一种X波段高增益高效率三轴相对论速调管放大器的制作方法

文档序号:17349115发布日期:2019-04-09 21:00阅读:255来源:国知局
一种X波段高增益高效率三轴相对论速调管放大器的制作方法

本发明涉及高功率微波技术领域的微波源器件,尤其是一种x波段高增益高效率三轴相对论速调管放大器(triaxialrelativisticklystronamplifier,trka)。



背景技术:

高功率微波(highpowermicrowave,hpm)通常是指峰值功率大于100mw、频率在1~300ghz之间的电磁波。高功率微波源是高功率微波系统的核心部件,它通过器件内部特殊的电磁结构将强流相对论电子束的能量转化为微波能量,进而通过发射天线产生定向的高功率微波辐射。

由于高功率微波源最显著的特点就在于高的输出微波功率,因此追求高的输出微波功率一直是高功率微波领域的研究热点。但是,随着输出微波功率增加,高功率微波源内的射频场强显著升高,容易引起射频击穿、脉冲缩短等物理问题。因此,高功率微波源的输出微波功率受到了物理瓶颈的制约。尽管通过采用过模结构、金属表面处理工艺、硬管化技术能够在一定程度上提高高功率微波源的功率容量,但是这些措施提升的幅度均非常有限。因此,利用多个具有锁相特性的高功率微波源进行空间相干功率合成,既能够避免单个器件出现射频击穿等物理问题,又能够显著提升整个系统的等效辐射功率,因而成为高功率微波技术的重要发展方向之一。

三轴相对论速调管放大器是一种基于电子束调制理论的高功率微波源器件,其利用相互独立的同轴谐振腔结构实现电子束的调制、能量转换和微波提取,具有高功率容量的特性,为高频段(x及以上波段)高功率锁相微波源器件的研究提供了一种有效的技术途径,得到了高功率微波技术领域的广泛关注。国际上有以下机构开展过x波段三轴相对论速调管放大器的研究工作。

1999年,美国使命公司和海军实验室的johnpasour等人首次提出了一种x波段三轴相对论速调管放大器【johnpasour,davidsmithe,andmoshefriedman,thetriaxialklystron,aipconferenceproceeding,1999,474,373–385.】(以下称为现有技术1)。该结构主要由阴极座、阴极、阳极外筒、左内导体、激励腔、右内导体、截止颈、调制腔、群聚腔、提取腔、电子束收集极、反馈环、微波输出口、螺线管磁场、注入微波电缆组成,整体结构关于中心轴线旋转对称。虽然该论文公布了该结构的组成,但该结构只是初步建立的数值仿真模型,没有具体技术方案,从论文的描述中只能简要知道该结构的大致连接关系,如下所述:为了叙述方便,下文将沿轴线方向上靠近阴极座的一侧称为左端,远离阴极座的一侧称为右端。阴极座的左端外接脉冲功率功率源的内导体,阳极外筒左端外接脉冲功率源的外导体。阴极是一个薄壁圆筒,外半径r2等于电子束的半径,套在阴极座右端。左内导体104a的右端面凹槽与右内导体106左端面的凹槽形成了一个重入式激励腔105,注入微波电缆穿过左内导体与激励腔耦合连接。调制腔108呈圆环状,外半径为r5,r5>r4,其轴向长度l1等于左内导体右端面和右内导体左端面之间的轴向距离。群聚腔中含有两组膜片,呈三间隙圆环状,外半径为r9,r9>r4,内半径为r8,r8<r3。提取腔中含有三组膜片,为四间隙结构,其径向外侧的三个环形膜片111由回流杆112固定在阳极外筒和电子束收集极之间。电子束收集极为圆筒状,在其左端挖有楔形凹槽。电子束收集极和阳极内筒之间的圆环空间为微波输出口。螺线管磁场为仿真计算中设置的理想模型,通过设计电流大小和绕线匝数确定磁场位型和强度。该器件运行时,阴极产生的环形电子束在磁场导引下向右传输,首先在调制腔中受到外注入微波信号的调制;电子束的调制在群聚腔中得到加强;被调制的电子束在提取腔中将能量转换为微波的能量,产生的微波从微波输出口输出。实验中,获得了300mw的x波段微波输出,频率为9.3ghz,效率约为20%。该结构对于x波段三轴相对论速调管放大器的设计具有重要的借鉴意义,但是该技术方案存在以下不足:(1)没有考虑同轴结构中tem模式泄露和高阶te模式的自激振荡问题,因此同轴谐振腔之间存在模式泄露和耦合现象,导致实验输出微波效率下降、相位和频率失锁;(2)采用复杂的轴向微波注入结构,对二极管绝缘设计造成不便,同时需要特殊设计的阴极结构,增加了实验难度和系统复杂性;(3)提取腔结构中金属膜片和回流杆的设计复杂,在实验装配中精度难以保证,容易激励起非对称模式,导致模式竞争、输出微波功率下降;(4)技术方案中对电子束收集极和内导体的支撑方式以及和阳极外筒的连接方式没有明确交代。

