图像传感器封装的制作方法

文档序号:18688416发布日期:2019-09-17 20:08阅读:129来源:国知局
图像传感器封装的制作方法

本文档的方面整体涉及图像传感器半导体封装,诸如CMOS图像传感器芯片级封装(CISCSP)。



背景技术:

传统上,图像传感器封装已被设计成将湿气和其他污染物阻挡在封装之外,以确保图像传感器封装的适当性能。传统上,将干膜或树脂施加到玻璃盖,并且然后使用干膜或树脂将玻璃盖附接到衬底以密封图像传感器封装。由于图像传感器封装变得越来越小,管芯处理缺陷的风险也日益上升,继而,湿气和其他污染物损害图像传感器封装性能的风险也日益增大。



技术实现要素:

图像传感器封装的实施方式可包括图像传感器芯片、第一层以及透光覆盖物,该第一层包括穿过其的开口,其被耦接到图像传感器芯片第一侧,该透光覆盖物耦接到第一层。透光覆盖物、第一层和图像传感器芯片可在图像传感器内形成腔体。图像传感器封装还可包括至少一个电触点和包封材料,该至少一个电触点耦接到图像传感器芯片的与第一侧相对的第二侧,该包封材料涂覆图像传感器封装的侧壁的全部。

图像传感器封装的实施方式可包括以下各项中的一者、全部或任一者:

再分布层可覆盖图像传感器芯片的第二侧。

包封材料可包括焊料掩模。

至少一个电触点可为凸块。

包封材料可横跨封装的侧壁上的所有界面。

包封材料可基本上覆盖封装的五个侧面。

图像传感器封装的实施方式可包括:图像传感器芯片;第一层,第一层可包括被耦接到图像传感器芯片的第一侧的多个阻挡部;透光覆盖物,透光覆盖物可耦接到多个阻挡部,其中透光覆盖物、多个阻挡部和图像传感器芯片可在图像传感器封装内形成腔体;再分布层,再分布层可覆盖图像传感器芯片的与第一侧相对的第二侧;至少一个电触点,至少一个电触点可耦接到图像传感器芯片的第二侧;和包封材料,包封材料可涂覆图像传感器封装的侧壁的全部。

图像传感器封装的实施方式可包括以下各项中的一者、全部或任一者:

包封材料可包括焊料掩模。

包封材料可横跨封装的侧壁上的所有界面。

包封材料可基本上覆盖封装的五个侧面。

用于形成图像传感器封装的方法的实施方式可包括将透光覆盖物的第一侧耦接到载体,以及通过将晶圆上的第一层耦接到透光覆盖物的第二侧来在透光覆盖物与晶圆之间形成多个腔体,该第一层包括穿过其中的多个开口。该方法还可包括形成穿过透光覆盖物的厚度的多个沟槽,用包封材料填充多个沟槽,并且通过以减材方式移除多个沟槽的一部分中的包封材料并移除载体来将晶圆和透光覆盖物分割成多个图像传感器封装。

用于形成图像传感器封装的方法的实施方式可包括以下各项中的一者、全部或任一者:

该方法可包括形成穿过晶圆的厚度的多个沟槽。

包封材料可为焊料掩模。

以减材方式移除可包括锯切和蚀刻中的一者。

载体可通过以下其中一种方式来移除:加热载体,以及用紫外辐射来照射载体。

该方法可包括将至少一个电触点耦接到晶圆,其中至少一个电触点延伸至图像传感器封装的外部。

包封材料可基本上覆盖图像传感器封装的五个侧面。

在各种实施方式中,在形成多个沟槽时,没有载体以减材方式被移除。

用于形成图像传感器封装的方法的实施方式可包括将透光覆盖物的第一侧耦接到载体,在晶圆第一侧上的第一层中形成多个阻挡部,以及通过将晶圆耦接到透光覆盖物的第二侧来在透光覆盖物、晶圆与阻挡部之间形成多个腔体。用于形成图像传感器封装的方法的实施方式还可包括将晶圆的与第一侧相对的第二侧减薄,在晶圆的第二侧上方形成再分布层,以及形成穿过晶圆的厚度并且穿过透光覆盖物的厚度的多个沟槽。用于形成图像传感器封装的方法的实施方式还可包括覆盖晶圆的第二侧并用包封材料填充多个沟槽,将至少一个电触点耦接到再分布层,以及通过以减材方式移除多个沟槽中的包封材料并移除载体来将晶圆和透光覆盖物分割成多个图像传感器封装,其中该包封材料涂覆每个图像传感器封装的侧壁。

