机械式薄膜键盘的制作方法

文档序号:11521728阅读:1183来源:国知局
机械式薄膜键盘的制造方法与工艺

本发明涉及一种键盘设备,特别涉及一种机械式薄膜键盘。



背景技术:

参考图1,常规的薄膜键盘主要包括键帽11、设置在键帽11下方的剪刀脚(x型支架12)以及硅胶按键13,x型支架12用来固定并且稳定键帽11,再搭配底部设置的一层薄膜电路层14;其中,硅胶按键13呈倒扣碗状,其碗口部安装在薄膜电路层14上,其碗底凸起用于接触键帽11,其内部具有连接凸起的轴芯。当按压键帽11时,硅胶按键13则被键帽11带动并往下触发,使硅胶按键13内部的轴蕊驱动薄膜电路层14内的电极接触点15相互接触实现导通,并通过硅胶按键13的弹力使键帽11复位。由于薄膜键盘采用了剪刀脚配合硅胶按键13的结构,并配合轻薄的薄膜电路层14,因而具有轻薄、成本低的优点。参考图2,由于其采用了硅胶按键13作为触发元件,其导通行程s1(mm)较短且对应的导通力f1(g)较小,可以轻易的实现触发导通,但其实际操作过程时操作者的手感会比较差,经常存在没有按压触感而导致反复按压的缺陷,且硅胶按键13相对机械元件寿命较短。

参考图3,常规的机械键盘主要包括键帽、与键帽连接的键轴21、连接键轴21的线性弹簧22、对应键轴21的导电弹片23以及用于安装线性弹簧22的柔性pcb线路板24。当按压键帽时,通过键轴21压缩线性弹簧22,从而触发导电弹片23而导通导电线路25,并通过线性弹簧22实现复位。参考图4,由于其采用了键轴21及线性弹簧22的机械结构作为触发元件,其导通行程s2(mm)较长且对应的导通力f2(g)较大,因而按压时触感较好,从而具有灵敏度高、手感好且寿命长的优点,在游戏玩家群里有着非常大的影响力,其反应速度以及手感都有着薄膜键盘无法比拟的优势。但是该种机械键盘由于需要通过键轴21配合线性弹簧22,每一个按键都需要一个独立的开关(导电弹片23)并只能采用具有一定机械强度的pcb线路板24才能实现上述结构的安装连接,因而具有整体体积厚重且造价高的缺点。

因而,本发明的目的在于开发一种可以结合薄膜键盘轻薄、成本低及机械键盘灵敏度高、手感好且寿命长两者优点的机械式薄膜键盘,以满足现今社会对高品质键盘的需求。



技术实现要素:

为解决上述技术问题,本发明提供了一种机械式薄膜键盘,包括:

作为支撑底层的金属支撑层;

与所述金属支撑层贴合的薄膜电路层,所述薄膜电路层设置有电极接触点以用于所述薄膜电路层内部导电线路的导通;

设置于所述薄膜电路层一侧的x型支架;

所述x型支架的一端与所述金属支撑层固定连接,另一端固定连接有键帽;

所述键帽内侧设置有对应所述薄膜电路层的倒扣碗状硅胶按键,所述硅胶按键的碗口部安装在所述键帽内侧,所述硅胶按键的顶部凸起对应所述薄膜电路层;

所述键帽与薄膜电路层之间还设置有线性弹簧,通过按压所述键帽进而压缩所述线性弹簧并沿所述x型支架的导向方向向所述薄膜电路层垂直运动,从而驱动所述键帽内侧的所述硅胶按键向所述薄膜电路层运动,通过所述硅胶按键的顶部凸起实现所述薄膜电路层的电极接触点导通并进而实现所述薄膜电路层内部导电线路的导通。

在上述机械式薄膜键盘的结构基础上,通过在所述硅胶按键的顶部凸起内设置有第一电极,所述薄膜电路层内设置有第二电极以及连接所述第二电极的导电线路,从而获得电容式机械薄膜键盘而进一步实现了非触点导通并提高了其耐久性和操作舒适型;当按压所述硅胶按键时,通过改变所述第一电极及第二电极之间的间距以改变所述第一电极与第二电极之间的电容值,从而通过所述电容值的改变实现所述导电线路的导通。

其中,由于本发明的主体结构是基于薄膜键盘设计而成,在x型支架的支撑导向作用下,所述线性弹簧仅起到弹性复位作用,因而所述线性弹簧的两端通过接触式连接分别连接至所述键帽及薄膜电路层而无需将线性弹簧两端进行机械式固定或安装,从而提供了组装效率。

