锂电池的制作方法

文档序号:20198920发布日期:2020-03-27 20:25阅读:188来源:国知局
锂电池的制作方法
相关申请的交叉引用本申请要求2018年9月19日递交的题目为“锂电池”的美国专利申请系列号15/422,873的美国部分继续申请案第16/135,301号的权益,其全部内容通过引用并入本文。本发明多个实施方式涉及锂电池。
背景技术
:锂电池被用作便携式电子设备(包括摄像机、移动电话、笔记本电脑等)的驱动电源。锂二次电池可以以高倍率再充电,并且每单位重量的能量密度是现有铅蓄电池、镍镉电池、镍氢电池或镍锌电池的至少三倍。技术实现要素:本发明多个实施方式涉及锂电池,所述锂电池包括:包含阴极活性物质的阴极,包含阳极活性物质的阳极,以及在阴极和阳极之间的有机电解质溶液。阴极活性物质包括含镍层状锂过渡金属氧化物。相对于锂过渡金属氧化物中过渡金属的总摩尔数,锂过渡金属氧化物中的镍含量为约60mol%或更多。有机电解质溶液包括第一锂盐、有机溶剂和由下式1表示的基于双环硫酸酯的化合物:<式1>其中,在式1中,a1、a2、a3和a4各自独立地为共价键、取代或未取代的c1-c5亚烷基、羰基或亚磺酰基,其中a1和a2不都是共价键,并且a3和a4不都是共价键。a1、a2、a3和a4中的至少一个为未取代或取代的c1-c5亚烷基,其中取代的c1-c5亚烷基的取代基为选自下列中的至少一种:卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c2-c20烯基、卤素取代或未取代的c2-c20炔基、卤素取代或未取代的c3-c20环烯基、卤素-取代或未取代的c3-c20杂环基、卤素取代或未取代的c6-c40芳基、卤素取代或未取代的c2-c40杂芳基或具有至少一个杂原子的极性官能团。a1、a2、a3和a4中的至少一个为未取代或取代的c1-c5亚烷基,其中取代的c1-c5亚烷基的取代基为卤素、甲基、乙基、丙基、异丙基、丁基、叔丁基、三氟甲基、四氟乙基、苯基、萘基、四氟苯基、吡咯基或吡啶基。取代的c1-c5亚烷基的取代基可包括具有至少一个杂原子的极性官能团,其中所述极性官能团是选自下列中的至少一种:-f、-cl、-br、-i、-c(=o)or16、-or16、-oc(=o)or16、-r15oc(=o)or16、-c(=o)r16、-r15c(=o)r16、-oc(=o)r16、-r15oc(=o)r16、-c(=o)-o-c(=o)r16、-r15c(=o)-o-c(=o)r16、-sr16、-r15sr16、-ssr16、-r15ssr16、-s(=o)r16、-r15s(=o)r16、-r15c(=s)r16、-r15c(=s)sr16、-r15so3r16、-so3r16、-nnc(=s)r16、-r15nnc(=s)r16、-r15n=c=s、-nco、-r15-nco、-no2、-r15no2、-r15so2r16、-so2r16、其中,在上述式中,r11和r15各自独立地为卤素取代或未取代的c1-c20亚烷基、卤素取代或未取代的c2-c20亚烯基、卤素取代或未取代的c2-c20亚炔基、卤素取代或未取代的c3-c12亚环烷基、卤素取代或未取代的c6-c40亚芳基、卤素取代或未取代的c2-c40亚杂芳基、卤素取代或未取代的c7-c15烷基亚芳基或卤素取代或未取代的c7-c15亚芳烷基;并且r12、r13、r14和r16各自独立地为氢、卤素、卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c2-c20烯基、卤素取代或未取代的c2-c20炔基、卤素取代或未取代的c3-c12环烷基、卤素取代或未取代的c6-c40芳基、卤素取代或未取代的c2-c40杂芳基、卤素取代或未取代的c7-c15烷基芳基、卤素取代或未取代的c7-c15三烷基甲硅烷基或卤素取代或未取代的c7-c15芳烷基,并且表示与相邻原子的结合位点。基于双环硫酸酯的化合物可由式2或3表示:其中,在式2和3中,b1、b2、b3、b4、d1和d2各自独立地为-c(e1)(e2)-、羰基或亚磺酰基;并且e1和e2各自独立地为氢、卤素、卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c2-c20烯基、卤素取代或未取代的c2-c20炔基、卤素取代或未取代的c3-c20环烯基、卤素取代或未取代的c3-c20杂环基、卤素取代或未取代的c6-c40芳基或卤素取代或未取代的c2-c40杂芳基。e1和e2可各自独立地为氢、卤素、卤素取代或未取代的c1-c10烷基、卤素取代或未取代的c6-c40芳基或卤素取代或未取代的c2-c40杂芳基。e1和e2可各自独立地为氢、氟(f)、氯(cl)、溴(br)、碘(i)、甲基、乙基、丙基、异丙基、丁基、叔丁基、三氟甲基、四氟乙基、苯基、萘基、四氟苯基、吡咯基或吡啶基。基于双环硫酸酯的化合物可由式4或式5表示:其中,在式4和式5中,r1、r2、r3、r4、r21、r22、r23、r24、r25、r26、r27和r28各自独立地为氢、卤素、卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c6-c40芳基或卤素取代或未取代的c2-c40杂芳基。r1、r2、r3、r4、r21、r22、r23、r24、r25、r26、r27和r28可各自独立地为氢、f、cl、br、i、甲基、乙基、丙基、异丙基、丁基、叔丁基、三氟甲基、四氟乙基、苯基、萘基、四氟苯基、吡咯基或吡啶基。基于双环硫酸酯的化合物可由以下式6至式17中的一个表示:基于有机电解质溶液的总重量,基于双环硫酸酯的化合物的量可为约0.4wt%至约5wt%。基于有机电解质溶液的总重量,基于双环硫酸酯的化合物的量可为约0.4wt%至约3wt%。有机电解质溶液中的第一锂盐可包括选自下列中的至少一种:lipf6、libf4、lisbf6、liasf6、liclo4、licf3so3、li(cf3so2)2n、lic4f9so3、lialo2、lialcl4、lin(cxf2x+1so2)(cyf2y+1so2)(其中2≤x≤20且2≤y≤20)、licl和lii。有机电解质溶液可进一步包含环状碳酸酯化合物,其中环状碳酸酯化合物选自碳酸亚乙烯酯(vc),被选自卤素、氰基(-cn)和硝基(-no2)中的至少一个取代基所取代的vc,碳酸乙烯基亚乙酯(vec),被选自卤素、-cn和-no2中的至少一个取代基所取代的vec,氟代碳酸亚乙酯(fec),以及被选自卤素、-cn和-no2中的至少一个取代基所取代的fec。基于有机电解质溶液的总重量,环状碳酸酯化合物的量可为约0.01wt%至约5wt%。有机电解质溶液可进一步包含第二锂盐,第二锂盐与第一锂盐不同,并且由以下式18至式25中的一个表示:基于有机电解质溶液的总重量,第二锂盐的量可为约0.1wt%至约5wt%。锂过渡金属氧化物可由下式26表示:<式26>lianixcoymzo2-bab其中,在式26中,1.0≤a≤1.2,0≤b≤0.2,0.6≤x<1,0<y≤0.2,0<z≤0.2,并且x+y+z=1。m可为选自下列中的至少一种:锰(mn)、钒(v)、镁(mg)、镓(ga)、硅(si)、钨(w)、钼(mo)、铁(fe)、铬(cr)、铜(cu)、锌(zn)、钛(ti)、铝(al)和硼(b)。a可为氟(f)、硫(s)、氯(cl)、溴(br)或其组合。锂过渡金属氧化物可为由下式27或式28表示的化合物:<式27>linixcoymnzo2<式28>linixcoyalzo2其中,在式27和28中,0.6≤x≤0.95,0<y≤0.2,0<z≤0.2,且x+y+z=1。锂电池可具有约3.8v或更高的高电压。附图说明通过参考附图详细描述示例性实施方式,各特征对于本领域技术人员将变得显而易见,其中:图1示出了显示根据实施例1-1和2-1以及比较例1-1制造的锂电池在室温下的放电容量的图;图2示出了显示实施例1-1和2-1以及比较例1-1的锂电池在室温下的容量保持率的图;图3示出了显示实施例1-1和2-1以及比较例1-1的锂电池在高温下的放电容量的图;图4示出了显示实施例1-1和2-1以及比较例1-1的锂电池在高温下的容量保持率的图;图5示出了显示实施例1-1和比较例1-1的锂电池在室温下的容量保持率的图;图6示出了显示实施例1-1和比较例1-1的锂电池在高温下的容量保持率的图;并且图7示出了根据一个实施方式的锂电池的视图。