用于形成图像传感器封装的方法的实施方式可包括以下各项中的一者、全部或任一者:

在各种实施方式中,在形成多个沟槽时,没有载体以减材方式被移除。

包封材料可为焊料掩模。

包封材料可基本上覆盖在多个图像传感器中的每个图像传感器的五个侧面上。

该方法可包括在晶圆上形成多个凸块。

该方法可包括通过加热载体和/或用紫外(UV)辐射照射载体来移除载体。

对于本领域的普通技术人员而言,通过具体实施方式以及附图并通过权利要求书,上述以及其他方面、特征和优点将会显而易见。

附图说明

将在下文中结合附图来描述各实施方式,其中类似标号表示类似元件,并且:

图1为第一图像传感器封装的横截面侧视图;

图2为第二图像传感器封装的横截面侧视图;

图3A至图3F为用于形成图1的封装的工艺流程的图示;并且

图4A至图4J为用于形成图2的封装的工艺流程的图示。

具体实施方式

本公开、其各方面以及实施方式并不限于本文所公开的具体部件、组装工序或方法元素。符合预期图像传感器封装的本领域已知的许多另外的部件、组装工序和/或方法元素将显而易见地能与本公开的特定实施方式一起使用。因此,例如,尽管本实用新型公开了特定实施方式,但是此类实施方式和实施部件可包括符合预期操作和方法的本领域已知的用于此类图像传感器封装以及实施部件和方法的任何形状、尺寸、样式、类型、型号、版本、量度、浓度、材料、数量、方法元素、步骤等。

如图1至图4所示,这种应用将图像传感器封装称为CMOS图像传感器芯片级封装(CISCSP)。应当理解,CISCSP的不同元件以及用于形成 CISCSP的技术或方法可应用于非CISCSP的其他图像传感器封装。还应当理解,CISCSP的不同元件以及用于形成CISCSP的技术或方法可应用于非图像传感器封装的其他半导体封装。此外,本文所公开的图像传感器封装和方法可包括授予Jin-Wu Weng的名称为“Molded Image Sensor Chip Scale Packages and Related Methods”(模塑图像传感器芯片级封装和相关方法) 且提交于2017年1月13日的美国专利申请15/405519中所公开的图像传感器封装的任何元件及其制作方法,该美国专利申请的公开内容全文据此以引用方式并入本文。

具体参见图1,示出了第一图像传感器封装的横截面侧视图。图像传感器封装2包括图像传感器芯片4。图像传感器芯片可与本文所公开的任何图像传感器芯片相同或类似。多个阻挡部6在图像传感器封装2的侧面附近耦接到图像传感器芯片4。这些多个阻挡部也可以是指具有围绕芯片一直延伸的四个侧面的单个阻挡部。

透光覆盖物8耦接在多个阻挡部6上方,并且在图像传感器芯片4、多个阻挡部6和透光覆盖物8之间形成腔体10。如本文所用,透光可以是指光学透明或光学半透明。包封材料12覆盖图像传感器封装2的一部分。在各种实施方式中,包封材料12可覆盖一个或多个界面14,该一个或多个界面位于图像传感器芯片4和位于封装的侧壁上的多个阻挡部6之间。因此,封装在更大程度上被密封,因为多个阻挡部6与图像传感器芯片4的层之间的界面不太可能充当供湿气或污染物进入图像传感器的通道。在各种实施方式中,包封材料12可仅沿多个阻挡部6的外壁的一部分延伸。在其他实施方式中,包封材料沿多个阻挡部6的整个外壁延伸。在各种实施方式中,包封材料不覆盖界面16,该界面位于多个阻挡部6与透光覆盖物 8之间,包封材料12也不覆盖透光覆盖物8的任何部分。如图所示,多个电触点18可耦接到图像传感器芯片4并且延伸穿过包封材料12至封装2 的外部。在各种实施方式中,多个电触点18可为凸块。

