一种高光暗电流比和高光响应度的有机光电探测器的制作方法

文档序号:15354283发布日期:2018-09-04 23:42阅读:276来源:国知局
本发明涉及光电探测器领域,具体是一种高光暗电流比和高光响应度的有机光电探测器。
背景技术
::给体-受体共聚物是指通过给体单元与受体单元共聚获得具有窄带隙的共轭高分子材料,近年来逐渐引起了人们的普遍关注,并且已经获得了良好的场效应性能,这也为合成高性能共轭高分子场效应材料提供新的设计思路。目前在有机场效应晶体管(ofet)、有机太阳电池(osc)、有机发光二极管(oled)有机传感器(organicsensor)等领域都有很重要的应用。传统增加有机光电晶体管的光响应性能的方法,包括将两种不同类型的半导体制成异质结和共轭聚合物半导体形成微纳结构两种方法。基于异质结的高响应的有机光电晶体管主要包括共轭聚合物/有机小分子、共轭聚合物/共轭聚合物与共轭聚合物/无机纳米颗粒制成的异质结结构。这种异质结结构由于在给体-受体界面处超快的电荷分离与较宽的光吸收能够增强器件的光响应。基于微纳结构的共轭聚合物半导体的有机光电晶体管能够增强器件的光响应是由于半导体内较低的陷阱态和纳米网络中更快的电荷传输以及纳米结构的极端的尺寸和几何形状导致的较高的比表面积。通过这两种方法能够实现较高的光响应。但是,通过这两种方法制作过程复杂需要并且需要严格控制有机半导体的形貌和微观结构。近期,2017年,黄佳在上《advancedfunctionalmaterials》发表的文章printableandflexiblephototransistorsbasedonblendoforganicsemiconductorandbiopolymer,通过将小分子半导体与极性分子共混在半导体内制作陷阱来提高光电晶体管的光响应。然而,该文献并不是通过聚合物半导体与极性分子进行共混作为光电晶体管的有源层,并且该文献也没有公开通过聚合物半导体中的受体单元的比例来调控光电晶体管的光响应这一技术手段。技术实现要素:本发明的目的是提供一种高光暗电流比和高光响应度的有机光电探测器,以解决现有技术有机光电探测器性能较差的问题。为了达到上述目的,本发明所采用的技术方案为:一种高光暗电流比和高光响应度的有机光电探测器,包括顺序连接的源漏电极、有源层、界面修饰层、绝缘层和栅极,其特征在于:有源层由给体-受体多元无规共聚物半导体与极性分子进行共混后制备而成,所述给体-受体多元无规共聚物半导体由给体单元和受体单元组成,其中受体单元有多种,通过调节多种受体单元的比例调控有机光电探测器的光响应,其中将1%亚丁基己二酸酯pba与以二噻吩bt作为给体单元,95wt%的异靛蓝iid和5wt%苯并二呋喃二酮bibdf作为受体单元的三组分无规共聚物btpidbibdf-5共混制备的半导体膜作为器件的有源层时,有着最好的光响应。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述给体单元可以是噻吩、并噻吩、联噻吩、乙烯基噻吩中的任意一种,其中:噻吩的化学式为:并噻吩的化学式为:联噻吩的化学式为:乙烯基噻吩的化学式为:所述受体单元由两部分组成,其中受体单元一部分必须由(3e,7e)-3,7-二(2-氧化吲哚啉-3-亚基)-苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮、(3e,7e)-3,7-二[5,7-二氟-1,2-二氢-2-氧-3h-吲哚啉-3-亚基]-3,7-二氢-苯并[1,2-b:4,5-b’]二呋喃-2,6-二酮、二(2-氧-7-氮杂吲哚啉-3-亚基)苯并二呋喃二酮、(3e,7e)-3,7-二[4,5-二氢-5-氧-6h-噻吩[3,2-b]吡咯-6-亚基]-3,7-二氢苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮中的一种或多种组成,其中:(3e,7e)