具体实施方式现在将在下文中参考附图更充分地描述示例性实施方式;然而,它们可以以不同的形式体现,并且不应被解释为限于本文阐述的实施方式。相反,提供这些实施方式是为了使本公开透彻和完整,并且将向本领域技术人员充分传达示例性实施方案。根据实施方式的锂电池包括:包含阴极活性物质的阴极,包含阳极活性物质的阳极,以及设置在阴极和阳极之间的有机电解质溶液。阴极活性物质可包括含镍层状锂过渡金属氧化物。相对于过渡金属的总摩尔数,锂过渡金属氧化物中的镍含量可为约60mol%或更多。有机电解质溶液可包括第一锂盐;有机溶剂;和由下式1表示的基于双环硫酸酯的化合物:<式1>其中,在式1中,a1、a2、a3和a4各自独立地为共价键、取代或未取代的c1-c5亚烷基、羰基或亚磺酰基,其中a1和a2不都是共价键,并且a3和a4不都是共价键。包括基于双环硫酸酯的化合物作为用于锂电池的添加剂的有机电解质溶液可以增强电池性能,例如高温特性、寿命特性等。此外,当阴极中的阴极活性物质包括含镍层状锂过渡金属氧化物,并且相对于过渡金属的总摩尔数,锂过渡金属氧化物中的ni含量为约60mol%或更多时,锂电池可以表现出进一步增强的寿命特性并进一步增强的高温稳定性。基于双环硫酸酯的化合物可具有其中两个硫酸酯环以螺环形式彼此连接的结构。不受任何特定理论的束缚并且为了更好地理解,现在将进一步详细地描述通过向电解质溶液中添加基于双环硫酸酯的化合物来改善锂电池性能的原因。当电解质溶液中包含基于双环硫酸酯的化合物时,基于双环硫酸酯的化合物的硫酸酯基团可以通过在充电期间从阳极表面接受电子而自身还原,或者可以与先前还原的极性溶剂分子反应,从而影响在阳极表面形成的sei层的特性。例如,与极性溶剂相比,包含硫酸酯基团的基于双环硫酸酯的化合物可以更容易地从阳极接受电子。例如,在极性溶剂被还原之前,基于双环硫酸酯的化合物可以在比极性溶剂还原所需电压更低的电压下还原。例如,基于双环硫酸酯的化合物包括硫酸酯基团,并因此在充电期间可以更容易地还原和/或分解成自由基和/或离子。结果,自由基和/或离子可以与锂离子结合以在阳极上形成适当的sei层,从而防止形成通过进一步分解溶剂而获得的产物。基于双环硫酸酯的化合物可以与例如碳质阳极本身或碳质阳极表面上的各种官能团形成共价键,或者可以被吸附到电极的表面上。与仅由有机溶剂形成的sei层相比,通过这种结合和/或吸附形成的具有改善的稳定性的改性sei层即使在长时间充电和放电之后也可以更耐用。在锂离子嵌入电极期间,耐用的改性sei层反而可以更有效地阻止有机溶剂溶剂化锂离子的共嵌入。因此,改性sei层可以更有效地阻止有机溶剂和阳极之间的直接接触,以进一步改善锂离子的嵌入/脱嵌的可逆性,从而达到制造的电池的放电容量的增加和寿命特性的改善。此外,由于包含硫酸酯基团,基于双环硫酸酯的化合物可以在阴极表面上配位,从而影响在阴极表面上形成的保护层的特性。例如,硫酸酯基团可以与阴极活性物质的过渡金属离子配位以形成络合物。该络合物可以形成具有改善的稳定性的改性保护层,即使在长时间充电和放电之后,该保护层也比仅由有机溶剂形成的保护层更耐用。此外,耐用的改性保护层可以在锂离子嵌入电极期间更有效地阻止有机溶剂溶剂化锂离子的共嵌入。因此,改性保护层可以更有效地阻止有机溶剂和阴极之间的直接接触,以进一步改善锂离子的嵌入/脱嵌的可逆性,从而达到制造的电池的提高的稳定性和改善的寿命特性。此外,基于双环硫酸酯的化合物具有其中多个环以螺环形式连接的结构,并因此比通常的基于硫酸酯的化合物具有相对更大的分子量,因此,其可以是热稳定的。例如,基于双环硫酸酯的化合物可以在阳极表面或阴极表面的保护层处形成sei层,并且由于改善了热稳定性,其可以表现出高温制造的锂电池的增强的寿命特性。在包含在有机电解质溶液中的上述式1的基于双环硫酸酯的化合物中,a1、a2、a3和a4中的至少一个可为未取代或取代的c1-c5亚烷基,并且取代的c1-c5亚烷基的取代基可为卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c2-c20烯基、卤素取代或未取代的c2-c20炔基、卤素取代或未取代的c3-c20环烯基、卤素取代或未取代的c3-c20杂环基、卤素取代或未取代的c6-c40芳基、卤素取代或未取代的c2-c40杂芳基或具有至少一个杂原子的极性官能团。例如,a1、a2、a3和a4中的至少一个可为未取代或取代的c1-c5亚烷基,并且取代的c1-c5亚烷基的取代基可为卤素、甲基、乙基、丙基、异丙基、丁基、叔丁基、三氟甲基、四氟乙基、苯基、萘基、四氟苯基、吡咯基或吡啶基。例如,取代的c1-c5亚烷基的取代基可为可用于本领域中所用的亚烷基的合适取代基。在一些实施方案中,在上述式1的基于双环硫酸酯的化合物中,取代的c1-c5亚烷基的取代基可为具有杂原子的极性官能团。极性官能团的杂原子可为选自卤素、氧、氮、磷、硫、硅和硼中的至少一种。例如,具有杂原子的极性官能团可为选自下列中的至少一种:-f、-cl、-br、-i、-c(=o)or16、-or16、-oc(=o)or16、-r15oc(=o)or16、-c(=o)r16、-r15c(=o)r16、-oc(=o)r16、-r15oc(=o)r16、-c(=o)-o-c(=o)r16、-r15c(=o)-o-c(=o)r16、-sr16、-r15sr16、-ssr16、-r15ssr16、-s(=o)r16、-r15s(=o)r16、-r15c(=s)r16、-r15c(=s)sr16、-r15so3r16、-so3r16、-nnc(=s)r16、-r15nnc(=s)r16、-r15n=c=s、-nco、-r15-nco、-no2、-r15no2、-r15so2r16、-so2r16、在上述式中,r11和r15可各自独立地为卤素取代或未取代的c1-c20亚烷基、卤素取代或未取代的c2-c20亚烯基、卤素取代或未取代的c2-c20亚炔基、卤素取代或未取代的c3-c12亚环烷基、卤素取代或未取代的c6-c40亚芳基、卤素取代或未取代的c2-c40亚杂芳基、卤素取代或未取代的c7-c15烷基亚芳基或卤素取代或未取代的c7-c15亚芳烷基。r12、r13、r14和r16可各自独立地为氢、卤素、卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c2-c20烯基、卤素取代或未取代的c2-c20炔基、卤素取代或未取代的c3-c12环烷基、卤素取代或未取代的c6-c40芳基、卤素取代或未取代的c2-c40杂芳基、卤素取代或未取代的c7-c15烷基芳基、卤素取代或未取代的c7-c15三烷基甲硅烷基或卤素取代或未取代的c7-c15芳烷基,并且表示与相邻原子的结合位点。例如,在具有杂原子的极性官能团中,烷基、烯基、炔基、环烷基、芳基、杂芳基、烷基芳基、三烷基甲硅烷基或芳烷基的卤素取代基可为氟(f)。例如,包含在有机电解质溶液中的基于双环硫酸酯的化合物可由式2或3表示:其中,在式2和3中,b1、b2、b3、b4、d1和d2可各自独立地为-c(e1)(e2)-、羰基或亚磺酰基。e1和e2可各自独立地为氢、卤素、卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c2-c20烯基、卤素取代或未取代的c2-c20炔基、卤素取代或未取代的c3-c20环烯基、卤素取代或未取代的c3-c20杂环基、卤素取代或未取代的c6-c40芳基或卤素取代或未取代的c2-c40杂芳基。例如,e1和e2可各自独立地为氢、卤素、卤素取代或未取代的c1-c10烷基、卤素取代或未取代的c6-c40芳基或卤素取代或未取代的c2-c40杂芳基。例如,e1和e2可各自独立地为氢、f、氯(cl)、溴(br)、碘(i)、甲基、乙基、丙基、异丙基、丁基、叔丁基、三氟甲基、四氟乙基、苯基、萘基、四氟苯基、吡咯基或吡啶基。