参见图3A至图3F,示出了使用晶圆级封装技术形成图1的封装的工艺流程。具体参见图3A,该方法包括将透光覆盖物22耦接到第一层或多个阻挡部24。第一层包括穿过其中的多个开口,该开口使第一层也能够成为多个阻挡部24。该方法还包括将第一层或多个阻挡部24耦接到晶圆 20。多个阻挡部24可位于晶圆20与透光覆盖物22之间,并且多个腔体 120可由晶圆、透光覆盖物和多个阻挡部24形成。在各种实施方式中,在封装的分割之后变成透光覆盖物22的材料充当在整个过程中承载晶圆20 的载体。

参见图3B,晶圆20可被减薄并图案化。晶圆20可以以与图4A至图 4J的晶圆的减薄和图案化相同的方式被减薄并图案化。具体地讲,在各种实施方式中,晶圆的部分122可以被蚀刻,并且电气布线124可被暴露。在各种实施方式中,部分122可包括凸起中间段126。凸起中间段126可用于在包封材料与管芯之间最终形成包封材料锁定特征结构。在各种实施方式中,部分122还可包括倾斜侧壁,该倾斜侧壁可允许再分布层(RDL)128 (如图3D所示)形成在晶圆20上方以及晶圆122的部分上方,并且通过接触电气布线124的RDL在晶圆顶部与晶圆底部之间提供电连接。参见图 3C,用于形成图1的封装的方法包括形成穿过晶圆20的部分并进入多个阻挡部24的多个凹口120。在各种实施方式中,每个凹口穿过凸起中间段 126形成。在各种实施方式中,多个凹口26中的每个凹口止于第一层或多个阻挡部24中的阻挡部。在其他实施方式中,每个凹口一直延伸穿过第一层或多个阻挡部24,而不延伸到透光覆盖物22中。当穿过晶圆20和多个阻挡部24形成凹口26时,必须注意确保不切入到透光覆盖物22中。如果多个凹口26确实延伸到透光覆盖物22中,则透光覆盖物将可能被损坏并且透光覆盖物或载体可能无法承受形成图1的图像传感器封装的过程的其余环节的影响。

参见图3D,用于形成图1的图像传感器封装的方法包括将包封材料28施加在晶圆20上方以及多个凹口26中。在各种实施方式中,包封材料可为焊料掩模。在其他实施方式中,包封材料可为模制化合物。在使用焊料掩模的实施方式中,相比使用模制化合物的情形,焊料掩模可允许以较低的成本保护图像传感器封装。模制化合物的使用可能需要管芯重新配置和压缩模塑。然而,由于焊料掩模的特性,诸如其低粘度,相比模制化合物的施加,焊料掩模的施加可能需要较少时间和成本。在包封材料28为焊料掩模的实施方式中,可通过液体旋涂或干膜层压来施加焊料掩模。

在各种实施方式中,多个凹口内的包封材料直接覆盖形成在晶圆与多个阻挡部之间的多个界面。在各种实施方式中,可使用蚀刻和电镀技术 (以及其他技术)在包封材料28中形成供至少一个电触点30延伸穿过的至少一个空间。在其他实施方式中,至少一个电触点30可被推动穿过包封材料28并耦接到晶圆20,如图3E所示。至少一个电触点30不被包封材料 28覆盖。在各种实施方式中,一个或多个电触点30可为凸块、螺柱、管脚、导线或任何其他导电结构。此外,在各种实施方式中,晶圆20可包括任意数量的电触点30并且可包括任意集中度的电触点30。

晶圆20、第一层和透光覆盖物22然后可被分割成多个图像传感器封装。每个图像传感器封装32可具有覆盖图像传感器封装的单个侧面的包封材料28。在各种实施方式中,包封材料28也可向下延伸图像传感器封装 32的一个或多个侧面并且覆盖介于多个阻挡部24与图像传感器芯片36之间的界面34。包封材料仅向下延伸图像传感器封装32的侧面,其延伸距离与多个凹口26延伸到晶圆20和多个阻挡部24中的距离相同,如图3C所示。

