功率模块及其制造方法、逆变器和车辆驱动系统与流程

文档序号:13032816阅读:182来源:国知局
功率模块及其制造方法、逆变器和车辆驱动系统与流程

本发明涉及一种用于运行电机的功率模块,该功率模块具有至少一个ga半导体开关(ga=镓、以镓为基础),用于将电流引导至电机的相上。本发明还涉及用于制造该功率模块的方法、具有这种功率模块的逆变器以及具有这种逆变器的车辆驱动系统。



背景技术:

车辆驱动系统的逆变器通常具有半导体开关,半导体开关组合在也被称作电源模块或功率模块的结构单元中。在传统的功率模块中,半导体开关互连成三相全桥电路。半导体开关在此实施为分别具有配属的硅续流二极管的硅绝缘栅双极型晶体管(硅igbt)。硅芯片的数量依赖于功率模块或逆变器的所需的电流传输能力和各个硅igbt的电流传输能力。例如,40kw逆变器/功率模块需要12个硅igbt以及与此相应地需要12个硅二极管。

硅igbt通常以双侧的“沟道结构”来制造,也就是说,在igbt的一侧上存在栅极接口和源极接口,而在相背置的一侧上存在漏极接口。因此,这种硅igbt必须从两侧电接触。图1示出穿过这样构建的功率模块的示例性的纵剖图。通常,硅igbt芯片1的电接触借助也被称为dcb载体(dcb=directcopperbonded,直接敷铜)的金属化的陶瓷载体2实现。该陶瓷载体具有陶瓷载体结构/板2’,其在两侧带有施加在上面的金属层2”(例如尤其是铜层)。igbt芯片1的背侧借助焊接连接/焊料层5直接焊接到dcb载体2上并且由此电接触。相应地,硅二极管1’作为反向二极管也焊接到dcb载体2上并且进行接触。相反地,硅igbt芯片1的相背置的前侧借助键合线3,例如铝线与dcb载体2电接触。dcb载体2在对准硅igbt芯片1的上侧上具有导体迹线结构,以便实现在布置于dcb载体2上的结构元件1,1’与外部接口/引脚8之间的所需的电连接。

此外,这种传统的功率模块具体良好导热的、通常高效冷却的、例如由铝构成的基板4。在基板4与dcb载体2上的导体迹线之间的电绝缘通过dcb载体2的陶瓷载体结构2’实现。其也提供从硅igbt芯片1到基板4的热传递。此外,为了高的抗振性,这些结构元件通常在共同的护套6中埋入灌封材料7中,灌封材料例如是硅凝胶或树脂。dcb载体2借助焊接连接/焊料层5与基板4连接。

驱控其中一个硅igbt1的驱动电路的大小和定位通过功率模块本身预给定,这是因为功率模块的输入和信号引脚8应直接与驱动电路接触。与此相应地,用于由这种功率模块构建的逆变器的其他接头的定位同样通过功率模块的几何形状来确定。电机的相与配属的功率模块通过大量的导电轨(也被称为汇流排)电连接。导电轨通常至少横穿半个逆变器。因为在导电轨中流动的电流可能变得特别大,所以导电轨放出大量的热量到逆变器中。于是,热量必须从逆变器导走。由于在逆变器中,在中间电流电容器附近的功率模块需要最大的结构空间,所以逆变器的设计基本上依赖于功率模块的结构。

如已阐述的那样,在以硅igbt为基础的功率模块中的热量导走通过功率模块的上面所阐述的整个多分层结构,也就是从igbt1至基板4的多分层结构来实现。这在结构中导致热应力并且由此通常导致此处的焊接部位5与线连接3的老化以及分离。

在硅igbt芯片1与dcb载体2之间的焊接连接部5通常借助以锡为基础的软焊料来实现。在150℃之上的温度中可能导致焊接连接部5的退化,这最终导致断裂。典型地,在焊接连接部5相对上部的金属层2”的铜的边界上形成脆的金属间化合的cu-sn区域,且该cu-sn区域会扩大,该cu-sn区域导致脆性断裂。可靠的焊接连接部5于是仅以如下方式得到,即,通过该焊接连接部的电流受到限制,从而在该焊接连接部中没有超过大约150℃的温度。这当然也限制了通过igbt1的可能的电流并且进而限制了功率模块或者利用其形成的逆变器的功率密度。

