宽带混合波束成形一体化天线阵的制作方法

文档序号:12683929阅读:262来源:国知局
本发明涉及一种无线通信MIMO收发阵列,尤其设计一种高性能的宽带混合波束成形一体化天线阵,属于通信多波束合成应用技术。
背景技术
:在第五代移动通信中,用户端与基站之间的数据传输速度将大幅度提高,因此,单一通道的通信系统将逐步被淘汰,大规模MIMO技术将成为第五代移动通信系统的关键技术。但是,随着射频通道数目以及天线阵列数目的增加,通信基站的硬件成本也在显著增加,全数字波束成形基站要求每一个天线阵列对应一个完整的射频通道与数字基带处理单元,因此硬件设计复杂,且大量高速宽带的模拟数字转换器以及高速数字处理器的单元不仅价格昂贵,并且功耗大,控制复杂,不利于进行基站的大规模集成应用。相比之下,采用数字基带域预编码与射频模拟域移相结合的混合波束成形结构,可以有效减少数字硬件,降低系统复杂度,在实际应用中具有极大的优势。其中,直接在射频链路对射频信号进行相位调整具有很高的响应速度以及准确的移相精度等优点,相较于其他移相结构,在射频链路上移相无疑是结构最简单的,并且不会引入额外的噪声使得射频信号的信噪比恶化。而射频链路中的移相模块往往成为制约射频链路移相发展的瓶颈,传统的电调移相器或者数字移相器存在价格高,精度低以及带宽窄的缺点;矢量调制器芯片可以具有较高的精度,但目前大多在低频段(小于2.4GHz)下作为移相模块使用。技术实现要素:为了克服现有技术中存在的不足,本发明提供一种可在水平面内形成准确的波束指向的高性能宽带混合波束成形一体化天线阵,可应用于多用户波束成形通信系统。为实现上述目的,本发明公开一种宽带混合波束成形一体化天线阵,包括双向移相收发阵列、天线阵列以及控制与校准单元;其中:双向移相收发阵列包括至少一个同相功分模块和多个双向移相收发单元;同相功分模块包含多个功分器,用于将一路射频信号同相等幅功分为多路射频信号;双向移相收发单元包括电连接的射频收发前端模块和正交合成移相模块,射频收发前端模块用于放大射频通道信号,正交合成移相模块用于调整射频通道的相位以及幅度,射频通道包括接收和发射信号通道;天线阵列包含多个天线单元,用于辐射或接收各射频通道的信号;控制与校准单元的一端与各双向移相收发单元相连接,另一端连接基带处理板,用于对整个宽带混合波束成形一体化天线阵的波束成形进行控制与校准。进一步的,正交合成移相模块包括正交耦合器、第一数控衰减器、第三射频开关、第一传输线变压器、第二数控衰减器、第四射频开关、第二传输线变压器以及功率合成器;正交耦合器的输入端连接同相功分模块,正交耦合器的0度输出端依次经过第一数控衰减器、第三射频开关、第一传输线变压器与功率合成器的第一输入端口相连;正交耦合器的90度输出端依次经过第二数控衰减器、第四射频开关、第二传输线变压器与功率合成器的第二输入端口相连,功率合成器的公共端口与所述射频收发前端模块相连。进一步的,正交耦合器、数控衰减器、射频开关、传输线变化器以及功率合成器均采用宽带器件,工作带宽范围为500MHz,中心频率覆盖范围从2.5GHz至3.5GHz。进一步的,射频收发前端模块包括接收放大链路、发射放大链路、第一射频开关和第二射频开关;其中,第一射频开关的公共端连接正交合成移相模块,第一射频开关的发射端口通过发射放大链路连接第二射频开关的发射端口;第二射频开关的公共端连接天线阵列,第二射频开关的接收端口通过接收放大链路连接第一射频开关的接收端口。进一步的,发射放大链路包括依次连接的带通滤波器、射频放大器和功率放大器,用于在射频开关拨在发射端口时对从正交合成移相模块出来的信号进行滤波和放大后送入天线阵列进行辐射;接收放大链路包括依次连接的低噪声放大器、带通滤波器和射频放大器,用于在射频开关拨在接收端口时对从天线阵列接收到的射频信号进行放大和滤波后送入正交合成移相模块。