一种超短沟道金属-半导体-金属型光探测器及制作方法与流程

文档序号:15973013发布日期:2018-11-16 23:36阅读:450来源:国知局

本发明涉及光电子信息技术领域,涉及一种光探测器,尤其涉及一种超短沟道金属-半导体-金属型光探测器及其制作方法。

背景技术

光电探测器的原理是由辐射引起被照射材料电导率发生改变。根据可探测光波段的不同,光探测器可分为紫外光探测器、可见光探测器以及红外光探测器。紫外光探测器主要用于导弹预警及制导、紫外通讯、臭氧监测、明火探测、生物医药分析等方面,可见近红外光探测器主要用于射线测量和探测、工业自动控制、光度计量等方面,红外光探测器主要用于红外遥感和红外热成像等方面。光探测器在军事和国民经济的各个领域有广泛用途。

层状二硫化钼早期主要作为润滑剂,近些年,随着二维材料的出现和发展,层状二硫化钼通过机械剥离法首次获得其二维纳米结构。随着厚度的降低,二维二硫化钼带隙逐渐增大,当二硫化钼的厚度为单层时,其带隙由间接带隙转变为直接带隙,这为其在光电器件领域的应用提供了物理基础。最近,基于二维二硫化钼光探测器的研究引起了科学界的广泛关注,并取得了一定的进展。

目前利用二维二硫化钼所构筑的光探测器主要为肖特基光探测器以及异质结型光探测器。利用在金属与半导体之间或者不同半导体之间产生的内建电场,在光照条件下产生电子空穴对并分离,进而改变电流,实现光探测。然而,该类光探测通常面临金属与二维二硫化钼接触势垒高的难题,光暗电流都比较小,通常在10-9a数量级,难于检测。且现有技术中的光探测器存在响应时间长,光响应度低以及量子效率不高的问题。



技术实现要素:

本发明的目的在于克服现有技术的缺点,提供一种超短沟道金属-半导体-金属型光探测器及其制作方法,用于提高二维二硫化钼光探测器的光暗电流以及光响应度等性能。

一种超短沟道金属-半导体-金属型光探测器,其特征在于,包括:绝缘衬底,建立在所述绝缘衬底上的底电极,完全覆盖所述底电极的沟道,位于所述沟道上方的顶电极;其中,所述底电极和顶电极分别为所述光探测器的源极和漏极。

进一步地,所述绝缘衬底为柔性透明的聚对苯二甲酸乙二醇酯塑料薄膜、透明的蓝宝石基片和带有氧化层的硅片中的一种。

进一步地,所述源极和漏极均为金属电极。优选的,所述电极为au。

进一步地,所述沟道为二维二硫化钼沟道,所述漏极和源极分别构筑于二维二硫化钼沟道的上下表面,二维二硫化钼沟道的厚度即为所述光探测器的沟道宽度。

进一步地,所述二维二硫化钼沟道的厚度范围为0.7-2nm,所述二维二硫化钼沟道的层数为1-3层。

一种超短沟道金属-半导体-金属型光探测器的制作方法,用于制作光探测器,其特征在于,所述制作步骤如下:

1)提供绝缘衬底;

2)在所述绝缘衬底上构筑底电极;

3)转移二维二硫化钼至所述底电极上并完全覆盖所述底电极,形成沟道;

4)在所述沟道的上表面构筑顶电极。

进一步地,所述二维二硫化钼的制备方法为氧气辅助化学气相沉积法,所述底电极的图案的制备方法为紫外曝光技术,所述顶电极的图案的制备方法为电子束刻蚀技术,所述底电极和顶电极均通过真空蒸镀方法制作,所述二维二硫化钼的转移方法为湿法转移技术。

进一步地,所述氧气辅助化学气相沉积法为:在常压条件下,使用三氧化钼粉末和升华硫粉末作为钼源和硫源,所述钼源置于生长区,所述硫源置于载气上游,氩气为保护气氛,通以氧气辅助生长,生长衬底置于所述钼源的正上方。