此外,如已阐述的那样,dcb载体2本身借助焊接连接部5与基板4连接。在此不利的是dcb载体2、基板4和焊接连接部5的材料的不同的热膨胀系数。由此,在此处经常也确定了焊接连接部5中的断裂或者dcb载体2的层2’、2”的分离。

另一经常出现的故障原因在于线3从相应的焊接部位掉下或分离。对这种现象已经进行了大量分析,其中,目前认为是由于所参与的材料的热膨胀系数的大的差异。因此,铝线3被铜线或被铝和铜线的组合代替。也测试了不同的线几何形状以及非常广泛的线结构和不同类型的灌封材料。在此强调的是,具有至少300μm的直径的铜线和igbt芯片1的铜金属化部对于其可靠的电接触来说是必需的。

硅igbt芯片1的金属化部接触igbt的掺杂的区域并且形成接触垫,接触垫又可以通过键合线3接触。目前对于金属化来说优选的材料是铝,这是因为铝具有与dcb载体2的常用的陶瓷sio2的良好的粘合效果并且其能简单地以干蚀刻方法结构化成导体迹线。然而,铜具有更好的电值,例如尤其是相比铝更小的电阻,因此可以利用铜实现本身更精细的导体迹线结构。然而与之对抗的是,在工艺技术上较难制造出由铜构成的导体结构,以及铜会导致与其碰触的接触配对件,例如锡焊料等被污染并由此变脆的倾向。这使得具有铜金属化的硅igbt芯片的功率模块的简单的制造工艺难以实现。

因此,常规的功率模块的功率密度至今为止很少改进。存在功率模块的如下考虑,其中,igbt芯片埋入多分层电路板(multilayercircuitboard)中。在此,igbt芯片的上侧上的接触垫不与线接触,而是与贯穿过电路板分层且以电镀铜填充的通路(via)接触。然而,为此需要铜金属化的igbt芯片,其出于上述原因在市场上是不可用的。此外,igbt芯片的这种布置方案需要复杂的至今尚未成熟的制造工艺。这种功率模块的持续可靠性也存在问题。在任何情况下,功率模块的功率密度的提高导致在其中包含的igbt的热量导走的改进以及构件的耐高温性的增强。

由使用基于氮化镓的开关,即所谓的gan功率半导体或者说gan半导体开关提供了提高功率密度和可靠性的可能性。例如由ep22590212a1公知了用于轨道车辆的具有基于氮化镓的半导体开关的功率模块的使用。



技术实现要素:

本发明的任务在于改进具有基于镓的半导体开关的功率模块。

该任务通过独立权利要求的特征来解决。优选的实施方式可以由从属权利要求得到。

因此,提出了用于运行电机的功率模块。功率模块具有至少一个ga半导体开关,尤其是两个以及更多个ga半导体开关,用于将电流引导至电机的相上。在此,ga半导体开关具有接触侧和相背置的后侧,其中,在接触侧上布置有接触部,尤其是接触垫,用于优选完全电接触ga半导体开关。在背侧布置有冷却元件,用于从ga半导体开关导走热量。功率模块尤其是实施用于电动车辆驱动系统,也就是实施为电动车辆驱动系统功率模块。

因此,背侧是非接触的,也就是说,它没有用于电接触ga半导体开关的接触垫或类似物。ga半导体开关尤其是形成芯片,其中,芯片具有背侧和用于电接触的接触侧。

ga半导体开关是以镓为基础的功率半导体开关,例如尤其是gan半导体开关(gan=氮化镓)或algan半导体开关(algan=氮化镓铝)。其形成高电子迁移率晶体管(hemt)或栅极注入晶体管(git)。它们相对于硅晶体管,例如硅igbt具有相对高的带间距并且进而具有大的带隙。由此,例如得到提高的可能的运行温度、更大的最大电流并且进而更高的电流密度。

在ga半导体开关的接触侧上的接触部优选分别实施为接触垫。接触垫是实施成用于电接触相应的构件的接触面。接触垫为此可以相应地准备好,例如其可以设有金属层。因此,接触垫也可以附加地已经设有焊料层,以便能够简单地实现例如与电路板的焊接连接。

