光互联数据读写装置的制作方法

文档序号:15698176发布日期:2018-10-19 19:23阅读:165来源:国知局
光互联数据读写装置的制作方法

本发明涉及可见光通信、智能照明及显示技术领域,尤其涉及一种光互联数据读写装置。



背景技术:

可见光通信(visiblelightcommunication,vlc)是在发光二极管(lightemittingdiode,led)等技术上发展起来的一种新型、短距离、高速的无线通信技术。它以led作为光源,以大气或水作为传授媒介,通过发出肉眼察觉不到的、高速明暗闪烁的可见光信号来传输信息,在接收端利用光电二极管(photodiode,pd)完成光电转换,然后进行电信号的接收、再生、解调来实现信息的传递。与传统无线射频通信技术相比,vlc具有:耗能低、购置设备少等优势,符合国家节能减排战略;无电磁污染,可见光波段和射频信号不相互干扰,对人眼安全,频谱无需授权即可使用的优点;同时,适合信息安全领域使用,只要遮挡住可见光,vlc通信网络中的信息就不会外泄,具有高度保密性。基于上述原因,可见光通信被公认为最具发展前景的通信技术,已成为国内外的研究热点。

目前,现有的数据读写装置,是通过导线连接处理器与存储器,预存储的数据信息经所述处理器处理之后通过导线传输至所述存储器进行存储;预读取的信息从所述存储器传输至所述处理器,并经处理器处理为用户可读形式。但是,现有的依靠电子进行处理器和存储器之间的数据传输方式,数据传输效率较低,能耗和热效应也较严重。

因此,如何提高数据读写装置中处理器与存储器之间的数据传输效率,是目前亟待解决的技术问题。



技术实现要素:

本发明提供一种光互联数据读写装置,用以解决现有的数据读写装置中数据传输效率低的问题。

为了解决上述问题,本发明提供了一种光互联数据读写装置,包括:

处理模块,用于与外界进行数据传输;

存储模块,用于数据的存储;

光通信模块,同时连接所述处理模块和所述存储模块,包括通过光波导连接的第一量子阱二极管器件和第二量子阱二极管器件;

所述第一量子阱二极管器件连接所述处理模块,所述第二量子阱二极管器件连接所述存储模块;所述光通信模块用于采用光传输的形式实现所述处理模块与所述存储模块之间的数据通信。

优选的,还包括调制模块和接收模块;所述调制模块,连接所述第一量子阱二极管器件,用于将所述处理模块中预写入信息加载至所述第一量子阱二极管器件并调制所述第一量子阱二极管器件发出第一调制光,且将所述第一调制光耦合进所述光波导;所述第二量子阱二极管器件接收所述光波导传输的第一调制光信息,并将所述第一调制光转换成第一电信号;所述接收模块,连接所述第二量子阱二极管器件,用于从所述第一电信号中提取预写入信息并传输至所述存储模块,实现数据的写入。

优选的,所述调制模块,还连接所述第二量子阱二极管器件,用于将所述存储模块中预读取的信息加载至所述第二量子阱二极管器件并调制所述第二量子阱二极管器件发出第二调制光,且将所述第二调制光耦合进所述光波导;所述第一量子阱二极管器件接收所述光波导传输的第二调制光信息,并将所述第二调制光转换成第二电信号;所述接收模块,还连接所述第一量子阱二极管器件,用于从所述第二电信号中提取预读取的信息并传输至所述处理模块,实现数据的读取。

优选的,所述光通信模块以硅基氮化镓晶圆为载体,所述第一量子阱二极管器件、所述第二量子阱二极管器件与所述光波导集成于所述载体表面。

优选的,所述第一量子阱器件与所述第二量子阱器件均具有p-n结量子阱结构;

所述p-n结量子阱结构包括n-gan层、ingan/gan量子阱层、p-gan层、p-电极和n-电极,且所述ingan/gan量子阱层设置于所述n-gan层与所述p-gan层之间;