进一步的,低噪声放大器工作频段为50MHz~4GHz,噪声系数为1.5dB;射频放大器的工作范围在50MHz~6GHz;功率放大器的工作范围在200MHz~6GHz;带通滤波器的性能要求为通带内插损小于2dB,带外杂散抑制达到30dB。进一步的,控制与校准单元包括控制部、控制接口及只读存储器;只读存储器与控制部连接通信,控制部的输入端连接基带处理板,输出端通过控制接口连接各双向移相收发单元;控制部可选用可编程逻辑器件或单片机。进一步的,只读存储器内储存有控制字表,所述控制字表包含作为控制字的预先写入的相位及幅度值;预先写入的相位及幅度值是通过基带处理板在对各射频通道进行初始相位校准时写入,包括各射频通道的初始相位值及相对变化对应控制。进一步的,基带处理板在对各射频通道进行初始相位校准时,对于不同的射频通道将初始幅度调为一致,仅初始相位不同。进一步的,一体化天线阵采用线性阵列结构,包括至少两组双向移相收发子阵列和至少一组天线子阵列;所述天线阵列包含多个天线单元和多个功分器,功分器的公共端连接天线单元,功分器的分离端连接相邻两组双向移相收发子阵列中的两个双向移相收发单元。进一步的,天线单元采用宽带偶极振子天线,带宽范围为500MHz。有益效果:(1)通过对双向移相收发阵列的各个通道幅度以及相位的调整,可以在水平面内形成准确的波束指向,并可以对天线旁瓣进行抑制;且波束指向精度可达0.31度,覆盖范围可达110度;在不同角度之间的变换时间均可在3us内通过正交合成移相模块实现完成,不影响通信符号的正常传输。(2)正交合成移相模块可对信号的相位及幅度分别调整,每个通道内射频信号调整相位精度可达到1度,幅度精度可达到0.5dB;生成的低副瓣或者无副瓣波束,以减少副瓣干扰,更有利于进行多用户同时通信这一功能;且正交合成移相模块不改变射频信号的频率,因此对射频信号的相位噪声影响很小,在对射频信号进行幅度及相位调整时并不影响信号本身的相位噪声。(3)由于采用无源的正交合成移相模块来控制射频信号相位及幅度变化,使得传输的信号带外杂散非常少,引入的噪声也非常少,对射频信号的信噪比无明显恶化。(4)本发明正交移相合成模块各个器件均采用宽带器件,工作带宽可达500MHz,并且中心频率覆盖范围从2.5GHz至3.5GHz,可覆盖未来第五代移动通信的部分频段,解决了传统结构覆盖范围窄,工作带宽窄的缺点。(5)基带处理板通过控制部即可对各个射频通道中信号的幅度和相位进行单独调整,控制方法简便;控制与校准单元采用自动校准方式,通过控制部与基带处理板可以自动对初始相位进行校准,减少了时间以及资源浪费。(6)两组双向移相收发子阵列可分别对输入的射频信号进行波束成形,通过功分器将不同的子阵列连接至同一组天线子阵列可以在同一组天线子阵列上辐射出两个不相干的波束,互相独立,互不影响,从而实现与两个用户同时进行通信传输的目的;同样的,也可以通过多个双向移相收发子阵列共用一组或多组天线子阵列,以实现同时进行多用户通信。(7)天线阵列采用线阵结构,能增大天线辐射功率,提高定向性,且组阵简单,天线间互耦较小;天线阵列采用宽带偶极振子天线,覆盖范围广,保证工作频带范围内的电磁波信号能够发射与接收,制作成本低。(8)一体化天线阵采用模块化创新设计,对各双向移相收发单元实现单独控制,在部分双向移相收发单元损坏的情况下依然能保持较为准确的波束指向,同时也可以用备用单元替换掉损坏的双向移相收发单元,以提高系统稳定性并且减小维护成本;同时,模块化的设计还大大降低了系统的成本和电路的复杂程度,在保证移相精度与响应速度的同时大幅降低了带外杂散幅度以及改善了信号的相位噪声指标;整体结构简单,制作和维护成本也很低。