例如,e1和e2可各自独立地为氢、f、甲基、乙基、三氟甲基、四氟乙基或苯基。例如,基于双环硫酸酯的化合物可由式4或5表示:其中,在式4和式5中,r1、r2、r3、r4、r21、r22、r23、r24、r25、r26、r27和r28可各自独立地为氢、卤素、卤素取代或未取代的c1-c20烷基、卤素取代或未取代的c6-c40芳基或卤素取代或未取代的c2-c40杂芳基。例如,在上式4和式5中,r1、r2、r3、r4、r21、r22、r23、r24、r25、r26、r27和r28可各自独立地为氢、f、cl、br、i、甲基、乙基、丙基、异丙基、丁基、叔丁基、三氟甲基、四氟乙基、苯基、萘基、四氟苯基、吡咯基或吡啶基。例如,在上式4和式5中,r1、r2、r3、r4、r21、r22、r23、r24、r25、r26、r27和r28可各自独立地为氢、f、甲基、乙基、丙基、三氟甲基、四氟乙基或苯基。例如,基于双环硫酸酯的化合物可由以下式6至17中的一个表示:如本文所用,表述“ca-cb”的a和b表示特定官能团的碳原子数。例如,官能团可包括a至b个碳原子。例如,表述“c1-c4烷基”表示具有1至4个碳原子的烷基,即ch3-、ch3ch2-、ch3ch2ch2-、(ch3)2ch-、ch3ch2ch2ch2-、ch3ch2ch(ch3)-和(ch3)3c-。根据上下文,特定的基团可称为单价基团或二价基团。例如,当取代基需要两个结合位点用于与分子的其余部分结合时,取代基可理解为二价基团。例如,需要两个结合位点的指定为烷基的取代基可为二价基团,例如-ch2-、-ch2ch2-、-ch2ch(ch3)ch2-等。本文所用的术语“亚烷基”表示该基团是二价基团。本文所用的术语“烷基”和“亚烷基”是指支链或非支链脂肪族烃基。在一个实施方式中,烷基可以是取代的或未取代的。烷基的实例包括甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、己基、环丙基、环戊基、环己基和环庚基,其中这些基团的每一个都可以是可选地取代或未取代的。在一个实施方式中,烷基可具有1~6个碳原子。例如,c1-c6烷基可为甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、戊基、3-戊基、己基等。本文所用的术语“环烷基”是指完全饱和的碳环或环体系。例如,环烷基可为环丙基、环丁基、环戊基和环己基。本文所用的术语“烯基”是指具有2~20个碳原子且具有至少一个碳-碳双键的烃基。烯基的实例包括乙烯基、1-丙烯基、2-丙烯基、2-甲基-1-丙烯基、1-丁烯基、2-丁烯基、环丙烯基、环戊烯基、环己烯基和环庚烯基。在一个实施方式中,这些烯基可以是取代的或未取代的。在一个实施方式中,烯基可具有2~40个碳原子。本文所用的术语“炔基”是指具有2~20个碳原子且具有至少一个碳-碳三键的烃基。炔基的实例包括乙炔基、1-丙炔基、1-丁炔基和2-丁炔基。在一个实施方式中,这些炔基可以是取代的或未取代的。在一个实施方式中,炔基可具有2~40个碳原子。本文所用的术语“芳族”是指具有共轭π电子体系的环或环体系,并且可以是指碳环芳族基团(例如,苯基)和杂环芳族基团(例如吡啶)。在这方面,芳族环体系整体上可包括单环或稠合多环(即,共享相邻原子对的环)。本文所用的术语“芳基”是指在其主链中仅具有碳原子的芳族环或环体系(即,由至少两个共享两个相邻碳原子的环稠合的环)。当芳基是环体系时,环体系中的每个环都是芳族的。芳基的实例包括苯基、联苯基、萘基、菲基和并四苯基。这些芳基可以是取代的或未取代的。本文所用的术语“杂芳基”是指具有一个环或多个稠环的芳族环体系,其中至少一个环原子不是碳,即杂原子。在稠合环体系中,至少一个杂原子可仅存在于一个环中。例如,杂原子可为氧、硫或氮。杂芳基的实例包括呋喃基、噻吩基、咪唑基、喹唑啉基、喹啉基、异喹啉基、喹喔啉基、吡啶基、吡咯基、噁唑基和吲哚基。本文所用的术语“芳烷基”和“烷基芳基”是指通过亚烷基以取代基形式连接的芳基,例如c7-c14芳烷基。芳烷基或烷基芳基的实例包括苄基、2-苯基乙基、3-苯基丙基和萘基烷基。在一个实施方式中,亚烷基可为低级亚烷基(即,c1-c4亚烷基)。本文所用的术语“环烯基”是指具有至少一个双键的非芳族碳环或环体系。例如,环烯基可为环己烯基。如本文所用的术语“杂环基”是指在其环骨架中具有至少一个杂原子的非芳族环或环体系。本文所用的术语“卤素”是指属于元素周期表第17族的稳定元素,例如氟、氯、溴或碘。例如,卤素可为氟和/或氯。在本说明书中,取代基可以通过用另一个原子或官能团取代未取代的母基团中的至少一个氢原子而得到。除非另有说明,否则术语“取代的”表示上面列出的官能团被选自下列中的至少一个取代基所取代:c1-c40烷基、c2-c40烯基、c3-c40环烷基、c3-c40环烯基和c7-c40芳基。本文所用的短语“可选地取代的”表示上述官能团可以被上述取代基取代或可以是未取代的。基于有机电解质溶液的总重量,有机电解质溶液中作为添加剂的式1的基于双环硫酸酯的化合物的量可在约0.4wt%至约5wt%的范围内。例如,基于有机电解质溶液的总重量,有机电解质溶液中作为添加剂的式1的基于双环硫酸酯的化合物的量可在约0.4wt%至约3wt%的范围内。例如,基于有机电解质溶液的总重量,有机电解质溶液中式1的基于双环硫酸酯的化合物的量可在约0.6wt%至约3wt%的范围内。例如,基于有机电解质溶液的总重量,有机电解质溶液中式1的基于双环硫酸酯的化合物的量可为约0.7wt%至约3wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中式1的基于双环硫酸酯的化合物的量可为约0.4wt%至约2.5wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中式1的基于双环硫酸酯的化合物的量可为约0.4wt%至约2wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中式1的基于双环硫酸酯的化合物的量可为约0.4wt%至约1.5wt%。当式1的基于双环硫酸酯的化合物的量在上述范围内时,可以获得进一步增强的电池特性。包含在有机电解质溶液中的第一锂盐可包括选自下列中的至少一种:lipf6、libf4、lisbf6、liasf6、liclo4、licf3so3、li(cf3so2)2n、lic4f9so3、lialo2、lialcl4、lin(cxf2x+1so2)(cyf2y+1so2)(其中2≤x≤20且2≤y≤20)、licl和lii。有机电解质溶液中的第一锂盐的浓度可为例如约0.01m至约2.0m。可根据需要适当地调节有机电解质溶液中的第一锂盐的浓度。当第一锂盐的浓度在上述范围内时,可以获得具有进一步增强的特性的电池。有机电解质溶液中包含的有机溶剂可为低沸点溶剂。术语“低沸点溶剂”是指在25℃下、在1个大气压下沸点为200℃或更低的溶剂。例如,有机溶剂可包括选自下列中的至少一种:碳酸二烷基酯、环状碳酸酯、直链或环状酯、直链或环状酰胺、脂环族腈、直链或环状醚及其衍生物。例如,有机溶剂可包括选自下列中的至少一种:碳酸二甲酯(dmc)、碳酸甲乙酯(emc)、碳酸甲丙酯、碳酸乙丙酯、碳酸二乙酯(dec)、碳酸二丙酯、碳酸亚丙酯(pc)、碳酸亚乙酯(ec)、碳酸亚丁酯、丙酸乙酯、丁酸乙酯、乙腈、丁二腈(sn)、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、γ-戊内酯、γ-丁内酯和四氢呋喃。例如,有机溶剂可以是本领域可获得的具有低沸点的合适溶剂。除了基于双环硫酸酯的化合物之外,有机电解质溶液可进一步包含其他添加剂。由于进一步包含其他添加剂,可以获得具有进一步增强的性能的锂电池。进一步包含在有机电解质溶液中的添加剂可包括环状碳酸酯化合物、第二锂盐等。例如,有机电解质溶液可进一步包含环状碳酸酯化合物作为添加剂。用作添加剂的环状碳酸酯化合物可选自碳酸亚乙烯酯(vc),被选自卤素、氰基(-cn)和硝基(-no2)中的至少一个取代基所取代的vc,碳酸乙烯基亚乙酯(vec),被选自卤素、-cn和-no2中的至少一个取代基所取代的vec;氟代碳酸亚乙酯(fec),以及被选自卤素、-cn和-no2中的至少一个取代基所取代的fec。