基板处理装置及其组件的制作方法

文档序号:17554049发布日期:2019-04-30 18:29阅读:107来源:国知局
基板处理装置及其组件的制作方法
本申请要求于2017年10月20日提交韩国工业产权局、申请号为10-2017-0136463的韩国专利申请的优先权和权益,其全部内容通过引用结合在本申请中。在本文中描述的本发明构思的实施例涉及一种基板处理装置及其组件。
背景技术
:为了制造半导体设备,通过不同的工艺在基板上形成期望的图案,例如光刻、刻蚀、灰化、离子注入、薄膜沉积和清洁工艺。在这些工艺中,刻蚀工艺用于从形成在基板上的层中去除选定的加热区域,该刻蚀工艺包括湿法刻蚀工艺和干法刻蚀工艺。其中,对于干法刻蚀,使用利用等离子体的刻蚀设备。通常,在腔室的内部空间形成电场以形成等离子体。电场激发腔室中提供的工艺气体使其处于等离子状态。等离子体指的是气体电离的状态,包括离子、电子和自由基。由于相当高的温度、强的电场、或射频电磁场而生成等离子体。半导体设备的制造工艺包括使用等离子体的刻蚀工艺。当包含在等离子体中的离子粒子与基板碰撞时,执行刻蚀工艺。技术实现要素:本发明构思的实施例提供了一种具有长寿命的组件和包括该组件的基板处理装置。根据一示例性的实施例,基板处理装置可包括腔室,在该腔室中具有处理空间;支承单元,其在处理空间内支承基板;气体供应单元,其向处理空间供应工艺气体,以及等离子源,其激发处理空间内的工艺气体。支承单元可包括支承板,基板放置在该支承板上,以及边缘环,其具有环形形状,该边缘环围绕支承板设置,并且在的该边缘环的上部形成有涂层,该涂层具有在β-碳化硅(β-sic)晶体的<111>晶向上优选取向生长的碳化硅晶体。在涂层中,<111>晶向占90%或更多。涂层可具有2μm或更小的晶粒尺寸。根据本发明构思的另一方面,一种基板处理装置可包括腔室,在该腔室中具有处理空间;支承单元,其在处理空间内支承基板;气体供应单元,其向处理空间供应工艺气体,以及等离子源,其激发处理空间内的工艺气体。支承单元可包括支承板,基板放置该支承板上,以及边缘环,其具有环形形状,该边缘环围绕支承板设置,并且在该边缘环的上部形成有涂层,该涂层具有2μm的晶粒尺寸。根据本发明构思的又一方面,一种使用等离子体的基板处理装置的组件可包括基部,以及涂层,其形成在基部上,并且具有抗等离子体性。涂层具有在β-碳化硅(β-sic)晶体的<111>晶向上优选取向生长的碳化硅晶体。此外,在该涂层中,具有<111>晶向的晶体占涂层的总晶体的90%或更多。该涂层具有2μm或更小的晶粒尺寸。附图说明通过参考附图详细描述本发明的示例性实施例,本发明构思的上述和其他的目的和特征将变得显而易见。图1为示出了根据本发明构思的实施例的基板处理装置的图;和图2为部分的放大图,在图1中边缘环放置在该部分中。具体实施方式以下,将参考附图对本发明构思的实施例进行更加详细的描述。本发明构思的实施例可以以多种变形而修改,并且本发明构思的范围不应该被解释为受以下描述的本发明构思的实施例的限制。本发明构思的实施例提供为向本领域的技术人员更完整的描述本发明构思。因此,附图中的组件的形状等被夸大以强调更清楚的描述。以下,根据本发明构思的实施例,将对基板处理装置进行描述,该基板处理装置能够通过在电感耦合等离子体(icp)方法中生成的等离子体处理基板。然而,本发明构思不限于以上描述的实施例。例如,基板处理装置可应用于各种各样的装置,这些装置通过使用在电容耦合等离子体(ccp)方法中或远程等离子体方法中产生的等离子体处理基板。此外,根据本发明构思的实施例,将通过支承单元的示例来描述静电卡盘(electrostaticchuck)。然而,本发明构思是不受限制的,不过支承单元可通过机械夹持(mechanicalclapping)或真空支承基板。图1为示出了根据本发明构思的实施例的基板处理装置的图。参照图1,基板处理装置10通过利用等离子体处理基板“w”。例如,基板处理装置10可对基板“w”执行刻蚀工艺。