附图说明图1为本发明提供的混合波束成形一体化天线阵结构示意图。图2为本发明提供的双向移相收发单元的模块示意图。图3为本发明提供的控制与校准单元示意图。图4为正交移相合成模块原理示意图。图5为本发明提供的水平面内接收状态波束扫描测试结果图6为本发明提供的水平面内发射状态波束扫描测试结果具体实施方式下面结合附图对本发明作更进一步的说明。如图1所示,实施例1公开一种高性能宽带混合波束成形一体化天线阵,包括双向移相收发阵列、天线阵列以及控制与校准单元。其中,双向移相收发阵列包括同相功分模块6和多个双向移相收发单元1。各双向移相收发单元1又包括相互连接的射频收发前端模块4和正交合成移相模块5,射频收发前端模块4用于放大射频通道信号,正交合成移相模块5用于调整射频通道的相位以及幅度;射频收发前端模块4的另一端连接天线阵列,正交合成移相模块5的另一端连接至同相功分模块6,同相功分模块6的另一端连接控制与校准单元。同相功分模块6用于将输入的射频信号进行同相功分为N路,分别输入各个双向移相收发单元。天线阵列2至少包含多个天线单元21用于辐射与接收各个射频通道的信号,天线阵列2还可以包括功分器22,用于将几个子阵的不同射频信号合成为一路。控制与校准单元3用于对整个宽带混合波束成形一体化天线阵的波束成形进行控制与校准。如图2所示,射频收发前端模块4由接收放大链路、发射放大链路、第一射频开关41及第二射频开关42组成,射频开关41和42用于接收和发射链路的切换;接收放大链路的输入端连接第二接射频开关42的输出端,输出端连接第一射频开关41的输入端;发射放大链路的输入端连接第一射频开关41的输出端,输出端连接第二射频开关42的输入端。接收放大链路包括依次连接的低噪声放大器43、第一带通滤波器44及第一射频放大器45;发射放大链路包括依次连接的第二带通滤波器47、第二射频放大器46及功率放大器48。带通滤波器用于滤除带外干扰,包括基站射频输入本身频谱不纯净引入的干扰。这里也可以采用其他形式,比如一个高通滤波器和一个低通滤波器的组合;射频放大器用于抵消整个链路的损耗,因为正交耦合模块是无源的,只有损耗没有增益,故需要在后一级的射频收发模块增加射频放大器,实施例中射频收发前端模块4包含两个射频放大器,但实际应用中射频放大器数目不限于此,射频放大器的数目以及型号取决于需要的输出功率,根据实际需要可以包含一个或者更多数目的射频放大器;低噪声放大器43用于对接收的信号进行低噪声放大,由于在空间中接收到的射频信号比较微弱,放大器自身的噪声会对信号的干扰十分严重,而低噪声放大器自身的噪声十分小,并不会对射频信号产生干扰,可显著减小信号信噪比。功率放大器48用于对发射的信号进行末级放大,由于发射时需要的信号功率比较大,普通射频发达器线性度无法满足要求,而功率放大器的线性度非常优异,可以完成高功率的放大输出。该射频收发前端模块4的工作状态分为发射状态以及接收状态,在接收状态时,第一射频开关41及第二射频开关42打在接收端,低噪声放大器43及带通滤波器44对从天线阵列2接收到的射频信号进行低噪声放大及滤波后送入正交合成移相模块5;在发射状态时,一号射频开关41及二号射频开关42打在发射端,带通滤波器47及功率放大器48对从正交合成移相模块5输出的信号进行放大后送入天线阵列2进行辐射。作为实施例中的优选方案,低噪声放大器43的工作范围在50MHz~4GHz,噪声系数为1.5dB;功率放大器48的工作范围在200MHz~6GHz,1dB压缩点为27dBm;第一射频放大器45与第二射频放大器46的工作范围在50MHz~6GHz,增益为19dB,以满足通信基站对于发射功率以及接收灵敏度的要求;带通滤波器的性能要求为通带内插损小于2dB,带外杂散抑制达到30dB。