当有机电解质溶液进一步包含环状碳酸酯化合物作为添加剂时,包含有机电解质溶液的锂电池可具有进一步增强的充电和放电特性。基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为例如约0.01wt%至约5wt%。环状碳酸酯化合物的量可根据需要适当调节。例如,基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为约0.1wt%至约5wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为约0.1wt%至约4wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为约0.1wt%至约3wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为约0.1wt%至约2wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为约0.2wt%至约2wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中环状碳酸酯化合物的量可为约0.2wt%至约1.5wt%。当环状碳酸酯化合物的量在上述范围内时,可以获得具有进一步增强的特性的电池。例如,有机电解质溶液可进一步包含第二锂盐作为添加剂。第二锂盐区别于(即,不同于)第一锂盐。第二锂盐的阴离子可为草酸根、po2f2-、n(so2f)2-等。例如,第二锂盐可以是由以下式18至25中的一个表示的化合物:基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.1wt%至约5wt%。如果需要,可以适当调节第二锂盐的量。例如,基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.1wt%至约4.5wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.1wt%至约4wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.1wt%至约3wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.1wt%至约2wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.2wt%至约2wt%。例如,基于有机电解质溶液的总重量,有机电解质溶液中第二锂盐的量可为约0.2wt%至约1.5wt%。当第二锂盐的量在上述范围内时,可以获得具有进一步增强的特性的电池。有机电解质溶液可以是液态或凝胶态。可以通过将上述第一锂盐和添加剂添加到上述有机溶剂中来制备有机电解质溶液。包含在锂电池的阴极中的含镍层状锂过渡金属氧化物可由例如以下式26表示:<式26>lianixcoymzo2-bab其中,在式26中,1.0≤a≤1.2,0≤b≤0.2,0.6≤x<1,0<y≤0.2,0<z≤0.2,且x+y+z=1;m为选自锰(mn)、钒(v)、镁(mg)、镓(ga)、硅(si)、钨(w)、钼(mo)、铁(fe)、铬(cr)、铜(cu)、锌(zn)、钛(ti)、铝(al)和硼(b)中的至少一种;并且a为氟(f)、硫(s)、氯(cl)、溴(br)或其组合。例如,0.7≤x<1,0<y≤0.15,0<z≤0.15,且x+y+z=1。例如,0.75≤x<1,0<y≤0.125,0<z≤0.125,且x+y+z=1。例如,0.8≤x<1,0<y≤0.1,0<z≤0.1,且x+y+z=1。例如,0.85≤x<1,0<y≤0.075,0<z≤0.075,且x+y+z=1。包含在锂电池阴极中的含镍层状锂过渡金属氧化物可由例如式27或式28表示:<式27>linixcoymnzo2<式28>linixcoyalzo2其中,在式27和式28中,0.6≤x≤0.95,0<y≤0.2,0<z≤0.2,且x+y+z=1。例如,0.7≤x≤0.95,0<y≤0.15,0<z≤0.15,且x+y+z=1。例如,0.75≤x≤0.95,0<y≤0.125,0<z≤0.125,且x+y+z=1。例如,0.8≤x≤0.95,0<y≤0.1,0<z≤0.1,且x+y+z=1。例如,0.85≤x≤0.95,0<y≤0.075,0<z≤0.075,且x+y+z=1。锂电池的实例包括锂二次电池(例如锂离子电池、锂离子聚合物电池、锂硫电池等)和锂一次电池。例如,在锂电池中,阳极可包括石墨。例如,锂电池可具有约3.80v或更高的高电压。例如,锂电池可具有约4.0v或更高的高电压。例如,锂电池可具有约4.35v或更高的高电压。例如,可以使用以下方法制造锂电池。可以通过合适的方法制备阴极。例如,可以制备阴极活性物质组合物,其中将上述阴极活性物质、导电物质、粘合剂和溶剂混合。可以将阴极活性物质组合物直接涂覆到金属集电器上,从而完成阴极板的制造。在一些实施方案中,可将阴极活性物质组合物浇铸到单独的支撑件上,并且可将与支撑件分离的膜层压到金属集电器上,从而完成阴极板的制造。例如,阴极活性物质可为由下式中的任一个表示的化合物:liaa1-bb'bd2,其中0.90≤a≤1.8且0≤b≤0.5;liae1-bb'bo2-cdc,其中0.90≤a≤1.8,0≤b≤0.5且0≤c≤0.05;lie2-bb'bo4-cdc,其中0≤b≤0.5且0≤c≤0.05;liani1-b-ccobb'cdα,其中0.90≤a≤1.8,0≤b≤0.5,0≤c≤0.05且0<α≤2;liani1-b-ccobb'co2-αf'α,其中0.90≤a≤1.8,0≤b≤0.5、0≤c≤0.05且0<α<2;liani1-b-ccobb'co2-αf'2,其中0.90≤a≤1.8,0≤b≤0.5、0≤c≤0.05且0<α<2;liani1-b-cmnbb'cdα,其中0.90≤a≤1.8,0≤b≤0.5、0≤c≤0.05且0<α≤2;liani1-b-cmnbb'co2-αf'α,其中0.90≤a≤1.8,0≤b≤0.5、0≤c≤0.05且0<α<2;liani1-b-cmnbb'co2-αf'2,其中0.90≤a≤1.8,0≤b≤0.5、0≤c≤0.05且0<α<2;lianibecgdo2,其中0.90≤a≤1.8,0≤b≤0.9,0≤c≤0.5且0.001≤d≤0.1;lianibcocmndgeo2,其中0.90≤a≤1.8,0≤b≤0.9,0≤c≤0.5,0≤d≤0.5且0.001≤e≤0.1;lianigbo2,其中0.90≤a≤1.8并且0.001≤b≤0.1;liacogbo2其中0.90≤a≤1.8并且0.001≤b≤0.1;liamngbo2,其中0.90≤a≤1.8且0.001≤b≤0.1;liamn2gbo4,其中0.90≤a≤1.8且0.001≤b≤0.1;qo2;qs2;liqs2;v2o5;liv2o5;lii'o2;linivo4;li(3-f)j2(po4)3,其中0≤f≤2;li(3-f)fe2(po4)3,其中0≤f≤2;以及lifepo4。在上式中,a可选自镍(ni)、钴(co)、锰(mn)及其组合;b'可选自铝(al)、ni、co、锰(mn)、铬(cr)、铁(fe)、镁(mg)、锶(sr)、钒(v)、稀土元素及其组合;d可选自氧(o)、氟(f)、硫(s)、磷(p)及其组合;e可选自co、mn及其组合;f'可选自f、s、p及其组合;g可选自al、cr、mn、fe、mg、镧(la)、铈(ce)、sr、v及其组合;q可选自钛(ti)、钼(mo)、mn及其组合;i'可选自cr、v、fe、钪(sc)、钇(y)及其组合;j可选自v、cr、mn、co、ni、铜(cu)及其组合。