国防科技大学的巨金川等人也提出过一种改进型的x波段三轴相对论速调管放大器【jinchuanju,junzhang,tingshu,andhuihuangzhong,animprovedx-bandtriaxialklystronamplifierforgigawattlong-pulsehigh-powermicrowavegeneration,ieeetransactionsonelectrondeviceletters,2017,38,270-272】(以下称为现有技术2)。该结构主要由阴极座、阴极、阳极外筒、内导体、调制腔、反射腔、群聚腔、提取腔、电子束收集极、反馈环、支撑杆、微波输出口、螺线管磁场、注入波导组成,整体结构关于中心轴线旋转对称。阴极座左端外接脉冲功率源的内导体,阳极外筒左端连接脉冲功率源的外导体。阴极是一个薄壁圆筒,厚度约为1mm,外半径r1等于电子束的半径,套在阴极座右端。内导体是一个半径为r2的圆柱体,外侧挖有圆环状凹槽,通过其右端的外螺纹与收集极连接。调制腔205是一个“7”字型的同轴谐振腔,其轴向长度l1≈5λ/4(λ为工作波长),调制腔间隙处的电场为同轴tm010模式。群聚腔中含有两组膜片,呈同轴三间隙圆环结构,工作模式为同轴tm013模式。群聚腔左端挖有圆环状的同轴谐振腔206,用来抑制tem模式泄露和高阶te模式自激振荡。提取腔中含有一组膜片,呈同轴双间隙圆环结构,工作模式为同轴tm012模式。提取腔左端挖有圆环状的同轴谐振腔209,用来抑制tem模式泄露和高阶te模式自激振荡。电子束收集极为圆筒状,在左端挖有楔形凹槽。反馈环是嵌在电子束收集极外壁上的一个金属圆环,用来调节提取腔的谐振频率和q值。支撑杆共有两排,两排支撑杆之间的距离l9约为工作波长λ四分之一的奇数倍。螺线管磁场由两段组成,通过设计电流大小和绕线匝数确定磁场位型和强度。方形波导215通过两段磁场的间隙将外注入微波信号馈入到调制腔205中。该器件运行时,阴极产生的环形电子束在磁场导引下向右传输,首先在调制腔中受到外注入微波信号的调制;电子束的调制在群聚腔中得到加强;被调制的电子束在提取腔中将能量转换为微波的能量,产生的微波从微波输出口输出。相比现有技术1,该器件做了以下改进:(1)在群聚腔和提取腔左端设置了同轴反射腔,用来抑制同轴tem模式泄露和高阶te模式自激振荡,能够有效抑制自激振荡导致的束波作用失常、输出微波频率和相位失锁;(2)采用侧向波导双端口注入结构,在保证注入腔间隙电场均匀性的同时,避免了轴向微波注入方式带来的二极管绝缘困难,降低了工程设计的系统复杂性,提高了实验可靠性;(3)提取腔采用固定膜片取代了悬浮膜片加回流杆的连接方式,可有效避免提取腔中激励起高阶非旋转对称杂模。实验中,在二极管电压580kv、电流6.9ka、注入微波60kw的条件下,该器件可输出微波功率1.1gw、频率9.375ghz,实现增益42.6db、效率27%,并且输出微波的相位抖动被锁定在约10度范围内。该技术方案验证了三轴相对论速调管放大器在高频段实现gw级锁相高功率微波输出的可行性,对于高增益相对论速调管放大器的设计具有重要的借鉴意义,但是该技术方案存在以下不足:(1)单个三间隙群聚腔对强流电子束的调制能力有限,因此提取腔无法高效地将电子束的能量转换为微波的能量,致使器件的效率相对较低;(2)为了提高电子束的调制深度,注入微波所需的功率较高,导致器件的增益相对偏低;(3)注入腔采用双端口微波注入结构,实验中容易产生两个端口的注入微波幅度和相位不一致,进而影响注入腔间隙电场的角向均匀性,降低了电子束的调制深度。

分析上述研究现状不难发现,尽管三轴相对论速调管放大器的研究取得了较大进展,但是现有技术方案仍存在设计缺陷,器件增益、效率、输出微波功率等关键技术指标相对偏低。因此,亟需研究一种x波段高增益(大于50db)、高效率(大于40%)、高输出微波功率(大于2gw),结构简单、稳定可靠的三轴相对论速调管放大器。



技术实现要素:

本发明要解决的技术问题是:本发明提供一种x波段高增益、高效率、高功率的三轴相对速调管放大器,克服现有x波段三轴相对论速调管放大器中注入结构复杂(轴向注入或侧向双端口注入)、增益(约40db)、效率(<30%)、输出微波功率(约1gw)相对较低等不足,通过对器件电磁结构的合理设计,在x波段实现三轴相对论速调管放大器的高增益、高效率、高功率微波输出。

本发明采用的技术方案是:

一种x波段高增益高效率三轴相对论速调管放大器,包括阴极座301、阴极302、阳极外筒303、内导体304、调制腔305、第一反射腔306、第一群聚腔307、第二反射腔308、第二群聚腔309、第三反射腔310、提取腔311、锥波导312、反馈环313、电子束收集极314、支撑杆315、微波输出口316、螺线管磁场317、注入波导318,整体结构于oz轴即中心轴线旋转对称。

阴极座301左端外接脉冲功率源的内导体,阳极外筒303左端外接脉冲功率源的外导体。阴极302是一个薄壁圆筒,套在阴极座301右端,壁厚一般取1mm-2mm,外半径r1等于电子束的半径,电子束半径的具体尺寸需要根据器件的阻抗和功率容量优化决定;阳极外筒303由两段内半径分别为r2和r3的圆柱筒组成,满足r1<r3<r2;内导体304是一个半径为r4,长度为l1的圆柱体,其左侧端面与阳极外筒303半径为r3的一段圆柱筒的左侧端面平齐,满足r4<r1;在内导体304上距离其左侧端面l2处,开设有一个内半径为r5,宽l3的一号圆环状凹槽305a,满足r5<r4,l3的取值约为波长的四分之一;在与一号圆环状凹槽305a相对的阳极外筒303内壁上同样开设有一个外半径为r6,内半径为r7,宽l4的二号圆环状凹槽305b,l4的取值约为工作波长λ的1.25倍,且l4<l2,所述二号圆环状凹槽305b在正对一号圆环状凹槽305a处设置有宽度为l3的开口,满足r3<r7<r6;一号圆环状凹槽305a和二号圆环状凹槽305b共同组成调制腔305;在内导体304上距离一号圆环状凹槽305a右侧端面l5处,l5约为工作波长λ的3-4倍,开设有一个内半径为r8,宽l6的三号圆环状凹槽306a,l6的取值约为工作波长λ的三分之一,在与三号圆环状凹槽306a相对的阳极外筒303内壁上同样开设有一个外半径为r9,宽l6的四号圆环状凹槽306b;三号圆环状凹槽306a和四号圆环状凹槽306b共同组成第一反射腔306,满足r8<r5,r6<r9;在内导体304上距离第一反射腔306右侧端面l7处,l7的取值约为工作波长λ的十分之一,开设有两个内半径均为r10,宽度分别为l8和l9的五号圆环状凹槽307a,l8和l9的取值约为工作波长λ的四分之一,组成五号圆环状凹槽307a的两个圆环状凹槽之间的距离为ll1,ll1的取值约为工作波长λ的十分之一;在与五号圆环状凹槽307a相对的阳极外筒303内壁上同样开设有两个外半径均为r11,宽度分别为l8和l9的六号圆环状凹槽307b,组成六号圆环状凹槽307a的两个圆环状凹槽之间的距离同样为ll1;五号圆环状凹槽307a和六号圆环状凹槽307b共同组成第一群聚腔307,满足r8<r10<r4,r3<r11<r9;在内导体304上距离五号圆环状凹槽307a右侧端面l10处,l10约为工作波长λ的2-3倍,开设有一个内半径为r12,宽l11的七号圆环状凹槽308a,l11的取值约为工作波长λ的三分之一,在与七号圆环状凹槽308a相对的阳极外筒303内壁上同样开设有一个外半径为r13,宽l11的八号圆环状凹槽308b;七号圆环状凹槽308a和八号圆环状凹槽308b共同组成第二反射腔308,满足r12<r5,r13>r6;在内导体304上距离第二反射腔308右侧端面l12处,l12的取值约为工作波长λ的十分之一,开设有两个内半径均为r14,宽度分别为l13和l14的九号圆环状凹槽309a,l13和l14的取值约为工作波长的五分之一,在与九号圆环状凹槽309a相对的阳极外筒303内壁上同样开设有两个外半径均为r15,宽度分别为l13和l14的十号圆环状凹槽309b,满足r12<r14<r4,r3<r15<r13,组成九号圆环状凹槽309a和十号圆环状凹槽309b的两个圆环状凹槽之间的距离均为ll2,ll2的取值约为工作波长λ的十分之一;九号圆环状凹槽309a和十号圆环状凹槽309b共同组成第二群聚腔309;在内导体304上距离九号圆环状凹槽309a右侧端面l15处,l15约为工作波长λ的0.5-1倍,开设有一个内半径为r16,宽l16的十一号圆环状凹槽310a,l16的取值一般约为工作波长λ的三分之一,在与十一号圆环状凹槽310a相对的阳极外筒303内壁上同样开设有一个外半径为r17,宽l16的十二号圆环状凹槽310b,l16约为工作波长λ的三分之一;十一号圆环状凹槽310a和十二号圆环状凹槽310b共同组成第三反射腔310;在内导体304上距离第三反射腔310右侧端面l17处,开设有两个内半径均为r18,宽度分别为l18和l19的十三号圆环状凹槽311a,l18和l19的取值约为工作波长λ的四分之一,在与十三号圆环状凹槽311a相对的阳极外筒303内壁上同样开设有两个外半径均为r19,宽度分别为l18和l19的十四号圆环状凹槽311b,满足r16<r18<r4,r3<r19<r17,组成十三号圆环状凹槽311a和十四号圆环状凹槽311b的两个圆环状凹槽之间的距离均为ll3,ll3的取值约为工作波长λ的十分之一;十三号圆环状凹槽311a和十四号圆环状凹槽311b共同组成提取腔311。