-3,7-二(2-氧化吲哚啉-3-亚基)-苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮的化学式为:(3e,7e)-3,7-二[5,7-二氟-1,2-二氢-2-氧-3h-吲哚啉-3-亚基]-3,7-二氢-苯并[1,2-b:4,5-b’]二呋喃-2,6-二酮的化学式为:二(2-氧-7-氮杂吲哚啉-3-亚基)苯并二呋喃二酮的化学式为:(3e,7e)-3,7-二[4,5-二氢-5-氧-6h-噻吩[3,2-b]吡咯-6-亚基]-3,7-二氢苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮的化学式为:受体单元另一部分是3,6-二苯基吡咯并[3,4-c]吡咯-1,4(2h,5h)二酮、异靛蓝的一种或多种,其中:3,6-二苯基吡咯并[3,4-c]吡咯-1,4(2h,5h)二酮的化学式为:异靛蓝的化学式为:所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:制备有源层的极性分子为亚丁基己二酸酯。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述源漏电极的材料为金。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述界面修饰层的材料为具有改善有源层与绝缘层间的粗糙度、减少界面陷阱的材料,界面修饰层的材料优选cytop或自组装单分子层。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述绝缘层为提供足够的电容值、较低的漏电流和较好的化学稳定性的材料,绝缘层优选二氧化硅或绝缘聚合物。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述栅极的材料优选重掺杂硅。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:制备方法如下:步骤1:在带有绝缘层的栅极上制备界面修饰层;步骤2:在所述界面修饰层上制备有源层;步骤3:在所述有源层上制备源漏电极,包括将步骤3中的样品放入蒸镀机内,所述真空腔室中的压强低于1ⅹ10-4帕;加热源漏电极材料使其蒸发。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述步骤1过程如下:将带有绝缘层的栅极使用丙酮、乙醇和纯水分别清洗15分钟后用氮气吹干,用氧等离子体处理10分钟,之后将界面修饰层材料使用3000rpm的转速旋涂在洗好的带有绝缘层的栅极上,然后转移至热台上180℃加热15分钟。所述的一种高光暗电流比和高光响应度的有机光电探测器,其特征在于:所述步骤2过程如下:将浓度为5mg/ml的不同比例受体单元的给体-受体多元无规共聚物半导体与极性分子在试样瓶中使用氯仿共混,之后放置于振荡仪上振荡;待溶液完全混合后,使用4000rpm的转速旋涂在界面修饰层修饰过的带有绝缘层的栅极上,然后放置于真空烘箱中抽真空过夜。本发明公开了一种高光暗电流比和高光响应度的有机光电探测器,可实现高光暗电流比(p>106)和高光响应度(r=77aw-1),解决现有的有机光电探测器性能较差的问题。本发明通过将不同比例受体单元的给体-受体多元无规共聚物半导体与极性分子进行共混后制备薄膜作为有机光电探测器的有源层,通过给体-受体共聚物半导体中的受体单元的比例来调控有机光电探测器的光响应,以简单的制备方法实现高光暗电流比和高光响应度。本发明具有以下的有益效果:通过将不同比例受体单元的给体-受体多元无规共聚物半导体与极性分子进行共混作为光电晶体管的有源层,并且能够通过给体-受体共聚物半导体中的受体单元的比例来调控光电晶体管的光响应的方法至今没有被文献报道,实现高光暗电流比(p>106)和高光响应度(r=77aw-1)。