例如,阴极活性物质可进一步包括licoo2;limnxo2x,其中x=1或2;lini1-xmnxo2x,其中0<x<1;lini1-x-ycoxmnyo2,其中0<1-x-y<0.6,0≤x≤0.5,且0≤y≤0.5;lifepo4等。此外,上述用作阴极活性物质的含锂金属氧化物可在其表面具有涂层。在另一实施方式中,可以使用含锂金属氧化物和在其表面具有涂层的含锂金属氧化物的混合物。涂层可包括涂覆元素化合物,例如涂覆元素的氧化物、涂覆元素的氢氧化物、涂覆元素的羟基氧化物、涂覆元素的氧碳酸盐或涂覆元素的羟基碳酸盐。涂覆元素化合物可以是非晶的或结晶的。涂层中包含的涂覆元素可选自mg、al、co、钾(k)、钠(na)、钙(ca)、硅(si)、ti、v、锡(sn)、锗(ge)、镓(ga)、硼(b)、砷(as)、锆(zr)及其混合物。通过使用不会对阴极活性物质的物理性质产生不利影响的合适方法(例如喷涂、浸渍等),通过使用上述化合物中的涂覆元素可以形成涂层。可以使用合适的导电物质。导电物质可为例如炭黑、石墨颗粒等。粘合剂可以是本领域中使用的合适的粘合剂。粘合剂的实例包括偏二氟乙烯/六氟丙烯共聚物、聚偏二氟乙烯(pvdf)、聚丙烯腈、聚甲基丙烯酸甲酯、聚四氟乙烯、其混合物以及苯乙烯丁二烯橡胶基聚合物。溶剂可以是例如n-甲基吡咯烷酮、丙酮、水等。阴极活性物质、导电物质、粘合剂和溶剂的量可与一般锂电池中使用的那些的量相同。根据所需锂电池的用途和构造,可以省略导电物质、粘合剂和溶剂中的至少一种。可通过合适的制造方法制备阳极。例如,可通过将阳极活性物质、导电物质、粘合剂和溶剂混合来制备阳极活性物质组合物。可将阳极活性物质组合物直接涂覆到金属集电器上并干燥以获得阳极板。在一些实施方案中,可将阳极活性物质组合物浇铸到单独的支撑件上,并且可将与支撑件分离的膜层压到金属集电器上以完成阳极板的制造。作为阳极活性物质,可以使用用于锂电池的合适的阳极活性物质。例如,阳极活性物质可包括选自锂金属、可与锂成合金的金属、过渡金属氧化物、非过渡金属氧化物和碳质材料中的至少一种。例如,可与锂成合金的金属可为si、sn、al、ge、铅(pb)、铋(bi)、锑(sb)、si-y'合金(y'为碱金属、碱土金属、第13族和14族元素、过渡金属、稀土元素或其组合,并且不为si)、sn-y'合金(y'为碱金属、碱土金属、第13和14族元素、过渡金属、稀土元素或其组合,并且不为sn)等。元素y'可选自mg、ca、sr、钡(ba)、镭(ra)、sc、y、ti、zr、铪(hf)、(rf)、v、铌(nb)、钽(ta)、(db)、cr、mo、钨(w)、(sg)、锝(tc)、铼(re)、(bh)、fe、pb、钌(ru)、锇(os)、(hs)、铑(rh)、铱(ir)、钯(pd)、铂(pt)、cu、银(ag)、金(au)、锌(zn)、镉(cd)、b、al、ga、sn、铟(in)、ge、p、as、sb、bi、s、硒(se)、碲(te)、钋(po)及其组合。例如,过渡金属氧化物可为锂钛氧化物、氧化钒、锂钒氧化物等。例如,非过渡金属氧化物可为sno2、siox(其中0<x<2)等。例如,碳质材料可为结晶碳、非晶碳或其混合物。结晶碳的实例包括天然石墨和人造石墨,它们各自具有不规则形状或呈板状、片状、球状或纤维状。非晶碳的实例包括软碳(低温煅烧碳)、硬碳、中间相沥青碳化产物和煅烧焦炭。在阳极活性物质组合物中,可以使用与阴极活性物质组合物中使用的导电物质和粘合剂相同的导电物质和粘合剂。阳极活性物质、导电物质、粘合剂和溶剂的量可与一般锂电池中使用的那些的量相同。根据所需锂电池的用途和构造,可以省略导电物质、粘合剂和溶剂中的至少一种。可以制备要设置在阴极和阳极之间的合适隔板。作为隔板,可以使用对电解质中的离子迁移具有低阻力并且具有高电解质保持能力的隔板。隔板的实例可包括玻璃纤维、聚酯、聚乙烯、聚丙烯、聚四氟乙烯(ptfe)及其组合,它们中的每一种可以是无纺或纺布织物。例如,由聚乙烯、聚丙烯等形成的可卷绕隔板可用于锂离子电池,并且具有高有机电解质溶液保持能力的隔板可用于锂离子聚合物电池。例如,可根据以下方法制造隔板。可以将聚合物树脂、填料和溶剂混合在一起以制备隔板组合物。然后,可以将隔板组合物直接涂覆到电极上并干燥以形成隔板。在一种实施方案中,可以将隔板组合物浇铸到支撑件上并干燥,然后可以将与支撑件分离的隔板膜层压到电极的上部,从而完成隔板的制造。用于电极板的粘合剂的合适材料可以用于制造隔板。例如,聚合物树脂可为偏二氟乙烯/六氟丙烯共聚物、pvdf、聚丙烯腈、聚甲基丙烯酸甲酯、其混合物等。可以制备如上所述的有机电解质溶液。如图7所示,锂电池1可包括阴极3、阳极2和隔板4。阴极3、阳极2和隔板4可以卷绕或折叠,然后容纳在电池壳体5中。随后,可以将有机电解质溶液注入到电池壳体5中,并且可以用盖组件6密封电池壳体5,从而完成锂电池1的制造。电池壳体5可具有圆柱形、矩形或薄膜形状。在一些实施方案中,隔板4可以设置在阴极3和阳极2之间以形成电池组件,多个电池组件可以堆叠成双电池结构并且用有机电解质溶液浸渍,并且可将所得物放入袋中并密封,从而完成锂电池的制造。电池组件可以堆叠以形成电池组,并且这种电池组可以用在需要高容量和高功率输出的装置中。例如,电池组可以用于笔记本电脑、智能电话、电动车等。锂电池可具有优异的寿命特性和高倍率特性,因此可用于电动车(ev)。例如,锂电池可以用于混合动力车,例如插电式混合电动车(phev)等。锂电池还可用于需要存储大量电力的领域。例如,锂电池可用于电动自行车、电动机驱动的工具等。提供以下实施例和比较例以突出一个或多个实施方式的特征,但应理解,实施例和比较例不应解释为限制实施方式的范围,比较例也不应被解释为在实施方式的范围之外。此外,应理解,实施方式不限于实施例和比较例中描述的具体细节。添加剂的合成制备实施例1:式6化合物的合成可以根据下面的反应方案1制备式6的化合物:<反应方案1>化合物a的合成将68.0g(0.499mol)季戊四醇和100g分子筛(4a型)添加到体积比为1:1的四氢呋喃(thf)和二氯甲烷(dcm,ch2cl2)的混合溶剂中,并将所得溶液回流20分钟。随后,将110ml(2.8当量,1.40mol)亚磺酰氯(socl2)添加到所得物中,并将所得溶液回流8小时直至季戊四醇通过反应完全消耗,从而得到淡黄色溶液。将得到的淡黄色溶液过滤并浓缩,以得到含有淡黄色固体的残余物。此后,将1l饱和碳酸氢钠(nahco3)溶液以泡腾最小化的速率直接添加到残余物中,以得到悬浮液。将悬浮液剧烈搅拌20分钟。然后,过滤悬浮液,并将得到的固体添加到1l纯净水中,以制备混合物。然后,将混合物剧烈搅拌20分钟,进行抽滤,并在空气中干燥,从而得到104.61g(0.458mol)化合物a(产率:92%)。化合物a的1h-nmr和13c-nmr数据与文献中的相同。化合物b的合成如以上反应方案1中所示,根据canadianjournalofchemistry,79,2001,第1042页中公开的方法,由化合物a合成由下式6表示的化合物b。将合成的化合物在体积比为2:1的1,2-二氯乙烷和乙腈的混合溶剂中重结晶,然后将其用于制备电解质溶液。<式6>有机电解质溶液的制备实施例1:sei-13161.0wt%将作为锂盐的0.90mlipf6和1wt%的式6化合物添加到体积比为3:5:2的碳酸亚乙酯(ec)、碳酸甲乙酯(emc)和碳酸二乙酯(dec)的混合溶剂中,以制备有机电解质溶液。<式6>实施例2:sei-13161.0wt%+vc0.5wt%除了使用1wt%的式6化合物和0.5wt%的碳酸亚乙烯酯(vc)作为添加剂之外,以与实施例1相同的方式制备有机电解质溶液。