参见图2,示出了第二图像传感器封装的横截面侧视图。类似于图1 的封装,图像传感器封装40还包括图像传感器芯片42。图像传感器芯片可具有多种形状和尺寸。在图2所示的实施方式中,图像传感器芯片包括中心段44。图像传感器芯片还可包括一个或多个外段46,该一个或多个外段可比中心段44薄。在各种实施方式中,图像传感器芯片42包括一个或多个凹槽48,该一个或多个凹槽形成在中心段44与一个或多个外段46之间。在各种实施方式中,凹槽48可允许图像传感器封装42的第一侧50与图像传感器封装的第二侧52之间的电连通,如下文稍后所述。此外,由于图像传感器芯片42的外段46充当包封材料锁定机构,因此凹槽48可允许包封材料54更牢固地粘附到图像传感器芯片42。在其他实施方式中,图像传感器芯片42可不包括较薄的外部部分,反而,图像传感器芯片42可仅在图像传感器芯片42的第一侧50与第二侧52之间具有单一厚度。图像传感器芯片42包括图像传感器60。在各种实施方式中,图像传感器芯片42 还可在图像传感器芯片的第一侧50上包括电气布线64,该电气布线将图像传感器60电耦接到图像传感器芯片42的外部区域。

图像传感器封装40包括第一层56,该第一层耦接到图像传感器芯片 42的第一侧50。第一层56包括穿过其中的开口58,该开口暴露图像传感器芯片42的图像传感器60。第一层56可形成多个阻挡部并且可由任何合适的阻挡部材料制成。透光覆盖物62在第一层56的与第一层的面朝图像传感器芯片42的侧面相对的侧面上耦接到第一层。在各种实施方式中,透光覆盖物可为玻璃,而在其他实施方式中,可使用其他光学透明和/或半透明的材料。图像传感器封装40内的腔体64形成在图像传感器芯片42、透光覆盖物62和第一层56之间。在各种实施方式中,腔体64可被气密地密封以降低湿气或其他污染物接触图像传感器60的风险。

在各种实施方式中,图像传感器封装40可包括再分布层(RDL)66。在各种实施方式中,RDL 66完全覆盖图像传感器芯片42的第二侧52,而在其他实施方式中,RDL可仅部分地覆盖图像传感器芯片的第二侧。在各种实施方式中,RDL 66可延伸到图像传感器芯片42内的减薄部分或凹槽48 中,并且与图像传感器芯片42的布线64电耦接。这样,图像传感器芯片 42的第一侧50(以及继而图像传感器60)和图像传感器芯片42的第二侧 52可彼此电耦接。在其他实施方式中,图像传感器芯片42的第一侧50可通过穿过图像传感器芯片42形成的一个或多个硅通孔(TSV)电耦接到图像传感器芯片42的第二侧52,而不是通过RDL 66和布线64形成图像传感器芯片的第一侧50与第二侧52之间的电连接。

图像传感器封装40包括包封材料68。在各种实施方式中,包封材料 68可基本上覆盖图像传感器封装40的五个侧面,包括四个侧壁和图像传感器封装40的第五侧70。在各种实施方式中,第五侧70仅被包封材料基本上覆盖,因为电触点延伸穿过包封材料,如本文稍后所述。在各种实施方式中,包封材料68可涂覆图像传感器封装40的整个侧壁,而在其他实施方式中,包封材料可涂覆图像传感器封装40的侧壁的一部分。如图所示,包封材料68横跨封装的位于封装的侧壁上的各种材料的所有界面。更具体地讲,包封材料横跨并覆盖形成在图像传感器芯片42与第一层56之间的界面72以及形成在第一层56与透光覆盖物62之间的界面74。由于包封材料68覆盖整个侧壁,因此湿气和其他污染物被阻止通过界面进入腔体58。包封材料68还确保,相比透光覆盖物与第一层之间的界面不被覆盖的情形,腔体58在更大程度上被气密地密封。此外,透光覆盖物62的侧面受到包封材料68的保护,并且在形成封装40或处理封装时透光覆盖物62破碎或破裂的风险得到降低。在各种实施方式中,包封材料为焊料掩模。在其他实施方式中,包封材料可为模制化合物或任何其他类型的包封材料。