所述n-gan层表面具有台阶状结构,所述台阶状结构包括第一台面和第二台面,所述第二台面凸设于所述第一台面表面;n-电极设置于所述第一台面表面,所述ingan/gan量子阱层、所述p-gan层、p-电极从下至上依次叠置在所述第二台面表面。

优选的,所述光通信模块还包括硅衬底、以及设置于所述硅衬底表面的缓冲层,所述p-n结量子阱结构形成于所述缓冲层表面。

优选的,所述光通信模块还包括贯穿所述硅衬底、所述缓冲层至所述n-gan层底面的空腔,所述第一量子阱二极管器件的p-n结量子阱结构、所述第二量子阱二极管器件的p-n结量子阱结构以及所述光波导悬于所述空腔上方。

优选的,所述n-电极与所述p-电极均为ni/au电极。

本发明提供的光互联数据读写装置,通过在处理模块与存储模块之间增设一光通信模块,并利用量子阱二极管器件具备发光与探测共存的物理性质,将所述处理模块与存储模块之间的信息传输方式由传统的电子传输改为光子传输,由于光子传输过程稳定,并行能力强,因此,显著提高了数据读写装置的读写效率;且光子传输与光电转换所需要的能量都较小,因此,能够减少所述数据读写装置的整体功耗,降低所述数据读写装置的热效应。

附图说明

附图1是本发明具体实施方式中光互联数据读写装置的结构框图;

附图2是本发明具体实施方式中光互联数据读写装置在进行数据写入时的结构示意图;

附图3是本发明具体实施方式中光互联数据读写装置在进行数据读取时的结构示意图;

附图4是本发明具体实施方式中同质集成光通信芯片的俯视结构示意图;

附图5是本发明具体实施方式中同质集成光通信芯片的截面结构示意图。

具体实施方式

下面结合附图对本发明提供的光互联数据读写装置的具体实施方式做详细说明。

本具体实施方式提供了一种光互联数据读写装置,附图1是本发明具体实施方式中光互联数据读写装置的结构框图。如图1所示,本具体实施方式提供的光互联数据读写装置,包括处理模块11、存储模块12和光通信模块13。其中,所述处理模块11,用于与外界进行数据传输;所述存储模块12,用于数据的存储。具体来说,在数据写入过程中,所述处理模块11接收外界传输的预存储数据,并对所述预存储数据进行处理后传输至所述存储模块12进行存储;在数据读取过程中,所述存储模块12将预读取的信息传输至所述处理模块11,经所述处理模块11处理后传输至外界。所述处理模块11与所述存储模块12对预存储数据和预读取数据的具体处理方式,与现有技术相同,在此不再赘述。

为了实现所述处理模块11与所述存储模块12之间的数据传输效率,提高数据读写装置的读写速率,本具体实施方式提供的光互联数据读写装置还包括光通信模块13。所述光通信模块13,同时连接所述处理模块11和所述存储模块12,包括通过光波导133连接的第一量子阱二极管器件131和第二量子阱二极管器件132;所述第一量子阱二极管器件131连接所述处理模块11,所述第二量子阱二极管器件132连接所述存储模块12;所述光通信模块13用于采用光传输的形式实现所述处理模块11与所述存储模块12之间的数据通信。通过所述光通信模块13的设置,利用量子阱二极管器件具有发光和探测共存的物理现象,将所述处理模块11与所述存储模块12之间的数据传输方式由电子传输改为光子传输,利用光子传输过程稳定、并行能力强、纠错设计相对简单的特点,极大的提高了所述处理模块11与所述存储模块12之间的数据传输效率;同时,光子传输和数据转换过程所需要的能量较低,从而有效减少了所述光互联数据读写装置的整体功耗。