实施例3:sei-13160.5wt%除了将用作添加剂的式6化合物的量变为0.5wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例4:sei-13160.2wt%除了将用作添加剂的式6化合物的量变为0.2wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例5:sei-13160.3wt%除了将用作添加剂的式6化合物的量变为0.3wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例6:sei-13160.7wt%除了将用作添加剂的式6化合物的量变为0.7wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例7:sei-13161.5wt%除了将用作添加剂的式6化合物的量变为1.5wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例8:sei-13162wt%除了将用作添加剂的式6化合物的量变为2wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例9:sei-13163wt%除了将用作添加剂的式6化合物的量变为3wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例9a:sei-13164wt%除了将用作添加剂的式6化合物的量变为4wt%之外,以与实施例1相同的方式制备有机电解质溶液。实施例10:sei-13165wt%除了将用作添加剂的式6化合物的量变为5wt%之外,以与实施例1相同的方式制备有机电解质溶液。比较例1:sei-13160wt%除了不使用用作添加剂的式6化合物之外,以与实施例1相同的方式制备有机电解质溶液。锂电池的制造(实施例1-1至3-1和比较例1-1)实施例1-1阳极的制造将98wt%的人造石墨(由tianjinbtrnewenergytechnologyco.,ltd.制造的bsg-l)、1.0wt%的作为粘合剂的苯乙烯-丁二烯橡胶(sbr)(由zeon制造)和1.0wt%羧甲基纤维素(cmc)(由nippona&l制造)混合在一起,将混合物加入蒸馏水中,并使用机械搅拌器搅拌所得溶液60分钟以制备阳极活性物质浆料。使用刮片将阳极活性物质浆料涂覆到厚度为10μm的铜(cu)集电器上至约60μm的厚度,并且将集电器在100℃的热空气干燥器中干燥0.5小时,随后在以下条件下进一步干燥:在120℃的真空中进行4小时,并进行辊压,从而完成阳极板的制造。阴极的制造将97.45wt%的lini1/3co1/3mn1/3o2、0.5wt%的作为导电物质的粉末型人造石墨(由timcal制造的sfg6)、0.7wt%的炭黑(由ecp制造的科琴黑)、0.25wt%的改性丙烯腈橡胶(由zeoncorporation制造的bm-720h)、0.9wt%的聚偏二氟乙烯(pvdf,由solvay制造的s6020)和0.2wt%的pvdf(由solvay制造的s5130)混合在一起,将混合物添加到作为溶剂的n-甲基-2-吡咯烷酮中,并使用机械搅拌器搅拌所得溶液30分钟以制备阴极活性物质浆料。使用刮片将阴极活性物质浆料涂覆到厚度为20μm的铝(al)集电器上至约60μm的厚度,并且将集电器在100℃的热空气干燥器中干燥0.5小时,随后在以下条件下进一步干燥:在120℃的真空中进行4小时,并进行辊压,从而完成阴极板的制造。使用厚度为14μm的聚乙烯隔板(由skinnovation制造),其阴极侧涂覆有陶瓷,并且使用根据实施例1制备的有机电解质溶液来完成锂电池的制造。实施例2-1和3-1除了分别使用根据实施例2和3制备的有机电解质溶液代替实施例1的有机电解质溶液之外,以与实施例1-1相同的方式制造锂电池。比较例1-1除了使用根据比较例1制备的有机电解质溶液代替实施例1的有机电解质溶液之外,以与实施例1-1相同的方式制造锂电池。评价例1:在4.25v和室温(25℃)下充电和放电特性的评价将根据实施例1-1至3-1和比较例1-1制造的锂电池各自在25℃下以0.1c倍率的恒定电流充电,直到电压达到4.25v(相对于li),然后,在保持4.25v的恒定电压的同时,以0.05c倍率的电流切断充电过程。随后,以0.1c倍率的恒定电流对每个锂电池放电,直到电压达到2.8v(相对于li)(形成操作,第一次循环)。将在形成操作的第一次循环之后的每个锂电池在25℃下以0.2c倍率的恒定电流充电,直到电压达到4.25v(相对于li),然后,在保持4.25v的恒定电压的同时,以0.05c倍率的电流切断充电过程。随后,以0.2c倍率的恒定电流对每个锂电池放电,直到电压达到2.8v(相对于li)(形成操作,第二次循环)。将在形成操作的第二次循环之后的每个锂电池在25℃下以1.0c倍率的恒定电流充电,直到电压达到4.25v(相对于li),然后,在保持4.25v的恒定电压的同时,以0.05c倍率的电流切断充电过程。随后,以1.0c倍率的恒定电流对每个锂电池放电,直到电压达到2.75v(相对于li),并且重复该充电和放电循环380次。在所有充电和放电循环中,在每次充电/放电循环结束时有10分钟的休息时间。充电和放电实验结果的一部分显示在下面的表1中以及图1和2中。使用下面的等式1定义第380次循环的容量保持率:等式1容量保持率=[第380次循环的放电容量/第1次循环的放电容量]×100表1第380次循环的放电容量[mah/g]第380次循环的容量保持率[%]实施例1-120275实施例2-122882比较例1-117363如表1以及图1和2中所示,包含根据本公开的实施方式的添加剂的实施例1-1和2-1的锂电池,与不含这种添加剂的比较例1-1的锂电池相比,在室温下表现出显著增强的放电容量和寿命特性。评价例2:在4.25v和高温(45℃)下充电和放电特性的评价除了将充电和放电温度改变为45℃之外,使用与评价例1中使用的相同的方法来评价实施例1-1至3-1和比较例1-1的锂电池的充电和放电特性。同时,将充电和放电循环次数改变为200次循环。充电和放电实验结果的一部分显示在下面的表2中以及图3和4中。使用下面的等式2定义第200次循环的容量保持率:等式2容量保持率=[第200次循环的放电容量/第1次循环的放电容量]×100表2第200次循环的放电容量[mah/g]第200次循环的容量保持率[%]实施例1-124983实施例2-125584比较例1-123579如表2以及图3和4所示,包含根据本公开的实施方式的添加剂的实施例1-1和2-1的锂电池,与不含这种添加剂的比较例1-1的锂电池相比,在高温下表现出显著增强的放电容量和寿命特性。评价例3:在4.30v和室温(25℃)下充电和放电特性的评价将实施例1-1和比较例1-1的锂电池各自在25℃下以0.1c倍率的恒定电流充电,直到电压达到4.30v(相对于li),然后,在保持4.30v的恒定电压的同时,以0.05c倍率的电流切断充电过程。随后,以0.1c倍率的恒定电流对每个锂电池放电,直到电压达到2.8v(相对于li)(形成操作,第一次循环)。将在形成操作的第一次循环之后的每个锂电池在25℃下以0.2c倍率的恒定电流充电,直到电压达到4.30v(相对于li),然后,在保持4.30v的恒定电压的同时,以0.05c倍率的电流切断充电过程。随后,以0.2c倍率的恒定电流对每个锂电池放电,直到电压达到2.8v(相对于li)(形成操作,第二次循环)。将在形成操作的第二次循环之后的每个锂电池在25℃下以0.5c倍率的恒定电流充电,直到电压达到4.30v(相对于li),然后,在保持4.30v的恒定电压的同时,以0.05c倍率的电流切断充电过程。随后,以1.0c倍率的恒定电流对每个锂电池放电,直到电压达到2.75v(相对于li),并且重复该充电和放电循环250次。在所有充电和放电循环中,在每次充电/放电循环结束时有10分钟的休息时间。充电和放电实验结果的一部分显示在下面的表3和图5中。使用下面的等式3定义第250次循环的容量保持率:等式3容量保持率=[第250次循环的放电容量/第1次循环的放电容量]×100表3第250次循环的放电容量[mah/g]第250次循环的容量保持率[%]实施例1-117184比较例1-115477如表3和图5所示,包含根据本公开的实施方式的添加剂的实施例1-1的锂电池,与不含这种添加剂的比较例1-1的锂电池相比,在室温下表现出显著增强的放电容量和寿命特性。评价例4:在4.30v和高温(45℃)下充电和放电特性的评价除了将充电和放电温度改变为45℃之外,使用与评价例3中使用的相同的方法评价实施例1-1和比较例1-1的锂电池的充电和放电特性。并且,将充电和放电循环次数改变为200次循环。