图像传感器封装40包括一个或多个电触点76,该一个或多个电触点通过包封材料68耦接到图像传感器芯片42。一个或多个电触点76可被配置成将图像传感器芯片42电耦接到外部装置。在具有RDL 66的实施方式中,电触点耦接到RDL 66。在图像传感器60通过一个或多个TSV耦接到图像传感器芯片42的第二侧52的实施方式中,电触点可被定位成耦接到一个或多个TSV。

虽然电触点76在图2中被示出为凸块,但在其他实施方式中,电触点可为(作为非限制性示例)螺柱、导线或另一类型的电触点,并且可包含铜、金、银、任何其他金属或金属的组合、或者任何其他导电材料。

参见图4A至图4J,示出了用于形成图2的封装的工艺流程的实施方式。具体参见图4A,用于形成图像传感器封装的方法的实施方式包括将透光覆盖物80的第一侧78耦接到载体82。透光覆盖物80可为玻璃或任何其他透光材料。在各种实施方式中,载体82也可以是玻璃,而在其他实施方式中,载体可由任何其他刚性材料制成。在各种实施方式中,透光覆盖物 80使用粘合剂接合到载体82,而在其他实施方式中,透光覆盖物80可使用不同的粘合材料诸如(作为非限制性示例)氧化物或聚合物接合到载体。在使用粘合剂的实施方式中,粘合剂可为UV可剥离胶带或热剥离胶带。

参见图4B,用于形成图像传感器封装的方法的实施方式包括通过将晶圆86上的第一层88耦接到透光覆盖物80的第二侧90来在透光覆盖物80 和晶圆86之间形成多个腔体84。第一层88包括穿过其中的多个开口92。多个开口92形成多个阻挡部96,该多个阻挡部耦接在透光覆盖物80与晶圆86之间。透光覆盖物80、阻挡部96和晶圆86形成多个腔体84。多个开口92被定位成允许多个图像传感器94通过多个开口92暴露。多个图像传感器94可耦接到晶圆86或耦接在晶圆内。

如图4B所示,晶圆还可包括电气布线98。在各种实施方式中,当第一层耦接到晶圆86时,电气布线98可被配置成接触第一层88。这样,图像传感器就可电耦接到多个腔体84的外部部分。在其他实施方式中,晶圆 86不包括电气布线,而是可于其中包括多个TSV,该TSV被配置成将多个图像传感器94电耦接到晶圆86的背面,或与晶圆的具有图像传感器的第一侧108相对的第二侧100。TSV可使用各种方法来形成,诸如(作为非限制性示例)蚀刻或切割晶圆并且然后用导电材料填充刻痕或切口。在各种实施方式中,第一层88可在耦接到透光覆盖物80之前耦接到晶圆86,而在其他实施方式中,第一层可在耦接到晶圆86之前耦接到透光覆盖物。

参见图4C,晶圆86的背面或第二侧100可被减薄和/或图案化。晶圆可被减薄至不同的厚度并且可包括不同的图案。在各种实施方式中,晶圆 86的部分可被完全移除。在各种实施方式中,并且如图4C所示,晶圆86 可包括多个中心部分102和多个外部部分104。在各种实施方式中,外部部分104可比中心部分102薄。在各种实施方式中,尤其是在包括延伸至多个阻挡部的电气布线98的实施方式中,可在中心部分102与外部部分104 之间形成多个凹槽106。此类凹槽可用于稍后在晶圆86与包封材料之间提供更牢固的接合。

此外,如图4D所示,用于形成图像传感器封装的方法的实施方式可包括在晶圆86的第二侧100上方形成RDL 110。RDL 110可覆盖晶圆86 的整个第二侧100,或者可仅覆盖晶圆86的第二侧100的一部分。在各种实施方式中,凹槽106允许RDL 110电耦接到电气布线98。在此类实施方式中,位于晶圆86的第一侧108上的图像传感器94可通过电气布线98和 RDL 110电耦接到晶圆86的第二侧100。