在笛卡尔坐标系中,对于任意一个矢量信号都可以上被分解为正交的两个矢量之和,对分解后的两个正交矢量进行衰减后再合成,可以得到由此两个正交矢量构成的平面上任意角度及幅度的矢量。如图4所示,图中任意一个矢量对应一个射频信号,其与原点的夹角角度为相位值,向量长度绝对值为幅度值。对于这样一个矢量A,都可以分解为一个0度坐标轴上的矢量B与一个90度坐标轴上的矢量C之和,如图4虚线对应的矢量。此时通过分别调整0度和90度坐标轴上的矢量幅度,相当于矢量A的幅度与相位在进行改变。但,新的射频矢量只是完成了在图4中90度范围内的改变,如果想要完成360度的改变,可通过引入射频开关和传输线变换器的结构来切换象限。其原理是利用传输线变换器的反相机理,传输线变换器有两个输入端口,一个输出端口,另一个接匹配负载端口,其功能为1号口输入的射频信号从输出口输出时相位不变,从2号口输入的射频信号从输出口输出时相位变化180度。在图4中可以认为分别是对矢量B和矢量C进行反相的操作。通过对射频开关来完成选择两个端口输入的功能,这样就可以扩展至360度相位可调。若只需完成移相操作,即保持幅度不变,只是改变相位的话,对于新的射频矢量A′只要沿着图4中圆圈变化即可。图2实施例中的正交合成移相模块5包括正交耦合器51、第一数控衰减器52、第二数控衰减器55、第三射频开关53、第四射频开关56、第一传输线变压器54,第二传输线变压器57以及功率合成器58。正交耦合器51将输入信号进行正交功分,从0度端口输出未移相的信号,从90度端口输出移相90度的信号;第一数控衰减器52和第二数控衰减器55分别用于对0度信号以及90度信号的幅度和相位进行衰减控制;其中,数控衰减器用于调整幅度,对两路正交的信号上分别调整幅度再同相合成即相当于对合成信号调整相位及幅度;作为实施例中的优选方案,数控衰减器可采用本领域惯用的功率衰减器件,第一数控衰减器52和第二数控衰减器55的衰减范围的最大上限为31.5dB,衰减间隔为0.5dB;当然,实际应用中并仅不限于此,可根据需求采用其它衰减间隔和其它形式的数控衰减器。第三射频开关53、第四射频开关56、第一传输线变压器54以及第二传输线变压器57用于不同的象限的切换,第三射频开关的两个输出端分别接第一传输线变压器的两个输入端,从两个输入端输入的信号进过第一传输线变压器会相差180度,第三射频开关在第一传输线变压器的两个输入端之间切换即相应于在坐标系上对本路信号进行反相操作;相应的第四射频开关在第二传输线变压器的两个输入端之间切换可对另一路90度的信号进行反相操作。最后通过功率合成器58将0度信号和90度信号同相合成,从而完成对相应射频通道信号的相位进行360度范围内任意角度和幅度的调整。比如,当只有第三射频开关在第一传输线变压器的两个输入端切换时,相当于合成信号关于Y轴对称,当只有第四射频开关在第二传输线变压器的两个输入端切换时,相当于合成信号关于X轴对称。由此,通过对第一数控衰减器52和第二数控衰减器55的衰减控制可以得到在0至90度范围内任意角度和幅度的点;而通过两路信号上的射频开关和传输线变压器的切换可以选择对信号进行正相或反相操作,相当于对合成矢量进行象限选择,从而完成对相应射频通道信号的相位进行360度范围内任意角度和幅度的调整。本发明所公开的正交移相合成模块5中的正交耦合器、数控衰减器、射频开关、传输线变化器以及功率合成器均采用宽带器件,工作带宽可达500MHz,并且中心频率覆盖范围从2.5GHz至3.5GHz,可覆盖未来第五代移动通信的部分频段。实施例中选用的31.5dB范围以及0.5dB步长的功率衰减器件,使得正交合成移相模块5对各通道内射频信号调整相位的精度可达到1度,幅度精度可达到0.5dB;生成的低副瓣或者无副瓣波束,以减少副瓣干扰,从而更有利于进行多用户同时通信这一功能。