基板处理装置10包括腔室100、支承单元200、气体供应单元300、等离子源400和排气单元500。在腔室100中具有处理空间,以处理基板“w”。腔室100包括壳体110和盖板(cover)120。壳体110具有内部空间,该内部空间具有开放的顶表面。壳体110的内部空间提供为用于执行基板处理工艺的处理空间。壳体110由金属材料形成。壳体110可包括铝(al)。壳体110可接地。在壳体110的底表面形成有排气孔102。排气孔102连接至排气管线151。可通过排气管线151将工艺中产生的副产物和停留在壳体110的内部空间的气体排放到外部。通过排气工艺将壳体的内部压力降低至特定压力。盖板120覆盖壳体110的开放的顶表面。盖板120设置成板状以密封壳体110的内部空间。盖板120可包括介电质窗。内衬(liner)130设置在壳体110内部。内衬130具有内部空间,该内部空间具有开放的顶表面和底表面。内衬130可设置为圆柱形状。内衬130可具有对应于壳体110的内侧面的半径。内衬130沿壳体110的内侧面设置。内衬130的上端形成有支承环131。支承环131设置为环形板,并且沿内衬130的圆周从内衬130向外突出。支承环131位于壳体110的上端,以支承内衬130。内衬130可包括与壳体110的材料相同的材料。内衬13可包括铝(al)。内衬130保护壳体110的内侧面。当工艺气体被激发时,电弧可在腔室100内放电。电弧放电可损坏外围设备。内衬130保护壳体110的内侧面来防止壳体110的内侧面由于电弧放电而被损坏。进一步地,防止基板处理工艺中产生的反应副产物沉积在壳体110的内侧壁上。与壳体100相比时,内衬130需要较低的成本并且更容易用新的内衬更换。因此,当内衬130由于电弧放电而被损坏时,工人可用新的内衬更换该内衬310。支承单元200在腔室100内部的处理空间中支承基板“w”。例如,支承单元200设置在壳体110内部。支承单元200支承基板“w”。支承单元200可包括静电卡盘,静电卡盘通过静电力吸附基板“w”。可选地,支承单元200可以以各种方式支承基板“w”,例如机械夹持。在下文中,将描述包括静电卡盘的支承单元200。支承单元200包括卡盘220、230和250,以及边缘环240。卡盘220、230和250在工艺处理中支承基板w。卡盘220、230和250包括支承板220、流体通道形成板(fluid-passage-formedplate)230、和绝缘板250。支承板220位于支承单元200的上端部。支撑板220可包括具有盘形的介电质。基板“w”放置在支承板220的顶表面。支承板220的顶表面的直径小于基板“w”的直径。在支撑板220中形成有第一供应流体通道221,该第一供应流体通道221作为将传热气体供应至基板“w”的底表面的通道。静电电极223和加热器225埋设到支承板220中。静电电极223位于加热器225的上方。静电电极223电连接至第一下电源223a。通过施加到电极223的电流,静电电极223和基板“w”之间作用静电力,并且基板“w”通过静电力吸附到支承板220上。加热器225电连接至第二下电源225a。加热器225抵抗从第二下电源225a施加到其上的电流。散发的热量通过支承板220传递到基板“w”。基板“w”通过加热器225所散发的热量而维持在特定的温度。加热器225包括螺旋形线圈。流体通道形成板230位于支承板220的下部。支承板220的底表面可通过粘合剂236结合到流体通道形成板230的顶表面。流体通道形成板230位于支承板220的下方。在流体通道形成板230中形成有第一循环流体通道231、第二循环流体通道232、和第二供应流体通道233。第一循环流体通道231作为通道,传热气体通过该通道循环。第二循环流体通道232作为通道,冷却流体通过该通道循环。第二供应流体通道233允许第一循环流体通道231与第二循环流体通道232连通。第一循环流体通道231作为通道,传热气体通过该通道循环。第一循环流体通道231可在流体通道形成板230的内形成为螺旋形。