:3排列,进而将凸点用导电填充物变更为平均粒子直径10μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),除此以外,通过重复进行与实施例1同样的操作,得到总厚10μm的凸点形成用膜。此外,转印体母版中的凸部的密度为17.1个/mm2。另外,凸部的最接近距离为4.9μm。

实施例13

从实施例1,将转印体母版的凸部变更为外径12μm、高度10μm,并将导电粒子的排列如图11所示变更为1:9排列,进而将凸点用导电填充物变更为平均粒子直径10μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),除此以外,通过重复进行与实施例1同样的操作,得到总厚10μm的凸点形成用膜。这样通过使凸点用导电填充物也存在于凸点的外周部,能够扩大膜的粘合工序的偏移的容许范围。此外,转印体母版中的凸部的密度为51.4个/mm2。另外,凸部的最接近距离为4.9μm。

实施例14

从实施例1,将转印体母版的凸部变更为外径12μm、高度10μm,并将导电粒子的排列如图12所示变更为1:6排列,进而将凸点用导电填充物变更为平均粒子直径10μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),除此以外,通过重复进行与实施例1同样的操作,得到总厚30μm的凸点形成用膜。此外,转印体母版中的凸部的密度为34.3个/mm2。另外,凸部的最接近距离为4.9μm。

实施例15

从实施例1,将转印体母版的凸部变更为外径12μm、高度10μm,并将导电粒子的排列如图13所示变更为1:20排列,进而将凸点用导电填充物变更为平均粒子直径10μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),除此以外,通过重复进行与实施例1同样的操作,得到总厚10μm的凸点形成用膜。这样通过使凸点用导电填充物也存在于凸点的外周部,能够扩大膜的粘合工序的偏移的容许范围。此外,转印体母版中的凸部的密度为114.3个/mm2。另外,凸部的最接近距离为4.9μm。

实施例16

从实施例1,将转印体母版的凸部变更为外径24μm、高度20μm,并将导电粒子的排列如图14所示变更为1:2排列,进而将凸点用导电填充物变更为平均粒子直径20μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),并使绝缘性粘接树脂膜的厚度为16μm,除此以外,通过重复进行与实施例1同样的操作,得到总厚20μm的凸点形成用膜。此外,转印体母版中的凸部的密度为11.4个/mm2。另外,凸部的最接近距离为9.9μm。

实施例17

从实施例1,将转印体母版的凸部变更为外径24μm、高度20μm,并将导电粒子的排列如图15所示变更为1:8排列,进而将凸点用导电填充物变更为平均粒子直径20μm的金/镍包覆树脂粒子(micropearl、积水化学工业(株)),除此以外,通过重复进行与实施例1同样的操作,得到总厚20μm的凸点形成用膜。这样通过使凸点用导电填充物也存在于凸点的外周部,能够扩大膜的粘合工序的偏移的容许范围。此外,转印体母版中的凸部的密度为45.71个/mm2。另外,凸部的最接近距离为9.9μm。

(使用实施例10~17的凸点形成用膜的连接构造体的制作)

除了使用实施例10~15的凸点形成用膜以外,制作了与实施例1的情况同样的连接构造体。另外,在实施例16及17的凸点形成用膜的情况下,将成为评价对象的外围配置的铝电极焊盘,变更为纵30μm×横85μm、85μm间距(焊盘间间隔55μm)、280端子,除此以外,与实施例1的情况同样地制作了连接构造体。

与实施例1的情况同样地进行了实施例10~17中制作的连接构造体的初始导通电阻的评价,全部为5ω以下,能够确认实用上没有问题。另外,进行了在85℃/85%环境实验500小时后的导通可靠性实验,高温高湿偏压实验后导通电阻值显示出全部20ω以下的结果,确认了实用性上没有问题。另外,全部都没有发生短路。

另外,对于实施例10~15的树脂膜,分别将厚度变更为20μm,以及对于实施例16及17的树脂膜,分别将厚度变更为25μm,且将导电粒子压入膜的一个面并使之埋没,除此以外,分别通过重复进行与实施例10~17同样的操作,制作了凸点形成用膜和连接构造体。对它们分别进行了与实施例10~17同样的评价,能得到与实施例10~17的情况同样良好的结果。

产业上的可利用性

本发明的凸点形成用膜在将无凸点ic芯片等安装在布线基板时是有用的。

标号说明

1绝缘性粘接树脂层;2凸点用导电填充物;6绝缘性粘接盖层;10、20凸点形成用膜;30钝化膜;50转印体的凹部;60基底电极;100转印体;200半导体装置;p电极焊盘。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1