且,正交合成移相模块5不改变射频信号的频率,因此对射频信号的相位噪声影响很小,在对射频信号进行幅度及相位调整时并不影响信号本身的相位噪声。如图3所示,实施例中的控制与校准单元3包括一个现场可编程逻辑器件31,一个只读存储器32以及控制接口8。现场可编程逻辑器件31用于控制整个一体化天线阵中的各个双向移相收发单元的射频信号的相位及幅度。在实际应用中,实施例中的控制部不仅可以选用现场可编程逻辑器件(FPGA)31,还可以根据需求选用其它可编程逻辑器件(PLD)或单片机(MCU)。图3实施例中控制与校准单元3将基带处理板发出的波束指向指令通过控制接口8传递至现场可编程逻辑器件31内,现场可编程逻辑器件31将波束指向指令转化成相应的只读存储器地址,然后根据相应地址对读取在只读存储器32相应存储的各个通道的相位值和幅度值,回传至现场可编程逻辑器件31中并转化为SPI控制字,再输出至各个通道的数控衰减器和射频开关,完成对整个波束的控制。在只读存储器32中存储有一张完整的覆盖各射频信号通道的相位值和幅度值的控制字表,控制字表内的控制字在基带处理板和控制部对射频信号通道校准时预先写好。具体的,在校准过程中,对一张写有所有幅度与相位对应点(即所有可能的控制字组合)的控制字表进行扫描,使用基带处理板自动读取矢量网络分析仪中相应控制字的幅度与相位并使用算法进行判断,根据需要自动选取符合要求的点存入只读寄存器32中,即预先写入的控制字。通过这种方式,将每一个通道的初始相位值及相对变化对应控制存储于只读存储器中,在射频信号控制时,通过现场可编程逻辑器件31进行读取预先写好的控制字表即可,省去传统结构人工校准的时间和精力。进一步的,当控制各射频通道信号时,对于不同的射频通道,可以通过收发链路上的调整将初始幅度调为一致,只是初始相位选取上有所不同,从而大大减少前期校准工作量和资源占用量。通过自动校准的方式,将每一个通道的初始相位值及相对变化对应控制存储于只读存储器32中,并通过现场可编程逻辑器件31进行读取,省去传统结构人工校准的时间和精力。综上述,通过基带处理板和控制部可以对每一个射频通道的幅度值和相位值进行调整,这样不仅可以快速准确控制波束的方向,还可以根据一些计算对波束的形态进行调整,以达成无旁瓣波束或者双主瓣波束;由于每一种幅度和相位的组合数量十分巨大,通过现场可编程逻辑器件与基带处理板对初始值进行自动校准,根据各个射频通道的相似性,在控制每一个射频通道信号时,可以通过查询同一张表,只是初始相位选取上有所不同,从而大大减少前期校准工作量和资源占用量。一体化天线阵采用线性阵列结构,包括至少两组双向移相收发子阵列和至少一组天线子阵列;所述天线阵列包含多个天线单元和多个功分器。作为本发明的优选实施例,双向移相收发子阵列有2M组,天线阵列的有M组,每一组双向移相收发子阵列包括N个天线单元和N个功分器,每个功分器的功分器的公共端连接天线单元,功分器的分离端连接相邻两组双向移相收发子阵列中的两个双向移相收发单元。如图1所示的实施例天线阵包括两组双向移相收发子阵列,每组双向移相收发子阵列包括8个双向移相收发单元。同相功分模块6使用7个功分器将一路射频信号分为8路同相等幅的射频信号输送至8个双向移相收发单元的正交合成模块;一组天线子阵列包含功分器22共有8个,8个功分器22的公共端分别与相应的8个天线单元21相连,功分器的分离端同时连接两组不同双向移相收发子阵列中的双向移相收发单元,每两个天线单元21之间间距为半个电磁波波长。与传统波束成形天线阵不同,实施例采用的两组双向移相收发子阵列分别对输入的射频信号进行波束成形,由于两路射频信号的不相关性,可以在同一个天线阵列上辐射出两个不相关的波束,互相独立,互不影响,从而实现与两个用户同时进行通信传输的目的。