进一步的,为了确保按压精度,所述硅胶按键与所述线性弹簧同轴设置且所述硅胶按键位于所述线性弹簧内部。

进一步的,为了更有效的实现按压导通,所述键帽的内侧设置有与所述硅胶按键同轴的轴芯,当所述硅胶按键接触所述薄膜电路层产生按压变形时,所述轴芯作用于所述薄膜电路层的电极接触点实现导电线路的导通。

通过上述技术方案,本发明具有如下优点:

①本发明的主体结构基于薄膜键盘设计而成,因而保留了薄膜键盘轻薄、成本低的优点;

②本发明在薄膜键盘主体结构设计的基础上,通过将硅胶按键倒过来设置在键帽的内侧,并通过在键帽与薄膜电路层之间设置线性弹簧,利用线性弹簧实现弹性变形及复位,从而增加了机械手感,使得本发明具有机械键盘的灵敏度高、手感好且寿命长的优点;

③在本发明的机械式薄膜键盘基础上,可以进一步实现电容式非触点导通,从而获得电容式键盘的可靠性和耐久性的优点。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。

图1为现有技术的薄膜键盘结构示意图;

图2为基于图1所示薄膜键盘的按压导通力学示意图;

图3为现有技术的机械键盘结构示意图;

图4为基于图3所示机械键盘的按压导通力学示意图;

图5为本发明实施例公开的机械式薄膜键盘结构示意图;

图6为基于图5所示机械式薄膜键盘的按压导通力学示意图。

图中数字表示:

11.键帽12.x型支架13.硅胶按键

14.薄膜电路层15.电极接触点21.键轴

22.线性弹簧23.导电弹片24.pcb线路板

25.导电线路31.薄膜电路层32.x型支架

33.键帽34.硅胶按键35.线性弹簧

36.电极接触点37.轴芯

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。

实施例1:

参考图5,本发明提供的机械式薄膜键盘,包括:作为支撑底层的金属支撑层;与金属支撑层贴合的薄膜电路层31,薄膜电路层31设置有电极接触点以用于薄膜电路层31内部导电线路的导通;设置于薄膜电路层31一侧的x型支架32;x型支架32的一端与金属支撑层固定连接,另一端固定连接有键帽33;键帽33内侧设置有对应薄膜电路层31的倒扣碗状硅胶按键34,硅胶按键34的碗口部安装在键帽33内侧,硅胶按键34的顶部凸起对应薄膜电路层31;键帽33与薄膜电路层31之间还设置有线性弹簧35,通过按压键帽33进而压缩线性弹簧35并沿x型支架32的导向方向向薄膜电路层31垂直运动,从而驱动键帽33内侧的硅胶按键34向薄膜电路层31运动,通过硅胶按键34的顶部凸起实现薄膜电路层31的电极接触点36导通并进而实现薄膜电路层31内部导电线路的导通。其中,由于本发明的主体结构是基于薄膜键盘设计而成,在x型支架32的支撑导向作用下,线性弹簧35仅起到弹性复位作用,因而线性弹簧35的两端通过接触式连接分别连接至键帽33及薄膜电路层31而无需将线性弹簧35两端进行机械式固定或安装,从而提供了组装效率;为了确保按压精度,硅胶按键34与线性弹簧35同轴设置且硅胶按键34位于线性弹簧35内部;为了更有效的实现按压导通,键帽33的内侧设置有与硅胶按键34同轴的轴芯37,当硅胶按键34接触薄膜电路层31产生按压变形时,轴芯37作用于薄膜电路层31的电极接触点36实现导电线路的导通。

参考图6,当按压键帽33时,线性弹簧35产生弹性变形而被压缩,从而相比于图1所示的单纯薄膜结构键盘而需要更大的导通力f(g)才可以实现特定导通行程s(mm)的按压,因而其导通点的导通行程s3(mm)对应的导通力f3(g)大于常规的图2所示的薄膜键盘在导通行程s2(mm)对应的导通力f2(g),即本发明的导通力f2(g)接近常规的图4所示的机械键盘对应的导通力f1(g),从而获得接近机械键盘的触感且线性弹簧35结构提高了整体按压寿命,且主体的薄膜键盘结构确保了本发明整体上具有轻薄及成本低的优点。

实施例2:

在上述实施例1描述的机械式薄膜键盘的结构基础上,通过在硅胶按键34的顶部凸起内设置有第一电极,薄膜电路层31内设置有第二电极以及连接第二电极的导电线路,从而获得电容式机械薄膜键盘而进一步实现了非触点导通并提高了其耐久性和操作舒适型;当按压硅胶按键34时,通过改变第一电极及第二电极之间的间距以改变第一电极与第二电极之间的电容值,从而通过电容值的改变实现导电线路的导通。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对上述实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1