充电和放电实验结果的一部分显示在下面的表4和图6中。使用下面的等式4定义第200次循环的容量保持率:等式4容量保持率=[第200次循环的放电容量/第1次循环的放电容量]×100表4第200次循环的放电容量[mah/g]第200次循环的容量保持率[%]实施例1-118990比较例1-117484如表4和图6所示,包含根据本公开的实施方式的添加剂的实施例1-1的锂电池,与不含这种添加剂的比较例1-1的锂电池相比,在高温下表现出显著增强的放电容量和寿命特性。评价例5:高温(60℃)稳定性评价如下对实施例1-1至3-1和比较例1-1的锂电池进行第一次充电和放电循环。在25℃下以0.5c倍率的恒定电流对每个锂电池充电,直到电压达到4.3v,然后,在保持4.3v的恒定电压时,对每个锂电池充电直到电流达到0.05c,然后以0.5c倍率的恒定电流放电,直到电压达到2.8v。如下对每个锂电池进行第二次充电和放电循环。以0.5c倍率的恒定电流对每个锂电池充电,直到电压达到4.3v,然后,在保持4.3v的恒定电压的同时,对每个锂电池充电直到电流达到0.05c,然后以0.2c倍率的恒定电流放电,直到电压达到2.8v。如下对每个锂电池进行第三次充电和放电循环。以0.5c倍率的恒定电流对每个锂电池充电,直到电压达到4.3v,然后,在保持4.3v的恒定电压的同时,对每个锂电池充电直到电流达到0.05c,然后以0.2c倍率的恒定电流放电,直到电压达到2.80v。第3次循环的放电容量视为标准容量。如下对每个锂电池进行第四次充电和放电循环。以0.5c倍率对每个锂电池充电,直到电压达到4.30v,然后,在保持4.30v的恒定电压的同时,对每个锂电池充电直到电流达到0.05c,将充电的电池在60℃的烘箱中储存10天和30天,然后将电池从烘箱中取出,然后以0.1c倍率放电,直到电压达到2.80v。充电和放电评价结果的一部分显示在下表5中。使用下面的等式5定义高温储存后的容量保持率:等式5高温储存后的容量保持率[%]=[第4次循环的高温放电容量/标准容量]×100(本文中,标准容量为第3次循环的放电容量)表5储存10天后的容量保持率[%]储存30天后的容量保持率[%]实施例3-19187比较例1-19086如表5中所示,包含根据本公开的实施方式的有机电解质溶液的实施例3-1的锂电池,与不含本发明的有机电解质溶液的比较例1-1的锂电池相比,表现出显著增强的高温稳定性。评价例6:高温(60℃)储存后的直流内部电阻(dc-ir)评价使用以下方法在室温(25℃)下测量放置在60℃的烘箱中之前、在60℃的烘箱中储存10天之后以及在60℃的烘箱中储存30天之后的实施例1-1至3-1和比较例1-1的每个锂电池的dc-ir。如下对每个锂电池进行第一次充电和放电循环。以0.5c的电流对每个锂电池充电,直到电压达到50%soc(充电状态),以0.02c切断充电过程,然后将每个锂电池静置10分钟。随后,对每个锂电池进行以下处理:以0.5c的恒定电流放电30秒,然后静置30秒,并且以0.5c的恒定电流充电30秒,然后静置10分钟;以1.0c的恒定电流放电30分钟,然后静置30秒,并且以0.5c的恒定电流充电1分钟,然后静置10分钟;以2.0c的恒定电流放电30秒,然后静置30秒,并且以0.5c的恒定电流充电2分钟,然后静置10分钟;以3.0c的恒定电流放电30秒,然后静置30秒,并且以0.5c的恒定电流充电2分钟,然后静置10分钟。在每个c-倍率下30秒的平均电压降低值是直流电压值。由测量的初始直流内部电阻和高温存储之后的直流内部电阻计算的直流内部电阻增加的一部分显示在下表6中。直流内部电阻增加由下面的等式6表示:等式6直流内部电阻增加[%]=[高温储存后的直流内部电阻/初始直流内部电阻]x100表6如表6所示,包含根据本公开的实施方式的有机电解质溶液的实施例3-1的锂电池,与不含该有机电解质溶液的比较例1-1的锂电池相比,在高温储存之后表现出直流内部电阻增加的降低。锂电池的制造(实施例a1至a11、参照例a1至a5和比较例a1至a3)实施例a1:ncm,ni60+sei-13160.5wt%阳极的制造将98wt%的人造石墨(由tianjinbtrnewenergytechnologyco.,ltd.制造的bsg-l)、1.0wt%的作为粘合剂的sbr(由zeon制造)和1.0wt%的cmc(由nippona&l制造)混合在一起,将混合物加入蒸馏水中,并使用机械搅拌器搅拌所得溶液60分钟以制备阳极活性物质浆料。使用刮片将阳极活性物质浆料涂覆到厚度为10μm的cu集电器上至约60μm的厚度,并且将集电器在100℃的热空气干燥器中干燥0.5小时,然后在120℃下进一步真空干燥4小时,并进行辊压,从而完成阳极板的制造。阴极的制造将97.45wt%的li1.02ni0.60co0.20mn0.20o2、0.5wt%的作为导电物质的粉末型人造石墨(由timcal制造的sfg6)、0.7wt%的炭黑(由ecp制造的科琴黑)、0.25wt%的改性丙烯腈橡胶(由zeon公司制造的bm-720h)、0.9wt%的pvdf(由solvay制造的s6020)和0.2wt%的pvdf(由solvay制造的s5130)混合在一起,将混合物添加到作为溶剂的n-甲基-2-吡咯烷酮中,并用机械搅拌器搅拌所得溶液30分钟,以制备阴极活性物质浆料。使用刮片将阴极活性物质浆料涂覆到厚度为20μm的铝(al)集电器上至约60μm的厚度,并且将集电器在100℃的热空气干燥器中干燥0.5小时,然后在120℃下进一步真空干燥4小时,并进行辊压,从而完成阴极板的制造。使用厚度为14μm、阴极侧涂有陶瓷的聚乙烯隔板和根据实施例3制备的有机电解质溶液来完成锂电池的制造。实施例a2:ncm,ni60+sei-13160.7wt%除了使用根据实施例6制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a3:ncm,ni60+sei-13161wt%除了使用根据实施例1制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a4:ncm,ni60+sei-13161.5wt%除了使用根据实施例7制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a5:ncm,ni60+sei-13163wt%除了使用根据实施例9制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a6:ncm,ni88+sei-13161wt%除了使用li1.02ni0.88co0.08mn0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例1的电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a7:nca,ni88+sei-13160.5wt%除了使用li1.02ni0.88co0.08al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质之外,以与实施例a1相同的方式制造锂电池。实施例a8:nca,ni88+sei-13160.7wt%除了使用li1.02ni0.88co0.08al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例6的电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a9:nca,ni88+sei-13161wt%除了使用li1.02ni0.88co0.08al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例1的电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a10:nca,ni88+sei-13163wt%除了使用li1.02ni0.88co0.08al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用根据实施例9制备的电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。