一种0.9μm波段超低噪声窄线宽单频光纤激光光源的制作方法

文档序号:14252013阅读:285来源:国知局

本发明涉及光纤激光器的噪声抑制及线宽压缩技术,具体涉及一种工作波长0.9μm、超低噪声、窄线宽、高功率的单频光纤激光光源。



背景技术:

近年来,由于单频光纤激光器具有线宽窄、信噪比高、稳定性极好和单一纵模振荡输出等诸多优点,使之成为激光领域的研究热点之一。单频光纤激光器在相干激光合束、高精度光谱分析、光纤传感和非线性频率转换等领域具有很高的应用价值。目前针对单频激光器的研究主要着眼于对其线宽、功率规模、噪声等性能的提升,其中噪声和激光线宽作为衡量光纤激光器的重要指标,是制约其应用水平的关键点所在。如在高精度传感中,激光中的噪声会与探测信号混合转变为系统噪声,从而影响其探测精度与灵敏度;而在微波光子等领域则需要线宽非常窄的长相干长度光源。

尤其对于工作波长小于1μm的掺镱单频光纤激光器,可以结合非线性频率转换产生单频蓝光激光。与现有的半导体蓝光激光器相比,前者可以同时拥有光束质量好、体积小、寿命长等优点。另外,由于掺镱单频光纤激光器(波长<1μm)的优异性能,可以作为低噪声泵浦源,用于纤芯泵浦掺杂稀土离子的光纤激光振荡器和光纤放大器。因而,迫切需要发展一种超低噪声、窄线宽、高功率、工作波长0.9μm的单频光纤激光光源。

目前获得低噪声单频激光器的方案较多,常用的实现方法有基于模清洁器和光电反馈的方式。当激光束通过具有滤波特性的模清洁器之后耦合输出一部分光,再经光电探测器探测、功率放大、反馈控制等过程,最终实现噪声抑制。但是该方案使得整个激光结构变得复杂化,同时对外界环境的要求非常高。光电反馈则是通过引入一个光电反馈回路来控制泵浦驱动电流从而实现输出激光噪声的优化,但是该方案受限于反馈系统的响应带宽和响应速度,实际结果并不理想。而对于激光线宽的压缩则主要采用布里渊增益谱线宽压缩;或者通过与腔外注入光混频干涉形成折射率光栅与增益光栅选模的方式,进而获得窄线宽单频激光输出。对于同时获得超低噪声、窄线宽、高功率、工作波长小于1μm的单频光纤激光研究结果,目前报道较少。



技术实现要素:

本发明的目的在于克服现有技术中的不足,提出一种0.9μm波段超低噪声窄线宽单频光纤激光光源。在工作波长0.9μm(短波段)单频激光谐振腔的基础上,通过自注入锁定方式结合激光饱和放大效应,在压缩激光线宽的同时,一方面实现宽频带范围内的强度噪声抑制;另一方面对单频激光进行功率放大,从而获得超低噪声、窄线宽、较大功率的单频光纤激光输出。

本发明的目的通过如下技术方案实现。

一种0.9μm波段超低噪声窄线宽单频光纤激光光源,其工作波长0.9μm的单频激光谐振腔、波分复用器、单模半导体泵浦激光器、光耦合器、光反射器、光隔离器、激光饱和放大装置和光滤波模块;单频激光谐振腔、波分复用器、光耦合器、光隔离器、激光饱和放大装置和光滤波模块顺次连接;单模半导体泵浦激光器通过波分复用器的泵浦端口对单频激光谐振腔进行纤芯泵浦,单频激光谐振腔输出的单频激光经过波分复用器的信号端口进入到光耦合器之后,一部分单频激光经过光反射器注入返回单频激光谐振腔,另一部分单频激光经过光隔离器进入到激光饱和放大装置,最后单频光纤激光经过光滤波模块的输出端输出。

所述的工作波长0.9μm单频激光谐振腔包括但不限于线性腔、环形腔等结构类型。

所述的单频激光谐振腔的激光工作介质为纤芯均匀掺杂yb3+或nd3+发光离子的多组分玻璃光纤,光纤基质材料包括但不限于磷酸盐玻璃、锗酸盐玻璃、碲酸盐玻璃、硅酸盐玻璃等组分玻璃。