附图说明图1为本发明所述有机光电探测器结构示意图。图2为在不同强度下,不同比例受体单元的给体-受体多元无规共聚物半导体的转移特性曲线。图3为具有不同极性分子比例的一种给体-受体多元无规共聚物半导体混合的光电晶体管在不同光照强度下的转移特性曲线。图4为从图3的数据中提取的迁移率值和光响应性能参数。图5为固定极性分子含量,不同比例受体单元的给体-受体多元无规共聚物半导体的混合光电晶体管在不同光照强度下的转移特性曲线以及从中提取的迁移率值和光响应性能参数。具体实施方式本发明的发明思想为:本发明通过将不同比例受体单元的给体-受体三元无规共聚物半导体与极性分子进行共混作为光电晶体管的有源层,并且能够通过给体-受体三元无规共聚物半导体中的受体单元的比例来调控光电晶体管的光响应,实现了高光暗电流比和高光响应度。下面结合附图对本发明做以详细说明。如图1所示,一种高光暗电流比和高光响应度的有机光电探测器,包括顺次连接的:源漏电极(1)、有源层(2)、界面修饰层(3)、绝缘层(4)和栅极(5):其中,源漏电极(1)的厚度为30纳米;有源层(2)的厚度为60纳米到80纳米;界面修饰层(3)的厚度6纳米到10纳米;绝缘层(4)的厚度为300纳米;栅极(5)的厚度为500微米。本发明将不同比例受体单元的给体-受体多元无规共聚物半导体与极性分子进行共混后制备的薄膜作为有机光电探测器的有源层(2),通过给体-受体多元无规共聚物半导体中的受体单元的比例来调控有机光电探测器的光响应。给体-受体多元无规共聚物半导体由给体单元和受体单元组成,其中受体单元有多种,通过调节多种受体单元的比例调控有机光电探测器的光响应。所述给体单元可以是噻吩、并噻吩、联噻吩、乙烯基噻吩中的任意一种,其中:噻吩的化学式为:并噻吩的化学式为:联噻吩的化学式为:乙烯基噻吩的化学式为:所述受体单元由两部分组成,其中受体单元一部分必须由(3e,7e)-3,7-二(2-氧化吲哚啉-3-亚基)-苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮、(3e,7e)-3,7-二[5,7-二氟-1,2-二氢-2-氧-3h-吲哚啉-3-亚基]-3,7-二氢-苯并[1,2-b:4,5-b’]二呋喃-2,6-二酮、二(2-氧-7-氮杂吲哚啉-3-亚基)苯并二呋喃二酮、(3e,7e)-3,7-二[4,5-二氢-5-氧-6h-噻吩[3,2-b]吡咯-6-亚基]-3,7-二氢苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮中的一种或多种组成,其中:(3e,7e)-3,7-二(2-氧化吲哚啉-3-亚基)-苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮的化学式为:(3e,7e)-3,7-二[5,7-二氟-1,2-二氢-2-氧-3h-吲哚啉-3-亚基]-3,7-二氢-苯并[1,2-b:4,5-b’]二呋喃-2,6-二酮的化学式为:二(2-氧-7-氮杂吲哚啉-3-亚基)苯并二呋喃二酮的化学式为:(3e,7e)-3,7-二[4,5-二氢-5-氧-6h-噻吩[3,2-b]吡咯-6-亚基]-3,7-二氢苯并[1,2-b:4,5-b’]二呋喃-2,6(3h,7h)-二酮的化学式为:受体单元另一部分是3,6-二苯基吡咯并[3,4-c]吡咯-1,4(2h,5h)二酮、异靛蓝的一种或多种,其中:3,6-二苯基吡咯并[3,4-c]吡咯-1,4(2h,5h)二酮的化学式为:异靛蓝的化学式为:制备有源层的极性分子为亚丁基己二酸酯。源漏电极的材料为金,厚度为30纳米。界面修饰层的材料为具有改善有源层与绝缘层间的粗糙度、减少界面陷阱的材料,界面修饰层的材料优选cytop或自组装单分子层,厚度为6纳米到10纳米。绝缘层为提供足够的电容值、较低的漏电流和较好的化学稳定性的材料,绝缘层优选二氧化硅或绝缘聚合物。栅极的材料优选重掺杂硅,厚度为500微米。