一种阵列基板及其制造方法和一种液晶显示面板与流程

文档序号:16526551发布日期:2019-01-05 10:23阅读:95来源:国知局
一种阵列基板及其制造方法和一种液晶显示面板与流程

本发明涉及显示领域,尤其涉及液晶显示器,具体涉及阵列基板的制造方法。



背景技术:

生活中,液晶显示器已经成为最常用的显示装置了,其中,液晶面板的对比度是衡量液晶显示器光学性能重要指标,但是液晶面板内存在带有弧形的交叉金属结构,此结构会导致漏光问题,进而会降低液晶面板的对比度。现有技术中,可以通过将金属竖线直接取消、将金属横向走线移动到子像素显示区域外的黑栅区下方以及将像素电极设计为水平和垂直方向等改变像素结构的方式来有效降低漏光,提高对比度;但是对于一些大尺寸、高分辨率的高阶显示器,为了保证充电效率和存储电容的相对充足,不能通过移除上述金属结构的操作来改善其漏光现象。

综上所述,某些必须具备金属结构的高分辨率的液晶面板存在着漏光的问题,因此,现有技术有改进的空间。



技术实现要素:

本发明提供了阵列基板的制造方法,用于改善某些必须具备金属结构的高分辨率的液晶面板存在着漏光的现象。

为解决上述问题,本发明的技术方案提供一种阵列基板的制造方法,包括如下步骤:

s101、镀膜,即在玻璃基板的表面镀上一层膜;

s102、上光阻,即在所述膜的表面涂上一层光阻液;

s103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;

s104、显影,即溶解曝光的所述光阻;

s105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;

s106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。

其中,所述步骤s106可以是如下步骤:

s10611、去光阻,即去除所述玻璃基板上的所述光阻;

s10612、氧化金属,即利用cvd设备对所述玻璃基板上的图案化的所述金属线进行氧化处理。

其中,所述氧化金属的方法是:将所述玻璃基板置于cvd设备腔内并且向其中通入氧气或者臭氧,所述氧化时间为80~120秒。

所述步骤s106也可以是如下步骤:

s10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;

s10622、去光阻,即去除所述玻璃基板上的所述光阻。

其中,所述氧化金属有多种方法。

第一种方法是:向装有所述玻璃基板的腔内通入氧气或者臭氧或者洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。

并且,所述氧化金属的方法中的所述氧化时间不超过240秒。

另一种方法是:利用强氧化剂的稀释溶液对所述玻璃基板上的金属进行氧化处理。

其中,所述强氧化剂的稀释溶液是利用涂刷方式覆盖在图案化的所述金属侧面。

本发明的技术方案还提供一种采用如上述制造方法制备的阵列基板。

本发明的技术方案另外还提供一种包含如上述的阵列基板的液晶显示面板。

本发明的技术方案可以产生如下效果:

本发明提供的阵列基板的制造方法,均包含了氧化过程,其中一种氧化是在现有技术中的去光阻和利用cvd设备进行化学气相沉积这两个步骤之间对玻璃基板上的的金属进行氧化处理,此方法利用cvd设备对金属进行氧化,在具备较快的氧化速度的同时也不会改变正常的阵列制程顺序,因此,上述液晶显示器的制造方法不仅能改善漏光现象从而提高液晶面板对比度,而且也能保证液晶面板的生产效率及产能;另一种氧化是在现有技术中的蚀刻和去光阻这两个步骤之间对玻璃基板上的的金属进行氧化处理,此方法在去除金属上层的光阻之前氧化金属,由于有光阻的覆盖,氧化处理金属时不会造成其上表面受损,因此,上述液晶显示器的制造方法不仅能改善漏光现象从而提高液晶面板对比度,而且金属的导电能力也能得到保障。

本发明提供的利用上述方法制备的阵列基板以及包含所述阵列基板的液晶面板不仅保留了带有弧形的交叉金属结构以保证充电效率及存储电容,而且经过对氧化处理的金属导线也改善了漏光现象以提高液晶面板的对比度。

附图说明

下面通过附图来对本发明进行进一步说明。需要说明的是,下面描述中的附图仅仅是用于解释说明本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的一种阵列基板的制造方法的部分流程图。

图2为本发明实施例提供的上述阵列基板的制造方法中一种氧化流程图。

图3为本发明实施例提供的上述阵列基板的制造方法中另一种氧化流程图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在本发明的描述中,需要理解的是,术语“上”、“下”、“内”、“外”、“表面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

另外,还需要说明的是,附图提供的仅仅是和本发明关系比较密切的结构和/或步骤,省略了一些与发明关系不大的细节,目的在于简化附图,使发明点一目了然,而不是表明实际中装置和/或方法就是和附图一模一样,不作为实际中装置和/或方法的限制。

如图1,表示了本发明实施例提供的一种阵列基板的制造方法的部分流程图,在该实施例中,所述制造方法至少包括如下步骤:

s101、镀膜,即在玻璃基板的表面镀上一层膜;

需要注意的是,在玻璃基板上会依次镀上很多层膜,根据所镀膜的材料种类会采用不同的镀膜方式,一般而言,有pvd和cvd两种镀膜方式。所述pvd是physicalvapordeposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上;所述cvd是chemicalvapordeposition(化学气相沉积)的缩写,用含有目标元素的气体,接收能量后通过化学反应,制备固体薄膜。