所述第一群聚腔307工作于同轴tm012模式,外观品质因素设为4000,其作用是对电子束进行初步调制;所述第二群聚腔309的工作模式为同轴tm011模式,外观品质因素设为2600,其作用是为了防止电子束的过调制;所述提取腔311的工作模式为同轴tm012模式,外观品质因素设为40,其作用是为了高效率的束波能量转换;所述第一反射腔306用于抑制第一群聚腔307中的tem模式和高阶非旋转对称te模式向调制腔305的泄露;所述第二反射腔308用于抑制第二群聚腔309中的tem模式和高阶非旋转对称te模式向第一群聚腔307的泄露;所述第三反射腔310用于抑制提取腔311中的tem模式和高阶非旋转对称te模式向第二群聚腔309的泄露。

所述电子束收集极314为一段长度为l20,半径为r20的圆柱体,l20约为工作波长λ的3-5倍,r20>r3。电子束收集极314左侧端面内半径为r21处挖有楔形凹槽314a,楔形凹槽314a的下底宽度为l21,内半径r21,满足r3>r21>r4,高度为h1,l21一般为工作波长λ的0.5-1倍,高度h1小于r3-r4,倾斜角θ1一般取值为20°-30°;在距离电子束收集极314左侧端面l22处,l22的取值约为工作波长λ的三分之一,阳极外筒303的内壁以与水平方向成夹角θ2向外倾斜,倾斜角θ2一般取值为10°-30°,所述倾斜段水平方向的长度为l23,l23一般取工作波长λ的0.7倍,该倾斜段与电子束收集极314之间的锥形空间组成锥波导312;在距离电子束收集极314左侧端面l24处,l24的取值约为工作波长λ的1-1.5倍,设置有外半径为r22,宽l25的反馈环313,满足r20<r22<r19,所述反馈环313用于调整提取腔311的谐振频率和q值;锥波导312往右的阳极外筒303与电子束收集极314之间的圆环形空间组成微波输出口316;微波输出口316的右端接天线,根据通用的天线设计方法可得,由于是通用方法,不存在技术秘密。

所述电子束收集极314通过第一支撑杆315a和第二支撑杆315b固定在阳极外筒303的内壁上,第二支撑杆315b与第一支撑杆315a之间的距离为工作波长λ四分之一的奇数倍。

所述螺线管磁场由317a和317b两段组成,套在阳极筒303的外面,按照需要的磁场位型采用玻璃丝包铜线或聚酰亚胺薄膜包铜线绕制而成,根据通用的螺线管线圈设计方法设计可得,由于是通用方法,不存在技术秘密。通过改变通过螺线管磁场线圈的电流大小,从而改变螺线管产生的磁场强度,实现对电子束的传输导引。

所述注入波导318为bj84标准方形波导,通过两段磁场317a和317b之间的间隙与调制腔的二号圆环状凹槽305b相连接,将外注入微波信号引入至调制腔305中,实现对电子束的调制。

本发明的工作原理是:阴极302在外接脉冲功率源的驱动下产生强流电子束;电子束在螺线管317的导引下依次经过调制腔305、第一群聚腔307、第二群聚腔309、提取腔311,最终被电子束收集极314的楔形凹槽收集;注入波导318将外注入微波信号引入到调制腔305中,在调制腔305的间隙处激励起同轴tm011模式,其轴向电场会对经过的电子束进行初步的速度调制;电子束的速度调制被工作在tm012模式的第一群聚腔307和工作在tm011模式的第二群聚腔309加深,实现大于100%的电子束调制深度;被调制好的电子束在提取腔311中将其能量转给tm012模式的微波场,激励起高功率微波,然后通过微波输出口316向外输出;在第一群聚腔307、第二群聚腔309、提取腔311左端分别设置同轴反射腔306、308和311以抑制tem模式泄露和高阶非旋转对称te模式的自激振荡。

与现有技术相比,采用本发明可以达到以下技术效果:

(1)本发明提供的x波段高增益高效率三轴相对论速调管放大器,采用级联式的双群聚腔结构能够有效克服强流电子束的空间电荷力,在外注入微波功率较低的条件下实现电子束的深度调制,从而确保器件的高增益和高效率。通过优化两个群聚腔的谐振工作频率和q值,可以将约10ka的强流电子束的调制深度提升至110%以上,达到50db高增益和40%高效率的设计要求。特别地,第一群聚腔和第二群聚腔的工作模式有所不同,分别为同轴tm012模式和tm011模式,可以抑制电子束过调制产生的倍频振荡,并且便于实验上第二群聚腔和提取腔之间的漂移距离优化调节;