参见图4E,用于形成图像传感器封装的方法的实施方式包括形成穿过透光覆盖物80的厚度的多个沟槽112。沟槽112穿过多个阻挡部96形成,以便不干扰多个腔体84。在晶圆86或晶圆86的外部部分104位于阻挡部上方的实施方式中,该方法还可包括形成穿过晶圆86的厚度的多个沟槽112。作为非限制性示例,可使用锯、激光、水射流、等离子蚀刻、深反应离子蚀刻或化学蚀刻来形成多个沟槽。多个沟槽112可在多个沟槽的侧壁上包括凸脊,以便更好地将包封材料固定在多个沟槽内。在各种实施方式中,沟槽完全延伸穿过透光覆盖物86,但不延伸到载体82的材料中。在类似的实施方式中,多个沟槽完全延伸穿过透光覆盖物86,但不延伸超过透光覆盖物80的第一侧78。此类实施方式确保在形成图像传感器封装的过程中载体82不受损害。其还可确保在管芯拾取后在图像传感器封装的面上将不存在毛刺,因为包封材料填充沟槽112,该沟槽延伸到载体82中或延伸超过透光覆盖物80的第一侧78。

参见图4F,用于形成图像传感器封装的实施方式包括用包封材料114 涂覆或覆盖晶圆86的第二侧100。在各种实施方式中,包封材料完全覆盖晶圆86的第二侧100。在其他实施方式中,包封材料114不完全覆盖晶圆 86的第二侧100。在此类实施方式中,包封材料可于其中包括孔以允许电触点在不必被推动穿过包封材料114的情况下接触RDL 110或晶圆86。在具有RDL 110的实施方式中,包封材料114可覆盖RDL 110。包封材料 114还填充多个沟槽112,并且可完全填充多个沟槽112。作为非限制性示例,包封材料114可为环氧模制化合物、丙烯酸模塑料、或能够防止污染物和湿气进入图像传感器封装的另一类型的模制化合物。作为非限制性示例,此类模制化合物可使用液体分配技术、转移模塑技术、打印模塑技术、膜模塑技术、压缩模塑技术以及用于围绕晶圆86形成固化模制化合物的任何其他技术来施加。在特定实施方式中,包封材料114为焊料掩模。相比使用其他模制化合物的情形,焊料掩模可允许以较低的成本保护图像传感器封装。其他模制化合物可能需要管芯重新配置和压缩模塑,然而,由于焊料掩模的特性,诸如其低粘度,相比模制化合物的施加,焊料掩模的施加可能需要较少时间和成本。在包封材料114为焊料掩模的实施方式中,可通过液体旋涂或干膜层压来施加焊料掩模。

参见图4G,用于形成图像传感器封装的方法的实施方式包括将至少一个电触点116耦接穿过包封材料114并耦接到晶圆86。在各种实施方式中,可使用蚀刻和电镀技术(以及其他技术)在包封材料114中形成供至少一个电触点延伸穿过的至少一个空间。在其他实施方式中,至少一个电触点116可被推动穿过包封材料114。在具有RDL 110的各种实施方式中,电触点可直接耦接到RDL 110。在具有穿过晶圆86的多个TSV的实施方式中,电触点电耦接到多个TSV。通过将至少一个电触点电耦接到RDL 110或TSV,在形成图像传感器封装之后,可将图像传感器94电耦接到图像传感器封装的外部。在各种实施方式中,一个或多个电触点116可为凸块、螺柱、管脚、导线或任何其他导电结构。此外,在各种实施方式中,晶圆86可包括任意数量的电触点116并且可包括任意集中度的电触点 116。

参见图4H,用于形成图像传感器封装的方法的实施方式包括以减材方式移除多个沟槽中的包封材料114的一部分。移除的部分可来自多个沟槽 112的中部,使得包封材料114可继续覆盖多个沟槽112的侧壁。作为非限制性示例,可使用锯、激光、水射流、等离子蚀刻、深反应离子蚀刻或化学蚀刻来以减材方式完成移除。在任何情况下,用于以减材方式从多个沟槽移除包封材料114的部分的方法可形成穿过包封材料的比多个沟槽112 的宽度窄的沟槽。在各种实施方式中,包封材料114在多个沟槽中的整个厚度(从晶圆的顶部到多个沟槽的底部)以减材方式被移除。此外,在各种实施方式中,还可以以减材方式移除载体的一部分。