附图2是本发明具体实施方式中光互联数据读写装置在进行数据写入时的结构示意图。为了进一步提高所述处理模块11与所述存储模块12之间数据传输的效率以及稳定性,优选的,如图2所示,本具体实施方式提供的光互联数据读写装置还包括调制模块14和接收模块15;所述调制模块14,连接所述第一量子阱二极管器件131,用于将所述处理模块11中预写入信息加载至所述第一量子阱二极管器件131并调制所述第一量子阱二极管器件131发出第一调制光,且将所述第一调制光耦合进所述光波导133;所述第二量子阱二极管器件132接收所述光波导133传输的第一调制光信号,并将所述第一调制光信息转换成第一电信号;所述接收模块15,连接所述第二量子阱二极管器件132,用于从所述第一电信号中提取预写入信息并传输至所述存储模块12,实现数据的写入。

具体来说,如图2所示,所述调制模块14包括信号发生器142和第一信号放大器141,所述接收模块15包括信号接收器152和第二信号放大器151。在进行数据写入时,所述处理模块11将从外界接收到的预存储信息处理后传输至所述信号发生器142,所述信号发生器142将所述预存储信息加载至所述第一量子阱二极管器件131的第一发光控制信号中,所述第一发光控制信号经所述第一信号放大器141放大后传输至所述第一量子阱二极管器件131,使得所述第一量子阱二极管器件131发出第一调制光,此时,所述第一调制光中包含有预存储信息,即实现了所述预存储信息从电信号到光信号的转换。所述第一调制光耦合进所述光波导133,通过所述光波导133传输至所述第二量子阱二极管器件132。所述第二量子阱二极管器件132探测、感知所述第一调制光,将所述第一调制光信号转换为第一电信号,即实现从光信号到电信号的转换。所述接收模块15中的所述第二信号放大器151将转换后的电信号放大后传输至所述信号接收器152,所述信号接收器152从经放大的所述电信号中提取预读取信息的电信号,并传输至所述存储模块12进行存储。

附图3是本发明具体实施方式中光互联数据读写装置在进行数据读取时的结构示意图。为了进一步提高所述处理模块11与所述存储模块12之间数据传输的效率以及稳定性,更优选的,如图3所示,所述调制模块14,还连接所述第二量子阱二极管器件132,用于将所述存储模块12中预读取的信息加载至所述第二量子阱二极管器件132并调制所述第二量子阱二极管器件132发出第二调制光,且将所述第二调制光耦合进所述光波导133;所述第一量子阱二极管器件131接收所述光波导133传输的第二调制光信息,并将所述第二调制光信息转换成第二电信号;所述接收模块15,还连接所述第一量子阱二极管器件131,用于从所述第二电信号中提取预读取的信息并传输至所述处理模块11,实现数据的读取。

具体来说,在进行数据读取时,所述存储模块12将预读取信息处理后传输至所述信号发生器142,所述信号发生器142将所述预读取信息加载至所述第二量子阱二极管器件132的第二发光控制信号中,所述第二发光控制信号经所述第一信号放大器141放大后传输至所述第二量子阱二极管器件132,使得所述第二量子阱二极管器件132发出第二调制光,此时,所述第二调制光中包含有预读取信息,即实现了所述预读取信息从电信号到光信号的转换。所述第二调制光耦合进所述光波导133,通过所述光波导133传输至所述第一量子阱二极管器件131。所述第一量子阱二极管器件131探测、感知所述第二调制光,将所述第二一调制光信号转换为第二电信号,即实现从光信号到电信号的转换。所述接收模块15中的所述第二信号放大器151将转换后的电信号放大后传输至所述信号接收器152,所述信号接收器152从经放大的所述电信号中提取预写入信息的电信号,并传输至所述处理模块11,经所述处理模块11处理后传输至外界。

本具体实施方式提供的光互联数据读写装置,对现有读写装置的存储模块12和处理模块11的结构、功能都不作改变,只是将所述处理模块11与所述存储模块12之间的数据传输方式进行了改变,即能实现数据读写装置读写效率的大幅度提升,极大提高了用户的使用体验。