(2)本发明提供的x波段高增益高效率三轴相对论速调管放大器,能够实现束波换能所需的强流电子束深度调制,并采用双间隙同轴微波提取腔结构保证较高的束波转换效率和高功率容量,因而能够实现相对较高(大于2gw)的输出微波功率;

(3)本发明提供的x波段高增益高效率三轴相对论速调管放大器,采用了重入式的注入腔结构,通过高频结构优化设计,可以在单端口注入的条件下实现注入腔间隙电场的角向均匀性,因此即可以降低实验工程设计的复杂性,又可有效避免现有技术2中两个端口注入的微波幅度和相位不一致时导致的电子束调制深度下降和非旋转杂模自激振荡;

(4)本发明提供的x波段高增益高效率三轴相对论速调管放大器,虽然采用了和现有技术2相似的高功率微波提取腔结构,但由于本发明中采用的级联式群聚腔能够实现电子束的深度调制,因而能够降低电子束的q值而保证高的微波提取效率,因而比现有技术2中的微波提取腔具有更高的功率容量,有利于器件的长脉冲运行;

(5)本发明提供的x波段高增益高效率三轴相对论速调管放大器,采用了级联式群聚腔以克服强流电子束的空间电荷力而实现电子束的深度调制和高增益,和现有技术2相比,不需要通过增大器件电子束半径来降低电子束的空间电荷力,因而有利于缩小器件和磁场线圈的径向尺寸,降低磁场线圈的能耗,有利于实验上长时间稳定运行。

附图说明

图1为背景介绍中现有技术1中公开的x波段三轴相对论速调管放大器结构示意图;

图2为背景介绍中现有技术2中公开的x波段三轴相对论速调管放大器结构示意图;

图3为本发明提供的x波段高增益高效率三轴相对论速调管放大器优选实施例的结构示意图;

图4为图3中虚线区域的局部放大图;

图5为本发明提供的x波段高增益高效率三轴相对论速调管放大器优选实施例的三维结构图;

图中:阴极座301、阴极302、阳极外筒303、内导体304、调制腔305、第一反射腔306、第一群聚腔307、第二反射腔308、第二群聚腔309、第三反射腔310、提取腔311、锥波导312、反馈环313、电子束收集极314、支撑杆315、微波输出口316、螺线管磁场317、注入波导318。

具体实施方式

构成本申请的附图用来提供对本发明的进一步解释,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。

图1为背景介绍部分中提到的现有技术1中公开的x波段三轴相对论速调管放大器的结构示意图。该论文虽然公布了器件的仿真和实验结果,但只给出了如图1所示的结构示意图,并没有完整公开其具体的技术方案。因而仅能根据现有技术1中公开的内容,简要介绍该结构的大致连接关系。该结构主要包括阴极座101、阴极102、阳极外筒103、左内导体104、激励腔105、右内导体106、截止颈107、调制腔108、群聚腔109、提取腔110、电子束收集极113、反馈环114、微波输出口115、螺线管磁场116和注入微波电缆117,整体结构关于中心轴线旋转对称。以下没有详细说明的部件的安装方法,按现有技术进行。阴极座101的左端外接脉冲功率功率源的内导体,阳极外筒103的左端外接脉冲功率源的外导体。阴极102是一个厚度约为1mm的薄壁圆筒,外半径r2等于电子束的半径,套在阴极座101的右端上。左内导体104a是一个圆锥形结构,最小半径为r1,最大半径为r3,通过金属杆104b固定在阳极外筒103内壁。右内导体106是一个外径为r3的圆柱。左内导体104a右端面的凹槽与右内导体106左端面的凹槽形成了一个重入式激励腔105,该腔半径为r7、间隙半径为r6、宽度为l2,满足r6<r7。注入微波电缆117穿过左内导体104a与激励腔105相耦合。调制腔108呈圆环状,外半径为r5,其轴向长度l1约为工作波长λ的四分之一。群聚腔109中含有两组膜片,呈三间隙圆环状,其外半径为r9,满足r9>r4,内半径为r8,满足r8<r3。膜片的厚度均为l3、间隙的宽度均为l4。提取腔110中含有三组膜片,为四间隙圆环结构,其外侧的三个环形膜片111的外半径满足r10>r11>r12。膜片111由回流杆112固定在阳极外筒103和电子束收集极113之间。电子束收集极113为圆筒状,外半径为r13,在其左端挖有楔形凹槽。楔形凹槽距电子束收集极113左端面的距离为l8,倾斜角为θ。反馈环114嵌在电子束收集极113的外壁上,其外径为r14、宽度为l7。微波输出口115是一个圆环形结构,其内外半径分别为r13和r15。在该器件运行中,阴极102产生的环形电子束在磁场导引下向右传输,首先在调制腔108中受到外注入微波信号的调制;然后电子束的调制在群聚腔109中得到加强;被调制的电子束在提取腔110中将能量转换为微波的能量,产生的微波从微波输出口115输出。