在传统的igbt功率模块中,igbt芯片总是在两侧进行接触。前侧上的接触部通常通过开头所提到的线连接进行接触,而背侧上的接触部通常通过直接的焊接连接与dcb载体进行接触。与此不同,在所提出的带有ga半导体开关的功率模块中,所有接触部都存在于芯片的同一侧,即接触侧上。因此,所有接触部可以同时进行接触,其方式尤其是将ga半导体开关布置在载体上,例如dcb载体或多分层电路板。因此,不需要易受影响的键合线连接。此外,ga半导体开关的芯片仅为硅igbt的相应的芯片的一半大。因此,改进了功率密度。

冷却元件可以具有适用于热量导走的结构,例如一个或多个冷却开口/通道或冷却肋/凸起/引脚,用于利用冷却流体,例如冷却液进行绕流。冷却元件可以是功率模块的壳体的一部分。其同时也可以是包含功率模块的逆变器的壳体的一部分。其尤其可以是逆变器的外壳体的一部分,外壳体保护逆变器的内部免受逆变器外部的环境条件,例如雨、雪、飞溅的水、碎石等影响。于是,在逆变器内部,尤其是在一个或多个功率模块附近还可以布置有至少一个用于驱控一个/多个功率模块的驱动电路以及中间回路电容器。冷却元件尤其是可以由铝或铜构成,或者由相应好的导热材料构成。冷却元件可以是冷却板。冷却元件可以直接贴靠在ga半导体开关的背侧上。冷却元件也可以具有柔性的导热材料,也就是能良好导热的且至少开始是柔性的材料,例如导热垫或导热膏或导热胶,并且因此直接布置在ga半导体开关的背侧上。

通过小的寄生电感(其由具有ga半导体开关的功率模块的紧凑的实施方案导致),配属给功率模块的驱动电路可以在空间上更靠近功率模块地布置,驱动电路尤其是可以集成到功率模块中。因此实现功率模块的更好的电气性能。这允许了更好地充分利用ga半导体开关芯片的最大电压。另一优点在于,功率模块的关断过电压由于小的寄生电感而明显降低(相比于具有大约15nh的传统的功率模块,在此为小于5nh)。因此,也降低了开关损耗,并且提高了由此形成的逆变器的效率。

可以通过如下方式提高功率模块的功率密度,即,将双向横向氮化镓晶体管作为ga半导体开关使用。与igbt不同,这种类型的ga半导体开关不需要反向续流二极管,这是因为ga半导体开关理论上具有反向导电性。也就是说,在功率模块的发电机运行期间,ga半导体开关朝在与电动机运行相反的方向上毫无问题地导通在此出现的电流(反向导通),而不需要附加的二极管。因此,在功率模块中的芯片的数量相比于具有传统igbt的功率模块可以降低50%。通过结构元件的数量的减少,同时提高了功率模块的可靠性。为了在通过ga半导体开关反向导通时防止损耗提高,仍然可以将用于反向导通的二极管与ga半导体开关并联。在此优选是ga二极管。然而为此也可以使用以硅或sic为基础的能横向传导的功率构件或二极管。

优选地,ga半导体开关完全或部分埋入多分层电路板的最上面的电路板分层中。最上面的电路板分层也被称为顶分层或顶层。它并不强制性地位于“上方”。最上面的电路板分层理解为多分层电路板的两个封闭层的其中一个。也就是说,ga半导体开关完全或部分地布置在最上面的封闭的电路板分层之内。在此,ga半导体开关的接触部尤其是通过焊接或烧结工艺与电路板电接触。

ga半导体开关的接触部的电接触尤其是借助最上面的电路板分层本身的导体迹线实现或借助直接位于其下的电路板分层的导体迹线实现或借助多分层电路板中的贯穿电路板的一个或多个电路板分层的通路实现。也就是说,电路板分层可以是绝缘层,也就是说是电绝缘的,或者可以是具有布置在其上或其内的导体层(例如铜层或导体迹线)的绝缘层。

ga半导体开关在多分层电路板的最上面的电路板分层中的定位和电接触在用于制造功率模块的优选方法中在第一步骤中进行。通过这些措施产生了功率模块的平坦的或平的结构,并且改进了功率密度。至少部分地埋入最上面的电路板分层导致机械稳定性的提高。

