一种复合纳米结构的紫外/红外光电探测器制备方法与流程

文档序号:15810995发布日期:2018-11-02 22:12阅读:165来源:国知局
一种复合纳米结构的紫外/红外光电探测器制备方法与流程

本发明涉及一种复合纳米结构的紫外/红外光电探测器制备方法,具体为一种基于石墨烯——氧化锌复合纳米结构的紫外/红外光电探测器的制备方法,属于光电子器件领域。

背景技术

紫外/红外光电探测器是一种探测紫外、红外光辐照的光电器件,该器件可同时获得紫外和红外两个波段的信息,可增强对目标的识别能力,降低虚警率,是目前光探测技术发展的研究热点之一。其在精确制导、预警探测等军用领域有重要应用,在工业锅炉火焰检测、火灾探测和物质元素的分析等民用领域也有着广泛应用前景。目前的红外/紫外双色探测系统通常采用简单组合的方式将两套独立的红外探测系统和紫外探测系统集成在一起,封装复杂,体积大,成本高,如中国发明专利“一种红外紫外复合火焰探测器及其探测方法”(cn104199117a)、“一种三色探测器”(cn106342192b)等发明即为该种结构。

随着近年来半导体能带理论研究的深入,国内外报道了几种利用不同材料组合或不同机理研究的紫外/红外双色探测器,开始尝试了真正意义上的紫外/红外单片集成。目前的单片集成型紫外/红外光电探测器主要有两种类型,一种是以具有紫外响应的宽禁带半导体为基础,结合宽禁带半导体量子阱带阶红外吸收,实现双波段光电探测,如“氮化镓基紫外-红外双色集成探测器”(公开号cn1696670a),“单片集成紫外-红外双色雪崩光电二极管及其制备方法”(公开号cn106847933a)等方案就是基于上述机理。另外一种方案是采用半导体外延生长实现两种半导体材料的叠层组合,两种不同组分材料分别响应紫外和红外光,如“algan/pzt紫外/红外双波段探测器”(cn100524842c)、“基于硒化铟和氮化镓的双波段探测器及制备方法”(cn107331718a)、“紫外-红外双波段探测器及其制作方法”(cn101894831b)和“双波段光电探测器及其制备方法”(公开号cn104701393a)等结构双色探测器。从双波段光电探测器的发展趋势看,通过一个单片集成结构实现紫外/红外波段的探测,可以简化紫外/红外双色探测器的制作工艺和封装工艺,是未来发展的主流方向。最近发展起来的第三代宽禁带半导体材料,包括氮化镓(gan),氧化锌(zno)和碳化硅(sic)等,由于具有较大的禁带宽度对应于紫外光波段,具有良好的波长选择性,成为目前紫外光电探测器的主要感光材料。红外响应部分现在主流的是铟镓砷(ingaas)或硒化铟(inse)等窄禁带半导体。

氧化锌(zno)是直接带隙的半导体材料,能带宽度3.37ev,对应波长380nm,具有优良的光电转换特性。相比gan和sic材料,zno具有无毒,制备工艺简单和价格低廉等特点。一维纳米结构的氧化锌材料(如纳米线,纳米棒,纳米管等等)通常是单晶材料,晶体质量高,缺陷少,是理想的光电响应材料。石墨烯是由sp2碳原子以六边形晶格构成的二维单原子层结构,可以通过化学合成的方法从天然石墨大量制得,成本低廉、制备工艺简单。在室温下石墨烯就具有超高的载流子迁移率、超宽的光吸收谱(从紫外至远红外)等优良特性,使其在实现非制冷、高速、宽光谱的低成本红外探测方面极具潜力,也可应用于光伏、电化学储能和光传感等光电子器件中。

综上所述,一种采用新型纳米结构,实现单芯片集成的紫外、红外光电探测器,其中采用氧化锌纳米线阵列作为紫外吸收层,石墨烯作为红外吸收层和电荷传输层,可采用喷墨打印工艺制备,探测器具有器件结构简单、室温稳定工作、半透明和可柔性弯曲等特点成为必需。解决了传统紫外/红外双波段探测器结构复杂、需低温工作等问题,更适合于低成本、大规模生产使用。



技术实现要素:

本发明的目的是针对背景技术所提出问题,设计一种复合纳米结构的紫外/红外光电探测器制备方法,是一种基于石墨烯-氧化锌复合纳米结构的紫外/红外光电探测器的制备方法,通过低成本制备氧化还原石墨烯(rgo)与氧化锌纳米线复合的纳米材料,实现紫外/红外双波段的光探测,并且具有良好的光选择性,特别是器件可采用喷墨打印工艺制备,具有器件结构简单、室温稳定工作、半透明和可柔性弯曲等特点,解决了传统双波段探测器需要通过数据处理芯片进行信号放大的问题,而对基于掺杂半导体材料的紫外/红外双色探测器而言,本发明降低了器件制备难度,对设备要求低,更适合于大规模的生产,同时本发明双波段光电探测器还具备柔性,适用领域更加广阔。