实验中,该器件获得了300mw的x波段微波输出,频率为9.3ghz,效率约为20%。但是该技术方案没有考虑同轴结构中tem模式泄露和高阶te模式的自激振荡问题,因此同轴谐振腔之间存在模式泄露和耦合现象,导致实验输出微波效率下降、相位和频率失锁;另外,采用了结构复杂的轴向微波注入结构,对二极管绝缘设计造成不便,同时需要特殊设计的阴极结构,增加了实验难度和系统负载性;并且,提取腔结构中金属膜片和回流杆的设计复杂,在实验装配中精度难以保证,容易激励起非对称模式,导致模式竞争、输出微波功率下降。

图2为背景介绍部分中提到的现有技术2中公开的x波段三轴相对论速调管放大器结构示意图。该结构包括由阴极座201、阴极202、阳极外筒203、内导体204、调制腔205、第一反射腔206、群聚腔207、第二反射腔208、提取腔209、电子束收集极210、反馈环211、支撑杆212、微波输出口213、螺线管磁场214、注入波导215,整体结构关于中心轴线旋转对称。阴极座201的左端外接脉冲功率源的内导体,阳极外筒203的左端连接脉冲功率源的外导体。阴极202是一个厚度约为1mm的薄壁圆筒,其外半径r1等于电子束的半径,套在阴极座201的右端。内导体204是一个半径为r2的圆柱体,通过其右端的外螺纹与电子束收集极210相连接。调制腔205是一个“7”字型的同轴谐振腔,腔体外半径为r4,满足r4>r3,其轴向长度为工作波长λ的5/4倍,间隙宽度l2约为工作波长λ的四分之一,间隙半径为r5,满足r5<r2。第一反射腔206为圆环状,内半径为r6、外半径为r7、长度为l3,其中l3约为工作波长λ的四分之一。群聚腔207中含有两组膜片,呈同轴三间隙圆环结构,内、外半径分别为r8和r9,膜片厚度为l3,间隙宽度为l5。第二反射腔208为圆环状,内半径为r10、外半径为r11、长度为l6,其中l6约为工作波长λ的四分之一。提取腔209中含有一组膜片,呈同轴双间隙圆环结构。电子束收集极210为圆筒状,在其左端面外有楔形凹槽。楔形凹槽的内外半径分别为r13和r12,满足r13>r2,r12<r3。楔形凹槽距电子束收集极210左端面的距离为l7,倾角为θ1。反馈环211是嵌在电子束收集极210外壁上的一个金属圆环,外半径为r14,满足r14>r15,反馈环211距电子束收集极210左端面的距离为l8。支撑杆212共有两排,两排支撑杆的之间的距离l9约为工作波长λ的四分之一。微波输出口213是电子束收集极210和阳极外筒203之间形成的圆环形空间,其内外半径分别为r15和r16。螺线管磁场214由两段组成,通过设计电流大小和绕线匝数确定磁场位型和强度。方形波导215通过磁场214两段之间的间隙将外注入微波信号馈入到调制腔205中。该器件运行时,阴极202产生的环形电子束在磁场导引下向右传输,首先在调制腔205中受到外注入微波信号的调制;电子束的调制在群聚腔207中得到加强;被调制的电子束在提取腔209中将能量转换为微波的能量,产生的微波从微波输出口213输出。

实验中,在二极管电压580kv、电流6.9ka、注入微波60kw的条件下,该器件可输出微波功率1.1gw、频率9.375ghz,实现增益42.6db、效率27%,并且输出微波的相位抖动被锁定在约10度范围内。该技术方案验证了三轴相对论速调管放大器在高频段实现gw级锁相高功率微波输出的可行性。但是该技术方案采用的单个三间隙群聚腔对强流电子束的调制能力有限,因此提取腔无法高效地将电子束的能量转换为微波的能量,致使器件的效率相对较低;另外,为了提高电子束的调制深度,注入微波所需的功率较高,导致器件的增益相对偏低;并且,注入腔采用双端口微波注入结构,实验中容易产生两个端口的注入微波幅度和相位不一致,进而影响注入腔间隙电场的角向均匀性,降低电子束的调制深度。

图3为本发明x波段高增益高效率三轴相对论速调管放大器的一种实施方式的结构示意图,图4为图3中虚线区域的局部放大图,图5为该实施方式的三维结构示意图。本发明由阴极座301、阴极302、阳极外筒303、内导体304、调制腔305、第一反射腔306、第一群聚腔307、第二反射腔308、第二群聚腔309、第三反射腔310、提取腔311、锥波导312、反馈环313、电子束收集极314、支撑杆315、微波输出口316、螺线管磁场317、注入波导318组成,整体结构关于oz轴即中心轴线旋转对称。