也就是说,ga半导体开关或者形成ga半导体开关的芯片尤其是直接布置在多分层电路板上,其中,多分层电路板优选是pcb(pcb=printedcircuitboard,印制电路板)。ga半导体开关的电接触可以例如通过焊接工艺,像例如tlp键合(tlp=transientliquidphase,瞬间液相),或通过烧结工艺,像例如银烧结法(ag-sintering,银烧结)来实现。ga半导体开关与多分层电路板之间的由此得到的电连接非常耐热并且因此特别适用于ga半导体开关的可能的高的运行温度。作为用于ga半导体开关的电接触材料的银尤其是明显提高了功率模块的可靠性。

最上面的电路板分层比ga半导体开关更薄或者尤其是一样厚。如果设置有多个ga半导体开关或带有ga半导体开关的芯片,那么可以在每个ga半导体开关或者每个芯片中,在最上面的电路板分层中设置空腔,或者为所有或一组ga半导体开关或者芯片设置共同的空腔。最上面的电路板分层尤其是由预浸料(preimpregnatedfibres,预浸的纤维)构成的层。最上面的电路板分层因此可以形成绝缘层。空腔例如是电路板分层中的凹口。凹口和设置在其中的一个或多个ga半导体开关芯片是刚好或大约一样大。最上面的电路板分层与一个或多个ga半导体开关一样厚,因此冷却元件不仅可以平坦地贴靠在ga半导体开关的芯片上,而且可以贴靠在最上面的电路板分层上。

优选并列地设置有多个ga半导体开关,其中,在制造方法的跟随第一步骤之后的第二步骤中,通过填充材料来填充多个ga半导体开关之间的空腔或者空隙。例如,保留在ga半导体开关之间的空腔以灌封材料灌封。于是,随后例如在制造方法的第三步骤中将冷却元件布置在ga半导体开关上。

ga半导体开关的栅极接口的电接触优选通过多分层电路板的关于ga半导体开关位于最上面的电路板分层之下的另外的电路板分层中的导体迹线实现。于是,ga半导体开关的源极接口和/或漏极接口的电接触通过多分层电路板的位于最上面的电路板分层之下的另外的电路板分层中的至少一个导体迹线实现。栅极接口、源极接口和漏极接口的接触可以因此在多分层电路板的唯一的或不同的电路板分层中实现。各个电路板分层与ga半导体开关的相应的接触垫的电连接通过多分层电路板中的通路进行,通路贯穿所需数量的电路板分层。

优选地,主电流线路(汇流排),也就是引导驱动电流的线路,像例如直流电流线路和相线路集成到多分层电路板中。为此,相应的铜线路尤其是可以作为嵌体埋入到多分层电路板中。因此避免了外部的线路。于是同样不需要这种线路的额外的电绝缘。相应地节省了重量和结构空间。

优选地,功率模块不仅具有刚好一个ga半导体开关,而且具有多个,尤其是两个或更多个ga半导体开关,ga半导体开关于是互连成半桥电路或全桥电路,用于将电流引导到电机的共同的相上。在此,这种ga半导体开关尤其是直接并列地,也就是没有其他的位于它们之间的电结构元件地完全或部分地埋入最上面的电路板分层中。因此也可以改进功率密度。

优选地,共同的冷却元件,像例如冷却板设置用于半桥电路或全桥电路的ga半导体开关。这种冷却元件布置在ga半导体开关的背侧上。因为所有用于ga半导体开关的电接触的接触垫或接触部布置在其电路板侧的接触侧上,所以在背侧不存在接触部。因此,该背侧很好地适用于共同的冷却元件在其上的放置。

所提出的逆变器用于运行电机,尤其是针对电动车辆驱动系统的电机。逆变器具有至少一个根据本发明实施的功率模块,该功率模块具有多个用于将电流引导到电机的相上的ga半导体开关,以及逆变器具有用于操纵(驱控)ga半导体开关的驱动电路,并且具有将直流电流引导到ga半导体开关上的直流电流线路,以及具有中间回路电容器,该中间回路电容器接在直流电流线路之间。