本发明的技术方案是:一种复合纳米结构的紫外/红外光电探测器制备方法,是一种单芯片集成的紫外、红外光电探测器,采用喷墨打印工艺制备;其特征在于:所述探测器采用氧化锌纳米线阵列作为紫外吸收层,石墨烯作为红外吸收层和电荷传输层;具体技术方案和实施步骤如下:

(1)使用改进型hummers法制备氧化石墨烯(go)水溶液,加入添加剂配置成go墨;

(2)在喷墨打印机上,将所配置的go墨,喷打在聚对苯二甲酸乙二醇酯(pet)衬底上,制成带有叉指电极的go膜;

(3)将go膜进行热或者是化学还原处理,得到具有导电性的氧化还原石墨烯(rgo)膜;

(4)在rgo膜上喷涂zno种子层,随后使用热溶液法制备氧化锌纳米线阵列,得到紫外/红外光电探测传感觉器。

之后即可将电学测试设备直接连接在叉指电极两端,进行电流-电压、电流-时间曲线的测试。

本器件中的氧化还原石墨烯层,既充当了红外吸收层的作用,同时也是器件的电荷传输层。

本发明的有益效果是:

1、本发明涉及一种复合纳米结构的紫外/红外光电探测器制备方法,是直接使用热溶液法,在pet基石墨烯薄膜衬底上复合生长氧化锌纳米结构,利用石墨烯做叉指电极,制备的探测器对紫外/红外光有响应,而对可见光没有响应,制备工艺简单,不需要磁控溅射、热蒸发等传统的电极制作工艺,适合新型紫外/红外双波段光探测器的开发与推广。

2、通过低成本的化学方法复合生长了氧化锌纳米线阵列,实现了同时对紫外/红外光的探测功能,并且具有良好的光响应度和光选择性。仅利用喷墨打印的方法,在pet衬底上喷打go墨,通过简单的热或者化学还原,即制成带有叉指电极的rgo膜,制得的探测器具备柔性、半透明特点,有利于拓展探测器的应用领域。

附图说明

图1为按本发明“一种复合纳米结构的紫外/红外光电探测器制备方法”制备的石墨烯-氧化锌纳米线阵列紫外/红外光电探测器的结构示意图;

图2为石墨烯-氧化锌纳米线阵列紫外/红外光电探测器实物照片;

图3为电镜下观察到的石墨烯-氧化锌纳米线阵列紫外/红外光电探测器实物照片;

图4为石墨烯-氧化锌纳米线阵列紫外/红外光电探测器的xrd、sem图;

图5为所制备的氧化锌纳米线阵列紫外/红外光电探测器在365、530、550、597、620、808、980nm光开启和关闭条件下的电流-电压曲线;

图6为石墨烯-氧化锌纳米线阵列紫外/红外光电探测器在1v偏压下,对365、530、550、597、620、808、980nm光开启和关闭的电流——时间响应曲线(光开关时间为400秒,图5中所示为30~6600秒);

图7为石墨烯-氧化锌纳米线阵列紫外/红外光电探测器对365、530、550、597、620、808、980nm光的响应度曲线。

附图中的标记说明::1-pet柔性透明衬底;2-打印的石墨烯叉指电极;3-打印的石墨烯光吸收层;4-氧化锌种子层;5-氧化锌纳米棒;6-各个波长光入射方向。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

本发明提供一种复合纳米结构的紫外/红外光电探测器制备方法,是一种简单易行的低成本制备紫外/红外光电探测器方法,所得到的探测器具有结构简单,对光选择性好、紫外/红外响应强度高等特点。结合附图1~附图7,以下分二个实施例详细说明。

实施例1:

(1)使用改进型hummers法制备的氧化石墨烯水溶液:向容量为250毫升的三口烧瓶内加入1g鳞片石墨,25ml浓硫酸溶解10分钟,随后加入0.5g硝酸钠粉末,继续搅拌20分钟。缓慢加入3g高锰酸钾,控制瓶内温度不超过10℃,保证高锰酸钾在15分钟左右加完,随后冰浴2小时(温度低于10℃)。完成后升温到35℃,保温1小时。接着缓慢加入60ml去离子水,期间控制温度在90-95℃之间,持续15分钟,反应完成后加入10ml过氧化氢,观察到溶液变成土黄色。然后5000rpm/分离心2分钟,取沉淀加250ml去离子水溶解并加入5ml盐酸,再次5000rpm/分离心2分钟,取沉淀加入250ml去离子水溶解,然后8000rpm/分离心4分钟,取沉淀加入250ml去离子水溶解,加入氢氧化钠溶液是ph值达到7左右,制备完成。

(2)配置5mg/ml的go水溶液,向其中加入1,2-丙二醇配置成墨,go与1,2-丙二醇比例为体积比4:1,利用喷墨打印方法将已经设计好的叉指电极打印在pet衬底上,感光区面积为0.25平方厘米,叉指电极间距为0.6毫米。