阴极座301和阳极外筒302通常采用无磁不锈钢材料,内导体304、电子束收集极314、支撑杆315通常采用无磁不锈钢、无氧铜、钛等金属材料,注入波导318通常采用高电导率的无氧铜或铝镀银,阴极302可采用高密度石墨、碳纤维、复合铜介质等材料。螺线管磁场317采用玻璃丝包铜线或聚酰亚胺薄膜包铜线绕制而成。

阴极座301左端外接脉冲功率源的内导体,阳极外筒303左端外接脉冲功率源的外导体。阴极302是一个薄壁圆筒,壁厚一般取1mm-2mm,在本实施例中取值为2mm,外半径r1等于电子束的半径,套在阴极座301右端;阳极外筒303由两段内半径分别为r2和r3的圆柱筒组成,满足r1<r3<r2。

内导体304是一个半径为r4,长度为l1的圆柱体,满足r4<r1,内导体304通过其右端的外螺纹与电子束收集极314相连接。

调制腔305的工作模式为同轴tm011模式,包括305a和305b两部分。其中,305a为圆环形凹槽,挖于内导体304的外壁,距离304左侧端面l2处,其内半径r5满足r5<r4,宽度为l3,本实施例中l3的取值为工作波长λ的0.28倍;305b是在阳极外筒上挖的一个圆环,外半径为r6,内半径为r7,满足r3<r7<r6,宽度l4一般取值为工作波长λ的1.2-1.3倍,本实施例中l4的取值约为工作波长λ的1.25倍;所述二号圆环状凹槽305b在正对一号圆环状凹槽305a处设置有宽度为l3的开口。

第一反射腔306距离调制腔305右侧端面的距离为l5,l5一般取值为工作波长λ的3-4倍,第一反射腔306的内径为r8,外径为r9,满足r8<r5,r6<r9,宽度为l6,本实施例中l6为工作波长λ的0.35倍。第一群聚腔307与第一反射腔306之间的距离为l7,l7取值约为工作波长λ的十分之一。第一群聚腔307由307a和307b两部分组成,工作模式为同轴tm012模式,外观品质因素设为4000。其中,307a是内导体304外壁上两个内半径均为r10,宽度分别为l8和l9的圆环状凹槽,l8和l9的取值约为工作波长λ的四分之一,两个圆环状凹槽之间的距离为ll1,ll1的取值约为工作波长λ的十分之一;307b是阳极外筒303内壁上与307a正对的两个外半径均为r11,宽度分别为l8和l9的圆环状凹槽,满足r8<r10<r4,r3<r11<r9。

第二反射腔308与第一群聚腔307右侧端面之间的距离为l10,l10约为工作波长λ的2-3倍,第二反射腔308的内径为r12,外径为r13,满足r12<r5,r13>r6,宽度为l11,本实施例中l11为工作波长的三分之一。第二群聚腔309与第二反射腔308之间的距离为l12,l12取值约为工作波长λ的十分之一。群聚腔309由309a和309b两部分组成,工作模式为同轴tm011模式,外观品质因素设为2600。其中,309a是内导体304外壁上两个内半径均为r14,宽度分别为l13和l14的圆环状凹槽,l13和l14的取值约为工作波长λ的五分之一,两个圆环状凹槽之间的距离为ll2,ll2的取值约为工作波长λ的十分之一;309b是阳极外筒303内壁上与309a正对的两个外半径均为r15,宽度分别为l13和l14的圆环状凹槽,满足r12<r14<r4,r3<r15<r13。

第三反射腔310与第二群聚腔309右侧端面之间的距离为l15,l15约为工作波长λ的0.5-1倍,第三反射腔310的内径为r16,外径为r17,满足r16<r5,r17>r6,宽度为l16,本实施例中l16为工作波长的三分之一。第三群聚腔311与第三反射腔310之间的距离为l17,l17取值约为工作波长λ的十分之一。群聚腔311由311a和311b两部分组成,工作模式为同轴tm012模式,外观品质因素设为40。其中,311a是内导体304外壁上两个内半径均为r18,宽度分别为l18和l19的圆环状凹槽,l18和l19的取值约为工作波长λ的四分之一,两个圆环状凹槽之间的距离为ll3,ll3的取值约为工作波长λ的十分之一;311b是阳极外筒303内壁上与311a正对的两个外半径均为r19,宽度分别为l18和l19的圆环状凹槽,满足r16<r18<r4,r3<r19<r17。

电子束收集极314为圆筒状,其长度为l20,半径为r20,l20的取值约为工作波长λ的3-5倍,r20>r3。其左端面挖有楔形凹槽314a。314a的下底宽度为l21,内半径r21,满足r3>r21>r4,高度为h1,l21一般为工作波长λ的0.5-1倍,高度h1小于r3-r4,倾斜角θ1一般取值为20°-30°,本实施例中θ1为21°;在距离电子束收集极314左侧端面l22处,l22的取值约为工作波长λ的三分之一,阳极外筒303的内壁以与水平方向成夹角θ2向外倾斜,倾斜角θ2一般取值为10°-30°,所述倾斜段水平方向的长度为l23,l23一般取工作波长λ的0.7倍,该倾斜段与电子束收集极314之间的锥形空间组成锥波导312;