在同样提出的车辆驱动系统中,电机用作牵引驱动器并且通过所提出的逆变器运行,也就是根据需要提供用于驱动的电功率。因此,电机根据需要提供驱动力矩,用于推进车辆,例如乘用车或商用车。电机尤其是旋转磁场电机,例如同步电机或异步电机。逆变器尤其是实施为三相逆变器并且因此负责给三相地实施的电机馈电。逆变器也可以具有多于三个的相输出端,用于运行多相电机。车辆驱动系统优选也具有控制器,该控制器驱控用于使电动机运行的逆变器,具体来说是其驱动电路。也就是说,控制器根据需要控制或调节逆变器。控制器例如负责使电机提供需要的驱动力矩或制动力矩。控制器也可以是逆变器的一部分。

附图说明

下面结合附图详细阐述本发明,从附图中能得到本发明的其他优选实施方式和特征。在此分别以示意视图示出:

图1示出一个功率模块;

图2示出车辆驱动系统;

图3示出逆变器;

图4示出另一功率模块。

根据图1的功率模块在开头已经阐述。在图2至图4中,相同或作用相同的构件设有相同的附图标记。

具体实施方式

在图2中示出的车辆驱动系统具有逆变器10和电机11,像例如同步或异步电机。电机11用作牵引驱动器并且因此与车辆车轮12机械联接,车辆车轮因此能由电机11驱动。电机11示例性地实施成三相,也就是说,电机在此具有三个相u、v、w,为了运行,电机根据需要由逆变器10通过三个相提供电能。因此,逆变器10在输出侧具有三个相接口。逆变器10在输入侧具有两个直流电流接口,用于分别接到直流电流线路dc+和dc-上。直流电流线路dc+和dc-分别与直流电源12的极接触。直流电源12例如可以是牵引电池或直流发电机。车辆驱动系统优选也具有控制器,控制器驱控,也就是控制或调节逆变器10,用以运行电机11。控制器可以是逆变器的一部分。

图3示出逆变器10,其例如使用在根据图1的车辆驱动系统中。在此示例性地涉及三相逆变器,用以使电机11运行,也就是为电机11的相u、v、w馈电。在逆变器10中,半导体开关13互连成b6电路(三相电流桥电路)。也就是说,在每个相u、v、w中以本身公知的方式设置电半桥,电半桥具有两个串联的半导体开关13(一个高压侧开关和一个低压侧开关)。半桥因此彼此并联地联接在两个直流电流线路dc+、dc-之间。此外,中间回路电容器14与半桥并联地联接在两个直流电流线路dc+、dc-之间。

然而原则上,逆变器10的结构也可以不同于图3。例如,逆变器可以实施为全桥电路。开关13通过如下驱动电路来驱控,该驱动电路负责用于使开关13例如以脉宽调制的方式断开(非导通)或闭合(导通)。

当前,开关13实施为ga半导体开关,也就是实施为以镓为基础的半导体开关,例如尤其是gan半导体开关或algan半导体开关。其中单个、多个或所有的半导体开关13可以组合为一个功率模块。优选地,半桥或全桥(根据逆变器10在半桥或全桥结构方式中的结构类型)的半导体开关13组合为一个功率模块。

这种功率模块的优选的结构在图4中示例性地示出。图4示出穿过功率模块并穿过包含在功率模块中的半导体开关13的纵剖图。

根据图4的功率模块具有两个ga半导体开关13或者两个分别具有ga半导体开关的芯片,用以将电流引导到共同的相接口15,该相接口用于连接电机11的其中一个相u、v、w(参见图2和图3)。也就是说,接口15用作功率模块的用于相u、v、w的电输出端。半导体13尤其是形成电半桥。因此,其中一个半导体开关13可以形成半桥的高压侧开关,而另一个半导体开关形成低压侧开关。

ga半导体开关13具有接触侧13a和相背置的背侧13b。在接触侧13a上设置有接触垫,用以电接触相应的ga半导体开关13。背侧13b是没有接触的,也就是在背侧上没有布置接触垫或类似物用以电接触ga半导体开关13。代替地,共同的冷却元件16贴靠在背侧上,用以从两个ga半导体开关13导走热量。为此,冷却元件16可以具有柔性的导热材料,例如导热垫,并且因此直接贴靠在相应的ga半导体开关13上。

ga半导体开关13并列地埋入最上面的电路板分层17中。ga半导体开关13和最上面的电路板分层17因此一起形成多分层电路板18的一部分。在此,ga半导体开关13的栅极接口的电接触通过最上面的电路板分层17之下的导体迹线18a实现。