同样的,也可根据需要按上述方法设计多组双向移相收发子阵列的天线阵,以实现同时进行多用户通信。天线阵列中的天线单元采用宽带偶极振子天线,覆盖范围在水平面上可达120度,保证工作频带范围内的电磁波信号能够发射与接收,制作成本低。结上述,实施例中公开的一体化天线阵工作原理如下:当处在接收状态时,每一个射频收发模块的射频开关均切换在接收状态,射频信号通过天线单元接收馈入功分器,分别输入两个子阵的射频收发模块中,经过低噪声放大器,带通滤波器以及射频放大器后进入正交合成移相模块,对各个通道的信号相位以及幅度进行控制,再经过同相功分模块将一个子阵列的N个通道的同相等幅射频信号合成为一路射频信号送入基站端,实施例中N取8。当处在发射状态时,每一个射频收发模块的射频开关均切换在发射状态,射频信号通过同相功分模块分为N路同相等幅信号,分别输入至8个正交合成移相模块,通过对正交合成移相模块的控制达到对各个通道的相位和幅度的控制,然后各个通道信号分别经过射频收发模块5的发射链路,经带通滤波器47、射频放大器46和功率放大器48,从功率放大器48输出的信号经过功分器与另一个子阵列对应的射频信号合路,再通过天线单元辐射进空间中。下面结合一个实施案例对本案做出进一步的说明。该实施例天线阵射频工作中心频率为3.5GHz,工作带宽为500MHz,天线阵列为水平方向8单元等半波长间距分布一维阵列,单个天线单元的增益为6dBi,而双向移相收发单元阵列为2*8,即分为上下两层子阵,每一个子阵包括8个双向移相收发单元,上下两层的对应双向移相收发单元通过功分器进行连接,功分器的公共端再接入天线阵列。因此,每一个天线阵列单元对应上下两路双向移相收发单元,同时可以进行两个通信信号流的传输;每一个双向移相收发单元接收链路最大增益为12.7dB,噪声系数为2.5dB,发射链路最大增益为16dB,输出最大功率10dBm。天线阵列的辐射波束在水平平面的3dB波束宽度为14°,垂直平面内的3dB波束宽度为78°,水平平面内的波束可在±50°范围内指向任意角度。对于单通道的双向移相收发单元采用20MHz的TDD模式不同调制模式的LTE信号进行EVM(误差向量幅度)测试,结果见表1;同时对该系统的邻道功率比ACPR(AdjacentChannelPowerRatio)为-43.97dBc,完全满足通信要求。表1在不同调制模式下LTE信号的EVM测试结果调制方式EVM值TDDQPSK0.321%TDD16QAM0.314%TDD64QAM0.316%图5给出了本发明在发射状态下水平平面内波束扫描测试结果,在每一个角度上可以获得26dB的增益,图6给出了本发明在接收状态下水平平面内波束扫描测试结果,在每一个角度上可以获得21dB的增益;为了保证波束成形角度的准确性与线性度,此时双向移相收发单元并没有工作在最大增益情况;虽然图5及图6中是以10°为间隔进行扫描的,但是实际波束可在±50°范围内指向任意角度,其相位精度为0.31度,幅度精度为0.5dB。可见,在实际运行中,将射频信号首先分解为16路同相等幅的信号,再经过双向移相收发中的正交合成移相模块进行幅度及相位的调整,对于每一个通信射频信号流均可生成稳定准确的波束成形,且波束指向精度为0.31度,覆盖范围为110度;在不同角度之间的变换时间均在3us内通过正交合成移相模块实现完成,不影响通信符号的正常传输,经测试,优化结构传输64QAM调制的LTE信号可以达到0.316%的EVM。以上所述仅是本发明的优选实施方式,应当指出:对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1