反馈环313是一个金属圆环,其距离电子束收集极314左侧端面距离为l24,l24的取值约为工作波长λ的1-1.5倍,反馈环313的外半径为r22,宽为l25,满足r20<r22<r19,本例中l25取值为4mm;所述反馈环313用于调整提取腔311的谐振频率和q值;

电子束收集极314和阳极外筒303之间围成的圆形空间为微波输出口316。

收集极314通过两排支撑杆315a和315b固定在阳极外筒303的内壁上,第二排支撑杆315b与第一排支撑杆315a之间的距离l18为工作波长λ四分之一的奇数倍,从而使支撑杆对微波的反射小于1%,本实施例中l18为工作波长λ四分之一的9倍。

微波输出口316的右端接天线,根据通用的天线设计方法可得,由于是通用方法,不存在技术秘密。

螺线管磁场由317a和317b两段组成,套在阳极筒303的外面,按照所需磁场位型采用玻璃丝包铜线或聚酰亚胺薄膜包铜线绕制而成,根据通用的螺线管线圈设计方法设计可得,由于是通用方法,不存在技术秘密。通过改变通过螺线管磁场线圈的电流大小,从而改变螺线管产生的磁场强度。

注入波导318为bj84标准方形波导,通过两端磁场317a和317b之间的间隙和注入腔的305b相连接,将外注入微波信号馈入到调制腔305中。

本实施例中内导体304可采用一个金属圆柱体,也可由多个金属圆柱体通过螺纹连接;内导体304和电子束收集极314通过螺纹连接成一体;电子束收集极314通过两排支撑杆315焊接在阳极内筒303的内壁上,实现等电位连接和机械支撑。阳极外筒303可采用一个金属圆柱体,也可由多个金属圆柱体通过带密封槽和定位台阶的法兰连接成一体。注入波导318可焊接或通过带密封槽和定位台阶的法兰与注入腔305相连接。

本发明运行时,阴极302在外接脉冲功率源的驱动下产生强流电子束;电子束在螺线管317的导引下依次经过调制腔305、第一群聚腔307、第二群聚腔309、提取腔311、最终被电子束收集极314的楔形凹槽收集;注入波导318将外接种子源的微波信号引入到调制腔305中,在调制腔305的间隙处激励起同轴tm011模式,其轴向电场会对经过的电子束进行初步的速度调制;电子束的速度调制被工作在tm012模式的第一群聚腔307和工作在tm011模式的第二群聚腔309加深,实现大于100%的电子束调制深度;被调制好的电子束在提取腔311中将其能量转给tm012模式的微波场,激励起高功率微波,然后通过微波输出口316向外输出。需要强调的是,在第一群聚腔307、第二群聚腔309和提取腔311左端分别设置三个同轴反射腔306、308和311来抑制tem模式泄露和高阶非旋转对称te模式的自激振荡抑制。

本实施例实现了x波段(中心频率为8.4ghz,对应微波波长λ=3.6cm)的高增益高效率三轴相对论速调管放大器(相应的尺寸为:r1=51mm,r2=80mm,r3=55mm,r4=45mm,r5=40mm,r6=62mm,r7=57mm,r8=34mm,r9=66mm,r10=40mm,r11=61mm,r12=35mm,r13=65mm,r14=39mm,r15=60mm,r16=36mm,r17=64mm,r18=40mm,r19=61mm,r20=57mm,r21=46mm,r22=60mm,l1=404.5mm,l2=56mm,l3=10mm,l4=45mm,l5=108mm,l6=12.5mm,l7=3.5mm,l8=8mm,l9=9mm,l10=90mm,l11=12mm,l12=3.5mm,l13=7mm,l14=7mm,l15=35mm,l16=12.5mm,l17=3.5mm,l18=9mm,l19=8.5mm,l20=145mm,l21=26mm,l22=10mm,l23=25mm,l24=35mm,ll1=3.5mm,ll2=3mm,ll3=3mm,h1=8mm,θ1=21°,θ2=18°)。仿真模拟中,在二极管电压630kv、电流8.9ka、注入微波功率25kw、导引磁场0.8t的条件下,器件输出微波功率2.5gw、频率8.4ghz,对应的增益为50db、效率为45%。并且,输出微波功率稳定,没有出现te模式泄露或杂模自激振荡,实现了输出微波的锁频锁相。由上述结果可知,本发明克服了现有技术在x波段增益、效率、输出微波功率低等缺点,且具有良好的锁频锁相特性,对于高功率微波空间相干合成所需的类似的相对论放大器设计具有重要的借鉴意义。

以上所述仅是本发明的优选实施方式,本发明的保护范围不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1