为了可以给ga半导体开关13的栅极接口馈电,相应的导体迹线18a穿通连接至最上面的电路板分层17的上侧,并且在那里设有接口20,在此示例性地是接触垫。在此,驱动模块的驱控ga半导体开关13的驱动电路可以通过接口简单地接上。

ga半导体开关13的每个源极接口和漏极接口的电接触通过多分层电路板18的位于最上面的电路板分层17之下的至少一个或多个另外的电路板分层中的导体迹线18b实现。为此设置有通路19,通路使得ga半导体开关13的接触垫与相应的电路板分层的导体迹线18b电连接。相应的通路19设置用于使得用于直流电流线路dc+、dc-的接口以及输出端/相接口15与相应的导体迹线18b电接触。

当前,两个用于直流电流(dc+、dc-)的导体迹线18b示例性地位于多分层电路板18的不同的电路板分层中。这些导体迹线18b中的其中一个在此与用于输出端15或者相线路u、v、w的导体迹线18b在相同的电路板分层中延伸。多分层电路板18的相对于ga半导体开关13在最下面的电路板分层优选金属化或者设有非接触的金属层。因此,在那里可以布置有第二冷却元件,用以从电路板18导走热量。

这种功率模块的主要优点在于借助被填充的通路简单地接触ga半导体开关13。因此可以取消用于接触的键合线。此外,功率模块可以利用传统的生产工艺制造。因此,这是低成本的。

更高的集成度以及进而外部的接触部位的减少可以通过如下方式实现,即,所需用于驱控ga半导体开关13的驱动电路集成到功率模块或电路板18中,也就是说从而驱动电路和用其驱控的ga半导体开关13布置在共同的电路板18上或中。于是,导体迹线18a并不引导至表面,而是在多分层电路板18内部延伸到驱动电路的在那里的结构元件。因此,可以取消额外的绝缘部。由此,同样提高了机械和热方面的稳定性。

像由图4清晰地看出的那样,ga半导体开关13分别布置在最上面的电路板分层17的凹穴或凹口中。ga半导体开关也可以共同地布置在凹穴中。在ga半导体开关13插入到凹穴中后,并且在电接触后,优选填充,例如灌封可能存在的剩余凹穴。最上面的电路板分层17比ga半导体开关13或所属的芯片更薄或尤其是一样厚。因此,冷却元件16直接且平整地贴靠在ga半导体开关13和最上面的电路板分层17上。由此改进热量导走。理论上也可以取消最上面的电路板分层17。由此得到更易于制作的功率模块。然而,由此得到电路板18与冷却元件16之间的气隙,因此在那里出现较差的热量导走。

可以设置的是,在ga半导体开关13布置在多分层电路板上并且与之接触之前,首先将最上面的电路板分层17布置在多分层电路板18上。替选地可以设置的是,在最上面的电路板分层17布置在电路板上之前,首先将ga半导体开关13布置在电路板18上并且与之接触。

总而言之,由此得到的功率模块相对于具有igbt的传统的功率模块提供了明显更高的功率密度。该功率模块可以借助已知的已良好掌握的制造工艺来生产。此外提供了高的可靠性。

附图标记列表

1硅igbt

1’硅二极管

2金属化的陶瓷载体、dcb载体

2’陶瓷载体结构、载体板

2”金属层

3键合线

4基板

5焊接连接、焊料层

6护套

7灌封材料

8引脚

10逆变器

11电机

12直流电流源

13半导体开关

13a半导体开关13的接触侧

13b半导体开关13的背侧

14中间回路电容器

15接口、输出端

16冷却元件、冷却板

17最上面的电路板分层

18多分层电路板

18a导体迹线

18b导体迹线

19电通路

20接口、输入端

dc+直流电流线路

dc-直流电流线路

u、v、w相

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1