所述的光反射器包括但不限于高反射率光栅、光纤反射镜、光纤环等。

所述的激光饱和放大装置包括但不限于半导体光放大器、增益光纤放大器、非线性功率放大器等。

所述的光滤波模块包括但不限于一个或者几个器件的组合,如光纤窄带滤波器、f-p滤波器、光环形器与光纤光栅一起构成的滤波器等。

与现有技术相比,本发明的技术效果是:工作波长0.9μm单频激光谐振腔输出的单频激光通过自注入的方式,将一部分激光反馈回到谐振腔内,可以同时实现输出激光线宽的压缩和强度噪声的抑制,再结合激光饱和放大装置,对宽频带范围内的强度噪声进行进一步的抑制,并提高其激光输出功率规模。本发明将自注入锁定和激光饱和放大相结合,提供了一种实现0.9μm波段超低噪声窄线宽单频光纤激光光源的有效方式。

附图说明

图1为本发明实施例中0.9μm波段超低噪声窄线宽单频光纤激光光源原理示意图。

图中:1—工作波长0.9μm单频激光谐振腔,2—波分复用器,3—单模半导体泵浦激光器,4—光耦合器,5—光反射器,6—光隔离器,7—激光饱和放大装置,8—光滤波模块。

具体实施方式

下面结合附图和具体例子对本发明的具体实施方式作进一步描述,需要说明的是本发明要求保护的范围并不局限于实施例表述的范围。

如图1所示,一种0.9μm波段超低噪声窄线宽单频光纤激光光源,包括工作波长0.9μm单频激光谐振腔1,其中谐振腔一般由掺yb3+或nd3+稀土离子高增益光纤和中心波长0.9μm光纤光栅一起构成的线性短腔,波分复用器2,单模半导体泵浦激光器3,光耦合器4,光反射器5,光隔离器6,激光饱和放大装置7,光滤波模块8。各部件之间的结构关系为:单模半导体泵浦激光器3通过波分复用器2的泵浦端口对单频激光谐振腔1进行纤芯泵浦,谐振腔输出的单频激光经过波分复用器2的信号端口进入光耦合器4之后,一部分激光通过光反射器5注入返回谐振腔内,另一部分激光通过光隔离器6进入到激光饱和放大装置7,最后单频光纤激光经过光滤波模块8的输出端输出。本例中单频激光谐振腔1的激光工作介质为掺nd3+磷酸盐玻璃光纤,单模半导体泵浦激光器3为808nm单模半导体激光器。单模半导体激光器经过一个800/930nm的波分复用器2对930nm单频激光谐振腔1进行后向泵浦。从波分复用器2信号端口输出的激光中心波长为930.15nm,然后通过一个10:90的光耦合器4,其中光耦合器4的10%端口与由光纤反射镜构成的光反射器5连接,将一部分输出激光自注入返回激光谐振腔内,实现对输出激光的强度噪声抑制和激光线宽压缩,通过适当延长与优化光耦合器4和光反射器5之间的光纤长度,可以在光耦合器4的90%端口获得亚khz量级的窄线宽单频激光输出。

虽然自注入方式能够在宽频带范围内实现较大幅度的强度噪声抑制效果,但是其无法有效抑制激光的弛豫振荡峰,且在高频段出现一系列的谐波峰,影响整个激光器的噪声性能。为了进一步抑制输出激光的强度噪声并获得较大功率的单频激光输出,从耦合器90%端输出的激光再经过一个930nm光隔离器6之后进入到激光饱和放大装置7之中,本例中使用的激光饱和放大装置7是一个高效率、高带宽的半导体光放大器。通过调节半导体光放大器的驱动电流,使之工作在饱和状态下,继而可以有效的抑制高频段的弛豫振荡峰和由自注入引起的谐波峰,并且在将近50mhz乃至更高频段范围内实现整体的强度噪声抑制。此外,半导体光放大器在工作过程中会引入明显的放大自发辐射光(ase),使输出激光的信噪比出现劣化,再通过光滤波模块8,本例中使用的光滤波模块8是一个3db带宽约1nm的带通型光纤滤波器,用于滤除产生的ase。最终实现超低噪声、窄线宽、高功率930nm单频光纤激光输出。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1