可选的,第一循环流体通道231可包括相互不同的半径、同心布置的环形流体通道。多个第一循环流体通道231可彼此连通。多个第一循环流体通道231可形成在相同的高度上。第一循环流体通道231通过传热介质供应线231b连接至传热介质储存单元231a。传热介质储存在传热介质储存单元231a中。根据一实施例,传热介质包括惰性气体。根据一实施例,传热介质包括氦气(he)。氦气(he)通过传热介质供应线231b供应到第一循环流体通道231,并通过依次经过第二供应流体通道233和第一供应流体通道221,供应到基板“w”的底表面。氦(he)气作为介质帮助热量在基板“w”和支承板220之间传递。因此,基板w的所有部分具有均匀的温度。第二循环流体通道232通过冷却流体供应线232c连接至冷却流体储存单元232a。冷却流体储存在冷却流体储存单元232a中。冷却器232b可设置在冷却流体储存单元232a内部。冷却器232b将冷却流体冷却至特定温度。可选地,冷却器232b可安装在冷却流体供应线232c上。通过冷却流体供应线232c供应到第二循环流体通道232的冷却流体沿第二循环流体通道232循环以冷却流体通道形成板230。在冷却流体通道形成板230的情况下,还能一起冷却支承板220与基板“w”,因此基板“w”维持在特定温度。因此,边缘环240的下部通常设置在低于边缘环240的上部的温度的温度处。绝缘板250位于流体通道形成板230的下方。绝缘板250包括绝缘材料以将流体通道形成板230与下盖板270绝缘。下盖板270位于支承单元200的下端。下盖板270可向上与壳体110的底表面间隔开。下盖板270具有内部空间,该内部空间具有开放的顶表面。下盖板270的顶表面被绝缘板250覆盖。因此,下盖板270的截面的外直径可与绝缘板250的外直径相等。升降销位于下盖板270的内部空间,以接收从外部运载构件运载的基板“w”,并容纳基板“w”。下盖板270具有连接构件273。连接构件273连接下盖板270的外侧面与壳体110的内侧壁。多个连接构件273可以以特定的间隔设置在下盖270板的外侧面上。连接构件273在腔室100内支承支承单元200。此外,连接构件273连接至壳体110的内壁,使得下盖270板电接地。连接至第一下电源223a的第一电源线223c,连接至第二下电源225a的第二电源线225c,连接至传热介质储存单元231a的传热介质供应线231b,以及连接至冷却流体储存单元232a的冷却流体供应线232c通过连接构件273的内部空间延伸到下盖板270内部。图2为部分的放大图,在图1中,边缘环位于该部分中。参考图1和2,边缘环240位于支承单元200的边缘区域。边缘环240具有环形形状,并且围绕支承板220设置。例如,边缘环240沿支承板220的圆周设置。支承板220的外侧面可与边缘环240的内侧面间隔开预设的距离。边缘环240调节护层(sheath)和等离子体界面。可在边缘环240的顶表面形成第一层241和第二层242。基于边缘环240的高度区分第一层241和第二层242。第一层241位于边缘环240的内部区域。第一层241可设置在对应于支承板220的顶表面的高度处,以支承基板“w”的外部区域。例如,第一层241在与支撑板220的顶表面的高度相同的高度处,以与基板“w”的外部底表面接触。可选地,第一层241可设置为低于支承板220的顶表面一定的尺寸,并且在基板“w”的外部底表面和第一层241之间可形成预设间隔。第一层241可以以平面形状的形式设置,同时平行于基板“w”的底表面。第二层242形成为高于第一层241,同时从第一层241的外端部向上突出。当由于第一层241和第二层242之间的高度差异来调节护层、等离子体界面和电场时,可将等离子体诱导至基板w,使得等离子体集中在基板w上。边缘环240可由导电材料形成。边缘环240可由硅、碳化硅等形成。耦合器246可设置在边缘环240的下部。耦合器240可将边缘环240固定至流体通道形成板230。耦合器246由代表较高导热率的材料形成。