需要了解的是,玻璃基板上所镀的第一、三、五层膜分别用作扫描线、信号线、电极板,它们所用的镀膜材料都是金属,此处都采用pvd镀膜方式;玻璃基板上所镀的第二、四层膜都有绝缘层的作用,所述绝缘材料都采用cvd镀膜方式。

由于此制造阵列基板的方法中后期包含对金属线的氧化步骤,因此,在此描述的方法步骤都是针对上述镀金属膜而言。

s102、上光阻,即在所述膜的表面涂上一层光阻液;

其中,在上光阻之前需要用离子水将所述玻璃基板洗净;所述光阻液也可以用光刻胶代替,它们都是指通过紫外光等光照或辐射以后溶解度发生变化的耐蚀刻薄膜材料,是光刻工艺中的关键材料,此处用作辅助形成玻璃基板上的细微图形;在涂有光阻液以后需要烘烤一段时间,将光刻液的部分挥发,同时增加光阻材料与上述膜的粘合度。

s103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;

其中,具体做法是用紫外光透过光罩对所述涂有光阻液的玻璃基板进行照射,所述面罩是根据相应的电路图制定而成,所述照射时间根据光阻层的凝固状态而定,并且光阻层曝光和未曝光的颜色会不同。

s104、显影,即溶解曝光的所述光阻;

其中,务必等到所述玻璃基板上的光阻定型后,再用显影液溶解所述曝光的光阻,以保证不会对金属图案造成破坏,并且用离子水冲走所述曝光的光阻以保证后期金属图案的准确;

需要注意的是,显影以后需要对玻璃基板进行烘烤,使未曝光的光阻更加坚固的依附在上述膜表面,以保证其下方的金属图案后期可以保留下来。

s105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;

其中,所用到的蚀刻液应该是酸液。

s106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。

如图2,表示了上述阵列基板的制造方法中一种氧化流程图,在该实施例中,所述氧化过程至少包括如下步骤:

s10611、去光阻,即去除所述玻璃基板上的所述光阻;

其中,去光阻可以用专门的去光阻液,并且待光阻剥离以后要用有机溶液冲走已反应的所述光阻以保证图案化的所述玻璃基板的干净;

s10612、氧化金属,即利用cvd设备对所述玻璃基板上的图案化的所述金属线进行氧化处理。

可以理解的是,氧化金属针对的是金属膜,前面已经提到玻璃基板上的第一、三、五层膜是金属膜,依靠pvd方式镀膜,玻璃基板上的第二、四层膜是绝缘膜,依靠cvd方式镀膜,即在对金属膜进行完去光阻以后理应就要利用cvd设备沉积绝缘膜。

本发明就是在上述去光阻和cvd沉积绝缘膜两个步骤之间向cvd设备腔内通入氧化性气体来氧化金属膜,其中,所述氧化性气体可以是氧气、臭氧以及它们的混合气体,也可以其他具有氧化性的气体或者多种具有氧化性的气体混合物。除此之外,所述氧化时间为80~120秒,避免对金属过氧化,所述氧化期间的氧化气压以及施加的交流电压的频率大小也不必特意规定,可以根据后续cvd沉积绝缘膜的需求来进行施加,最终目的是便于后期的cvd沉积绝缘膜的进行。

因此,本发明完全不影响正常阵列制程的工序,而且cvd设备氧化速度也快,故此发明在达到减少消偏、降低漏光以至提高显示器对比度的同时,液晶面板的生产效率及产能也得到保证。

如图3,表示了上述阵列基板的制造方法中另一种氧化流程图,在该实施例中,所述氧化过程至少包括如下步骤:

s10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;

s10622、去光阻,即去除所述玻璃基板上的所述光阻。

其中,去光阻的注意事项和上述第一种氧化过程中一样。

可以理解的是,氧化金属针对的是金属膜,本发明即在对相应的金属膜进行蚀刻和去光阻两个步骤之间对金属进行氧化,所述覆盖在金属上表面的光阻可以对金属上表面进行保护,使金属导线的导电能力得到保障,其中所述氧化金属的方法有如下四种实施例:

实施例一:向装有所述玻璃基板的腔内通入氧气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。

实施例二:向装有所述玻璃基板的腔内通入臭氧,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。

实施例三:向装有所述玻璃基板的腔内通入洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。

需要注意的是,上述三种实施例中所述的腔内可以是任意能够提供上述氧化环境的容器,通入腔内的通入的气体除了上述三种气体,也可以是其他氧化性气体或者是氧化性气体的混合物,并且上述三种氧化金属的方法中的氧化时间不超过240秒,以免对金属过氧化。

实施例四:利用强氧化剂的稀释溶液对所述玻璃基板上的图案化的金属线进行氧化处理。

其中,强氧化剂可以是双氧水或是其他具有强氧化性的液体,可以通过涂刷的方式将所述强氧化剂的稀释溶液均匀地涂抹在图案化的所述金属的侧面,也可以是用较细的管子将所述强氧化剂的稀释溶液均匀滴在图案化的所述金属的侧面。

需要注意的是,所述利用强氧化剂的稀释溶液对所述玻璃基板上的金属线进行氧化是对金属侧面产生氧化作用而不引起所述金属腐蚀,并且氧化金属线的过程中应尽量减少对非金属层的氧化,需要注意的是涂抹的溶液的量以及氧化时间要根据金属氧化情况而定,切记不要引起所述金属腐蚀。

因此,本发明不仅可以降低金属产生的漏光以致提高显示器对比度,而且氧化处理也不会造成金属上表面受损,保证了金属导线的导电能力。

以上对本发明实施例所提供的液晶显示器的制造方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1