实施例1:一种高光暗电流比和高光响应度的有机光电探测器,包括:源漏电极(1)、有源层(2)、界面修饰层(3)、绝缘层(4)和栅极(5),如图1所示。源漏电极(1)为金;有源层(2)为iidbtbibdfbt、iidbtnbibdfbt、iidbt4fbibdfbt、iidbtbtbdf中的一种与亚丁基己二酸酯共混后制备的薄膜;界面修饰层(3)为cytop;绝缘层(4)为二氧化硅;栅极(5)为重掺杂硅;iidbtbibdfbt的化学式为:iidbtnbibdfbt的化学式为:iidbt4fbibdfbt的化学式为:iidbtbtbdf的化学式为:源漏电极(1)的厚度为30纳米;有源层(2)的厚度为60纳米到80纳米;界面修饰层(3)的厚度6纳米到10纳米;绝缘层(4)的厚度为300纳米;栅极(5)的厚度为500微米;上述有机光电探测器制备方法包括以下步骤:步骤1:将带有300纳米厚的二氧化硅的硅片使用丙酮、乙醇和纯水分别清洗15分钟后用氮气吹干,用氧等离子体处理10分钟,之后将cytop溶液使用3000rpm的转速旋涂在洗好的带有300纳米厚的二氧化硅的硅片上,然后转移至热台上180℃加热15分钟。步骤2:将浓度为5mg/ml的以二噻吩(bt)作为给体单元,不同比例受体单元的给体-受体多元无规共聚物半导体与极性分子亚丁基己二酸酯在试样瓶中使用氯仿共混,之后放置于振荡仪上振荡;待溶液完全混合后,使用4000rpm的转速旋涂在cytop修饰过的带有300纳米厚的二氧化硅的硅片上,然后放置于真空烘箱中抽真空过夜。步骤3:在所述有源层(2)上制备源漏电极(1),包括将步骤3中的样品放入蒸镀机内,所述真空腔室中的压强低于1ⅹ10-4帕;加热金颗粒使其蒸发,蒸镀厚度为30纳米。附图2为在不同强度下,不同比例受体单元的给体-受体三元无规共聚物半导体的转移特性曲线。为了评估不同含量的苯并二呋喃二酮(bibdf)的聚合物(btpidbibdfs)薄膜晶体管的光响应特性,分别测试各自的器件在黑暗和光照下的转移特性曲线如图所示。从图中可以看出,聚合物btpidbibdf-0薄膜晶体管在光照(pinc=65mwcm-2,λ=650nm)下,器件的ids(开态)变化很小。而其它三种聚合物的器件的ids(开态)有着相对较大的变化。附图3为具有不同极性分子比例的一种给体-受体三元无规共聚物半导体混合的光电晶体管在不同光照强度下的转移特性曲线。附图4为从图3的数据中提取的迁移率值和光响应性能参数。从图中可以看出,随着亚丁基己二酸酯(pba)含量增加到1%,器件的光响应是逐渐增加的,当含量进一步增加到2%,光响应性能开始下降。可以看出最高性能参数p和r分别达到3.2×106和77aw-1。而纯的聚合物btpidbibdf-5光电晶体管的p和r值分别达到3.3和0.13aw-1。由此可见,通过共混亚丁基己二酸酯(pba)使得器件的光响应在光/暗电流比率(p)大了6个数量级而在光响应度(r)方面也将近为纯的聚合物薄膜器件的600倍。附图5为了更好的比较不同苯并二呋喃二酮(bibdf)含量对于器件光响应的影响,总结了聚合物btpidbibdfs器件的性能和光响应参数(p和r)。通过对每种苯并二呋喃二酮(bibdf)比例的器件测试了5个,并求其平均迁移率。可以看出随着苯并二呋喃二酮(bibdf)含量的增加,器件的迁移率是先升高后下降。从图中可以看出,随着苯并二呋喃二酮(bibdf)含量增加到5%,器件的光响应是逐渐增加的,当含量进一步增加到10%,光响应性能开始下降。可以看出最高性能参数p和r分别达到3.2×106和77aw-1。而聚合物btpidbibdf-0光电晶体管的p和r值分别达到110和1.43aw-1。由此可见,含有苯并二呋喃二酮(bibdf)含量聚合物比聚合物btpidbibdf-0的光电晶体管在p值大了近四个数量级,也是r值的50倍。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1