例如,耦合器246可由诸如al的金属材料形成。此外,耦合器246可通过导热胶粘剂(未示出)粘结到流体通道形成板230的顶表面。此外,边缘环240可通过导热胶粘剂(未示出)粘结到耦合器246的顶表面。例如,导热胶粘剂可采用硅胶垫。此外,耦合器246可省略,且边缘环240可直接与卡盘220、230和250接触。屏蔽构件247可位于边缘环240的外部。屏蔽构件247设置为环形形状,以围绕边缘环240的外部。屏蔽构件247防止边缘环240的侧面直接暴露于等离子体中,或防止等离子体被引入至边缘环240的侧部。边缘环240可通过在基部上形成涂层来提供,该涂层具有抗等离子体性。例如,边缘环240可通过在基部的顶表面或基部的外表面上形成涂层来提供。当涂层形成在基部的顶表面时,涂层形成在暴露于涂层的第一层和第二层上。涂层由碳化硅形成。涂层可通过化学气相沉积(cvd)方法、物理气相传输(pvt)方法形成。形成涂层的晶体生长,使得晶体的取向朝向特定的方向。涂层的晶体形成为具有异硫氰酸盐结构的β-碳化硅(β-sic)。形成涂层,使得晶向朝向<111>。表1晶向面积面密度111(√3/2)a212202a21/2.3311(√19/2)a21/2.5表1示出了当sic具有β-碳化硅晶体形状时,在特定的晶向上的面积及在特定的晶向上的面密度。参照表1,在β-碳化硅晶体中,较小的面积形成在<111>晶向上,而不是另一个晶向上。因此,在<111>晶向上形成了更高的面密度。此外,当形成更高的面密度时,可减小组成晶体的原子之间的距离,因此晶体可密集地形成。取决于基板处理设备的用途,边缘环240的顶表面可暴露于等离子体并被蚀刻。因此,随着基板处理工艺的数量增加以及基板处理时间消逝,通过蚀刻降低了边缘环240的顶表面的高度,从而使护层和等离子体界面在高度上的发生变化。当边缘环240的蚀刻度超过设定值,必须更换边缘环240。当密集地形成sic晶体时,增加了对施加至晶体的外部的机械力和化学力的抵抗力。因此,当在边缘环240中密集地形成sic的晶体涂层时,等离子体的蚀刻度降低,并且边缘环240的使用寿命增加。例如,根据本发明构思,形成涂层,使得涂层的晶向朝向<111>。因此,具有<111>晶向的晶体占90%。公式1σy=σ0+kd-1/2公式1示出了晶体大小与屈服强度之间的关系,在公式1中,σo是指根据材料的类型确定的固定值,并设置为常数,d代表晶体的直径,以及k为基于材料的类型的系数。参考图1,屈服强度和晶体尺寸彼此成反比。因此,当晶体以确定晶体尺寸的状态在涂层上形成时,涂层强度降低。根据本发明构思,在晶体的尺寸调整为2μm的情况下,边缘环240的涂层生长。因此,涂层具有较高的屈服强度。此外,当屈服强度增加时,晶体之间可具有较高的强度,因此可增大抗等离子体性。此外,根据本发明构思,可在同时调整晶体的尺寸和晶向的情况下形成边缘环240的涂层。此外,在基部形成具有晶向、或晶粒大小的涂层,或同时具有晶向和晶粒大小的涂层,使得组件的所有的外部除边缘环240以外具有抗等离子体性,或暴露于等离子体的组件的部分具有抗等离子体性。根据本发明构思的实施例提供了具有长寿命的组件和包括相同组件的基板处理装置。以上描述作为说明的目的。此外,上述的内容描述了本发明构思的示例性实施例,并且本发明构思可用于各种其他组合、变换、及环境。也就是说,发明构思可以在不脱离说明书中公开的发明构思的范围、与书面公开的等同范围、和/或本领域技术人员的技术或知识范围的情况下进行修饰及改正。书面实施例描述了用于实现本发明构思的技术精神的最佳状态,并且在本发明构思的具体应用领域和目的中可以做出必要的各种改变。此外,应理解的是所附权利要求包括其他实施例。虽然已经参考本发明构思的示例性实施例描述了本发明构思,但是对于本领域普通的技术人员来显而易见的是,在不脱离所附权利要求中陈述的本发明构思的精神和范围,可以对其做出各种改变及修饰。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1