附图4是本发明具体实施方式中同质集成光通信芯片的俯视结构示意图,附图5是本发明具体实施方式中同质集成光通信芯片的截面结构示意图。为了进一步提高所述光互联数据读写装置的性能稳定性,优选的,所述光通信模块13以硅基氮化镓晶圆为载体,所述第一量子阱二极管器件131、所述第二量子阱二极管器件132与所述光波导133集成于所述载体表面。作为化合物半导体,氮化镓材料具有较佳的发光、传输和光探测性能。本具体实施方式,利用氮化镓基量子阱二极管的发光谱和探测响应谱存在重叠区域,使得氮化钾基量子阱二极管器件具备发光和探测共存的物理性质,使得量子阱二极管器件既能作为光发射器件、又能作为光接收器件。

为了提高量子阱二极管器件光探测与光电转换的效率,优选的,如图4、5所示,所述第一量子阱器件131与所述第二量子阱器件132均具有p-n结量子阱结构;所述p-n结量子阱结构包括n-gan层41、ingan/gan量子阱层53、p-gan层54、p-电极42和n-电极43,且所述ingan/gan量子阱层53设置于所述n-gan层41与所述p-gan层54之间;所述n-gan层41表面具有台阶状结构,所述台阶状结构包括第一台面和第二台面,所述第二台面凸设于所述第一台面表面;所述n-电极43设置于所述第一台面表面,所述ingan/gan量子阱层53、所述p-gan层54、p-电极42从下至上依次叠置在所述第二台面表面。本具体实施方式之所以选择ingan/gan构建多层量子阱,是因为氮化物,特别是gan、ingan,具有高的禁带宽度、大的电子饱和和漂移速率以及稳定的化学性质,并具有良好的发光、导光以及光探测特性,可以利用由ingan/gan构成的多层量子阱,实现有效实现发光与光探测功能。

优选的,所述光通信模块13还包括硅衬底51、以及设置于所述硅衬底51表面的缓冲层52,所述p-n结量子阱结构形成于所述缓冲层52表面。更优选的,所述光通信模块13还包括贯穿所述硅衬底51、所述缓冲层52至所述n-gan层41底面的空腔,所述第一量子阱二极管器件131的p-n结量子阱结构、所述第二量子阱二极管器件132的p-n结量子阱结构以及所述光波导133悬于所述空腔上方。更优选的,所述n-电极43与所述p-电极42均为ni/au电极。

具体来说,本具体实施方式所述的光通信模块13可以为一以硅基氮化镓晶圆作为载体的同质集成的光通信芯片。通过所述同质集成的光通信芯片使用光子代替电子进行信息的传输,可以将光通信的频谱资源拓展到可见光波段,从硅材料体系发展到氮化镓材料体系。通过改变量子阱二极管器件结构的组分,能够调控量子阱二极管器件的发光谱和探测响应谱,甚至制造紫外-可见光领域的多谱段同质集成光通信模块。而且,量子阱二极管器件具有双工光电探测机制,能够同时发送和接收信息,可以提供实时双工光通信,允许独特的设备到接口的交互性。本具体实施方式通过同质集成的光通信模块13互联所述处理模块11与所述存储模块12,解决了所述处理模块11与所述光通信模块13、以及所述光通信模块13与所述存储模块12之间的互联问题,使用光子进行传输数据,具有广泛的应用前景。

本具体实施方式供的光互联数据读写装置,通过在处理模块与存储模块之间增设一光通信模块,并利用量子阱二极管器件具备发光与探测共存的物理性质,将所述处理模块与存储模块之间的信息传输方式由传统的电子传输改为光子传输,由于光子传输过程稳定,并行能力强,因此,显著提高了数据读写装置的读写效率;且光子传输与光电转换所需要的能量都较小,因此,能够减少所述数据读写装置的整体功耗,降低所述数据读写装置的热效应。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1