(3)将打印好的go膜放入120℃烘箱干燥2小时,以清除样品中残存的1,2-丙二醇;随后将样品浸泡在80℃的氢溴酸溶液中30秒进行氧化石墨烯的还原处理,随后去离子水清洗表面残留试剂。

(4)取1.09g二水合乙酸锌溶于65ml甲醇溶剂,在60℃条件下搅拌30分钟,期间取0.84g氢氧化钾溶于35ml甲醇溶剂,超声15分钟后将其缓慢滴加到搅拌中的乙酸锌甲醇溶液,控制滴加时间在20分钟,随后保持60℃搅拌2小时。反应完成后将溶液使用4000rpm转速离心4分钟,取底层白色胶状物用100ml乙醇溶解分散。

(5)将步骤(3)中乙醇分散好的溶液取5ml滴涂到rgo衬底上,在60℃环境中烘干。

(6)将0.476g六水合硝酸锌(zn(no3)2·6h2o)、0.224g六亚甲基四胺(hmta)加入到80ml去离子水中,将涂好氧化锌种子层的样品用胶带固定住,使其漂浮在水面上,种子层朝下,随后在95℃条件下反应2小时,完成后取出样品依次用去离子水、乙醇冲清洗,然后在60℃环境中干燥,最后得到石墨烯——氧化锌纳米线阵列结构的紫外/红外光电探测器。

(7)之后即可进行紫外/红外光电探测器的各项性能测试。

实施例2:

(1)使用改进型hummers法制备的氧化石墨烯水溶液:向容量为250毫升的三口烧瓶内加入1g鳞片石墨,25ml浓硫酸溶解10分钟,随后加入0.5g硝酸钠粉末,继续搅拌20分钟。缓慢加入3g高锰酸钾,控制瓶内温度不超过10℃,保证高锰酸钾在15分钟左右加完,随后冰浴2小时(温度低于10℃)。完成后升温到35℃,保温1小时。接着缓慢加入60ml去离子水,期间控制温度在90-95℃之间,持续15分钟,反应完成后加入10ml过氧化氢,观察到溶液变成土黄色。然后5000rpm/分离心2分钟,取沉淀加250ml去离子水溶解并加入5ml盐酸,再次5000rpm/分离心2分钟,取沉淀加入250ml去离子水溶解,然后8000rpm/分离心4分钟,取沉淀加入250ml去离子水溶解,加入氢氧化钠溶液是ph值达到7左右,制备完成。

(2)配置5mg/ml的go水溶液,加入1,2-丙二醇配置成墨,go与1,2-丙二醇比例为体积比4:1,利用喷墨打印方法将已经设计好的叉指电极打印在pet衬底上,感光区面积为0.25平方厘米,叉指电极间距为0.3毫米。

(3)将滴涂好的go膜放入120℃烘箱干燥2小时,以清除样品中残存的1,2-丙二醇;随后将样品浸泡在80℃的氢溴酸溶液中30秒进行氧化石墨烯的还原处理,随后去离子水清洗表面残留试剂。

(4)取1.09g二水合乙酸锌溶于65ml甲醇溶剂,在60℃条件下搅拌30分钟,期间取0.84g氢氧化钾溶于35ml甲醇溶剂,超声15分钟后将其缓慢滴加到搅拌中的乙酸锌甲醇溶液,控制滴加时间在20分钟,随后保持60℃搅拌2小时。反应完成后将溶液使用4000rpm转速离心4分钟,取底层白色胶状物用100ml乙醇溶解分散。

(5)将(3)中乙醇分散好的溶液取5ml滴涂到rgo衬底上,60℃环境中烘干。

(6)将0.476g六水合硝酸锌(zn(no3)2·6h2o)、0.224g六亚甲基四胺(hmta)加入到80ml去离子水中,将涂好氧化锌种子层的样品用胶带固定住,使其漂浮在水面上,种子层朝下,随后在95℃条件下反应2小时,完成后取出样品依次用去离子水、乙醇冲清洗,然后60℃干燥,最后得到石墨烯——氧化锌纳米线阵列结构的紫外/红外光电探测器。

(7)之后即可进行紫外/红外光电探测器的各项性能测试。

如图5所示,按本发明实施例1或2所述技术方案,制备的石墨烯-氧化锌纳米线阵列紫外/红外光电探测器,在365、530、550、597、620、808、980nm光开启的电流-电压曲线。

如图6所示,所制备的石墨烯——氧化锌纳米线阵列紫外/红外光电探测器在365、530、550、597、620、808、980nm光开启和关闭的电流——时间曲线,其中光开关时间为400秒。

由上述测试可知,利用上述详细步骤制备的石墨烯——氧化锌纳米线阵列紫外/红外光电探测器对365~808之间的可见光具有很好的滤过性,对365nm和980nm波长的光有明显响应,这为本发明在低成本制备紫外/红外光电探测器领域的运用提供可能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1