进一步地,氩气流量为500sccm,氧气流量为2sccm,生长温度为850℃,硫源温度为180℃,生长时间为30min。

该光探测器的工作原理与传统的金属-半导体-金属型光探测器不同,该探测器的沟道材料的厚度即为沟道的宽度,所述二维二硫化钼的厚度为0.7-2nm,因此,通过该光探测器的电流主要为隧穿电流。影响隧穿电流的主要因素是隧穿距离和隧穿势垒,对于半导体材料隧穿层而言,其隧穿势垒与其电子亲和能直接相关,而光照则可以通过光伏效应调节二维半导体材料内部载流子浓度,进而改变其电子亲和能,调节隧穿势垒的高度。另外,通过光热效应改变隧穿距离进而调节隧穿电流。由于隧穿距离很短,因而可以获得较大的隧穿电流,且隧穿势垒以及隧穿距离对隧穿电流的影响很大,因此具有较好的光响应性能。

附图说明

图1为本发明实施例中光探测器的结构示意图。

图2为本发明实施例中光探测器在进行光探测时的电路图。

图3为本发明实施例中光探测器的光暗i-v特性曲线。

附图标记说明:1—绝缘衬底、2—底电极、3—沟道、4—顶电极

具体实施方式

下面结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。

本发明实施例提供了一种超短沟道金属-半导体-金属型光探测器,具体实施方式参阅图1,图1为该探测器的结构示意图。如图1所示,本发明的一种超短沟道金属-半导体-金属型光探测器,是建立在绝缘衬底1上的。绝缘衬底1为柔性透明的聚对苯二甲酸乙二醇酯塑料薄膜、透明的蓝宝石基片和带有氧化层的硅片中的一种。

利用紫外光刻技术在绝缘衬底1上构筑底电极2。具体地,在绝缘基底1上旋涂一层聚甲基丙烯酸甲酯(pmma),利用紫外曝光机曝光底电极2的图案,显影后利用热蒸镀沉积金属电极,在丙酮溶液中去除多余的pmma和金属,即形成所述的底电极2。

采用cvd法生长二维二硫化钼,具体步骤如下

生长衬底为带有300nm氧化层的硅片或者蓝宝石基底,依次使用食人鱼清洗液(浓硫酸与过氧化氢三比一比例配制)、丙酮、乙醇以及去离子水清洗,最后用氮气吹干。

钼源和硫源分别为三氧化钼粉末和升华硫粉末,用干燥箱烘干。

氩气作为保护气氛,流量为500sccm。钼源与硫源分别加热。

0.01g的钼源置于刚玉坩埚中,生长衬底置于其正上方,用于沉积二硫化钼的一面朝下放置。

钼源与衬底置于管式炉气流下游,加热温度820-860℃。硫源置于气流上游,加热温度160-180℃。

硫源先于钼源加热至目标温度,保温至二硫化钼生长结束。钼源加热至目标温度时开始通入1-2sccm氧气,保温30分钟后随炉冷却,同时关闭氧气。

冷却至室温后,取出衬底,所需二维二硫化钼即生长在衬底上。

利用湿法转移技术将生长的二维二硫化钼转移至已制作底电极的衬底,形成沟道3。具体的,在生长的样品上旋涂一层pmma,利用碱溶液刻蚀衬底,使生长的二维二硫化钼及pmma薄膜与衬底分离,分离后二维二硫化钼粘着在pmma薄膜上。利用带有底电极的衬底捞取粘着二维二硫化钼的pmma薄膜,使粘着二维二硫化钼的一侧与衬底接触。干燥后,利用丙酮蒸汽去除表面pmma薄膜,使转移的二维二硫化钼完全覆盖底电极,即形成沟道3。

利用电子束曝光技术构筑器件顶电极4。具体地,在构筑好底电极并转移好样品的衬底上旋涂一层pmma,利用cad绘制顶电极图案,在电子束曝光系统下曝光顶电极图案,显影后蒸镀金,在丙酮溶液中去除多余的pmma和金,即形成顶电极4,并完成本发明超短沟道光探测器的制作。

按照上述制作方法制作的超短沟道金/二硫化钼/金光探测器的光暗电流i-v特性如图3所示,所用激发光为白光,波长范围390-770nm。由图3可以看出,该光探测器具有较大的电流,暗电流达到0.1ma,且具有较好的光响应性能,在1v偏压下,光电流为0.8ma,光暗电流比为8。

综上所述,本发明利用二维二硫化钼作垂直方向作为沟道层,构筑了超短沟道光探测器,该光探测器的电流达到毫安级,易于检测。同时,利用二维二硫化钼柔性透明的特点,配以柔性透明的绝缘衬底,为器件的柔性化提供一种可行方案。

以上所述仅为本发明的优选实例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1