实施例a11:nca,ni91+sei-13161wt%除了使用li1.02ni0.91co0.05al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例1的电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。参照例a1:ni55+sei-13161wt%除了使用li1.02ni0.55co0.25mn0.20o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例1的电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。参照例a2:ncm,ni60+sei-13160.2wt%除了使用根据实施例4制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。参照例a3:ncm,ni60+sei-13165wt%除了使用根据实施例10制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。参照例a4:nca,ni88+sei-13160.2wt%除了使用li1.02ni0.88co0.08al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用根据实施例4制备的电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。参照例a5:nca,ni88+sei-13165wt%除了使用li1.02ni0.88co0.08al0.04o2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例10的电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。比较例a1:ni60+sei-13160wt%除了使用根据比较例1制备的有机电解质溶液代替实施例3的有机电解质溶液之外,以与实施例a1相同的方式制造锂电池。比较例a2:lco,ni00+sei-13161wt%除了使用licoo2代替li1.02ni0.60co0.20mn0.20o2作为阴极活性物质,以及使用实施例1的有机电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。比较例a3:ncm+lmo+sei-13161wt%除了使用重量比为1:1的lini1/3co1/3mn1/3o2和limn2o4的混合物代替li1.02ni0.85co0.10mn0.05o2作为阴极活性物质,以及使用实施例1的有机电解质溶液作为电解质溶液之外,以与实施例a1相同的方式制造锂电池。评价例a1:4.25v和室温(25℃)下的充电/放电特性的评价使用与评价例1中使用的相同的方法评价根据实施例a1至a11、参照例a1至a5和比较例a1至a3制造的锂电池的充电/放电特性。充电和放电实验结果的一部分显示在下表a1中。使用下面的等式1定义第380次循环的容量保持率:等式1容量保持率=[第380次循环的放电容量/第1次循环的放电容量]×100表a1第380次循环的容量保持率[%]实施例a1(ncm,ni60+sei-13160.5wt%)94实施例a2(ncm,ni60+sei-13160.7wt%)94实施例a3(ncm,ni60+sei-13161wt%)95实施例a4(ncm,ni60+sei-13161.5wt%)95实施例a5(ncm,ni60+sei-13163wt%)93实施例a6(ncm,ni88+sei-13161wt%)94实施例a7(nca,ni88+sei-13160.5wt%)93实施例a8(nca,ni88+sei-13160.7wt%)94实施例a9(nca,ni88+sei-13161wt%)94实施例a10(nca,ni88+sei-13163wt%)92实施例a11(nca,ni91+sei-13161wt%)93参照例a1(ncm,ni55+sei-13161wt%)90参照例a2(ncm,ni60+sei-13160.2wt%)92参照例a3(ncm,ni60+sei-13165wt%)93参照例a4(nca,ni88+sei-13160.2wt%)93参照例a5(nca,ni88+sei-13165wt%)91比较例a1(ncm,ni60+sei-13160wt%)85比较例a2(lco,ni00+sei-13161wt%)83比较例a3(ncm+lmo+sei-13161wt%)85如表a1中所示,与包含具有低镍含量或不含添加剂的阴极活性物质的比较例a1至a3的锂电池相比,本公开的包含添加剂和具有高镍含量的阴极活性物质的实施例a1至a11的锂电池在室温下表现出显著增强的寿命特性。此外,各自包含一定量的添加剂的实施例a1至a11的锂电池,与各自包括在一定范围外的量的添加剂的参照例a2至a5的锂电池相比,在室温下表现出更加增强的寿命特性。评价例a2:高温(60℃)储存后的直流-内部电阻(dc-ir)评价使用与评价例6中使用的相同的方法测量实施例a1至a11、参照例a1至a5和比较例a1至a3的锂电池的高温储存后的dc-ir。通过使用测量的初始dc-ir和在高温储存后测量的dc-ir计算获得的dc-ir增加的一部分显示在下表a2中。dc-ir增加由下面的等式6表示:等式6直流内部电阻增加[%]=[高温储存后的直流内部电阻/初始直流内部电阻]×100表a2如表a2所示,本公开的包含添加剂和具有高镍含量的阴极活性物质的实施例a1至a11的锂电池显示出比包括具有低镍含量且不含添加剂的阴极活性物质的比较例a1至a3的每个锂电池更低的dc-ir增加。此外,包含一定量的添加剂的实施例a1至a11的锂电池表现出比包含一定范围外的量的添加剂的参照例a1至a5的每个锂电池更低的dc-ir增加。从前面的描述中显而易见的是,包括具有高镍含量的锂过渡金属氧化物的阴极和含有新型双环硫酸酯基添加剂的有机电解质溶液的锂电池可以表现出增强的高温特性和寿命特性。通过总结和回顾,当锂电池在高工作电压下运行时,对锂有高度反应性的含水电解质溶液可能不适合用于这种锂电池。锂电池通常使用有机电解质溶液。通过将锂盐溶解在有机溶剂中来制备有机电解质溶液。可以使用在高电压下具有稳定性、高离子电导率、高介电常数和低粘度的有机溶剂。当锂电池使用包括基于碳酸酯的极性非水溶剂的一般有机电解质溶液时,可能在初始充电期间发生由于阳极/阴极和有机电解质溶液之间的副反应导致的过度使用电荷的不可逆反应。由于这种不可逆反应,可以在阳极的表面上形成钝化层,例如固体电解质界面(sei)层。另外,在阴极的表面形成保护层。在这方面,使用现有有机电解质溶液形成的sei层和/或保护层可能容易降解。例如,这种sei层和/或保护层可在高温下表现出降低的稳定性。因此,期望能够形成具有改善的高温稳定性的sei层和/或保护层的有机电解质溶液。本发明的多个实施方式提供一种锂电池,其包括:阴极,所述阴极包括具有高镍含量的锂过渡金属氧化物;和有机电解质溶液,所述有机电解质溶液包括新型基于双环硫酸酯的添加剂。根据实施方式的锂电池表现出增强的高温特性和寿命特性。本文已经公开了示例性实施方式,并且虽然采用了特定术语,但是它们仅以一般性和描述性意义被使用和解释,而不是出于限制的目的。在一些情况下,在提交本申请时对本领域普通技术人员将显而易见的是,结合特定实施方式描述的特征、特点和/或要素可以单独使用,或者与结合其他实施方式描述的特征、特点和/或要素组合使用,除非另外明确指出。因此,本领域技术人员应理解,在不背离所附权利要求中阐述的其精神和范围的情况下,可以在形式和细节上作出各种改变。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1