参见图4I,用于形成图像传感器封装的方法的实施方式包括从透光覆盖物80移除载体82。在将载体82接合到透光覆盖物80的粘合剂是UV胶带的实施方式中,可通过用紫外辐射照射粘合剂来移除载体。在将载体82 接合到透光覆盖物80的粘合剂是热胶带的实施方式中,可通过加热粘合剂来移除载体。以减材方式移除多个沟槽112中的包封材料114的一部分的方法连同移除载体82的方法一起构成将晶圆86和透光覆盖物80分割成多个图像传感器封装。

参照图4J,与图2的图像传感器封装相同的图像传感器封装118通过关于图4A至图4I所述的方法和过程来制得。图像传感器封装18包括包封材料114,该包封材料基本上覆盖图像传感器封装的五个侧面。由于封装 118的整个侧壁被包封材料114覆盖,因此如图4A至图4I所示的用于形成图像传感器封装的方法的实施方式得到这样的图像传感器封装,该图像传感器封装具有由包封材料114覆盖的封装侧壁上的所有界面,包括形成在管芯与第一层之间的界面以及形成在第一层与透光覆盖物之间的界面。这样得到的封装是气密密封或大体上气密密封的,从而降低了湿气或污染物污染腔体84的可能性。此外,由于包封材料114可覆盖图像传感器封装 118的整个侧壁,因此透光覆盖物80破碎或破裂的风险得到降低。

用于形成图像传感器封装的方法的实施方式可包括将透光覆盖物的第一侧耦接到载体,以及通过将晶圆上的第一层耦接到透光覆盖物的第二侧来在透光覆盖物与晶圆之间形成多个腔体,该第一层包括穿过其中的多个开口。该方法还可包括形成穿过透光覆盖物的厚度的多个沟槽,用包封材料填充多个沟槽,并且通过以减材方式移除多个沟槽的一部分中的包封材料并移除载体来将晶圆和透光覆盖物分割成多个图像传感器封装。

该方法可包括形成穿过晶圆的厚度的多个沟槽。

包封材料可为焊料掩模。

以减材方式移除可包括锯切和蚀刻中的一者。

载体可通过以下其中一种方式来移除:加热载体,以及用紫外辐射来照射载体。

该方法可包括将至少一个电触点耦接到晶圆,其中至少一个电触点延伸至图像传感器封装的外部。

包封材料可基本上覆盖图像传感器封装的五个侧面。

在各种实施方式中,在形成多个沟槽时,没有载体以减材方式被移除。

用于形成图像传感器封装的方法的实施方式可包括将透光覆盖物的第一侧耦接到载体,在晶圆第一侧上的第一层中形成多个阻挡部,以及通过将晶圆耦接到透光覆盖物的第二侧来在透光覆盖物、晶圆与阻挡部之间形成多个腔体。用于形成图像传感器封装的方法的实施方式还可包括将晶圆的与第一侧相对的第二侧减薄,在晶圆的第二侧上方形成再分布层,以及形成穿过晶圆的厚度并且穿过透光覆盖物的厚度的多个沟槽。用于形成图像传感器封装的方法的实施方式还可包括覆盖晶圆的第二侧并用包封材料填充多个沟槽,将至少一个电触点耦接到再分布层,以及通过以减材方式移除多个沟槽中的包封材料并移除载体来将晶圆和透光覆盖物分割成多个图像传感器封装,其中该包封材料涂覆每个图像传感器封装的侧壁。

在各种方法实施方式中,在形成多个沟槽时,没有载体以减材方式被移除。

包封材料可为焊料掩模。

包封材料可基本上覆盖在多个图像传感器中的每个图像传感器的五个侧面上。

该方法可包括在晶圆上形成多个凸块。

该方法可包括通过加热载体和/或用紫外(UV)辐射照射载体来移除载体。

电触点可为凸块。

在以上描述中提到图像传感器封装的特定实施方式以及实施部件、子部件、方法和子方法的地方,应当显而易见的是,可在不脱离本实用新型的实质的情况下作出多种修改,并且可将这些实施方式、实施部件、子部件、方法和子方法应用于其他图像传感器封装。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1