一种ALD结合银纳米线增强法制备高性能ZnO薄膜紫外探测器的方法与流程

文档序号:23795799发布日期:2021-02-02 09:13阅读:349来源:国知局
一种ALD结合银纳米线增强法制备高性能ZnO薄膜紫外探测器的方法与流程
一种ald结合银纳米线增强法制备高性能zno薄膜紫外探测器的方法
技术领域
[0001]
本发明涉及一种ald结合银纳米线增强法制备高性能zno薄膜紫外探测器的方法,属于光电器件技术领域。


背景技术:

[0002]
zno有优异的材料性能,且其化学性质稳定、热性能稳定,成本低,国内外研究人员对其展开了大量研究。初始阶段,zno材料的制备方法不稳定,使制得的zno基紫外探测性能也比较低。之后随着研究的进行,制备方法逐渐多样化,器件结构也开始多样化,紫外探测性能有了大幅提高。但因zno材料因结构原因,内部易产生大量缺陷与氧空位,为n型本征半导体,其p型半导体难以制备。国内外研究人员对此进行了大量研究,其制备的紫外探测器结构主要分为肖特基型光电二极管、p-n结型光电二极管、金属-半导体-金属(msm)型和光电导型。
[0003]
由p型半导体和n型半导体组成p-n结结构,实现紫外光响应。p-n结紫外光探测器通常具有整流性,暗电流小以及可以零偏压响应等优点,但因zno的p型掺杂难以实现,且工艺复杂不稳定,目前多为p-n异质结结构的紫外探测器,性能还不高。
[0004]
肖特基结构的探测器响应快,紫外可见抑制比大且能实现零偏压响应。因其肖特基结构存在内置电场,所以允许在该类型的紫外探测器在没有外部电源的情况下在紫外辐照下分离耗尽层中产生的光生载流子。此结构与p-n结相似,也有单向导通的特性,可以表现出整流性,其肖特基势垒的高度对器件的紫外光响应性存在影响,合适的肖特基势垒高度能够较好的表现出其整流特性。但调整器件的肖特基势垒多数只能调整器件的材料的方法来实现,通过材料来调整功函数,如石墨烯与zno、导电聚合物与zno,au/cr与zno等,很难通过工艺与技术手段加以进行调整。
[0005]
msm结构的紫外光探测器的实现主要由电极的肖特基接触实现,其结构简单,集成度高,且响应速率极快。这是因为用光刻法制备的电极间距很小,基本上在微米量级,极大地提高了器件的响应速率,一般能达到ms甚至ns级别,但其响应率不高。
[0006]
在所有zno基紫外光探测器的结构中,光导体探测器最为简单,该种探测器的性能更多的表现在材料和材料结构本身的性能。当半导体中价带中的电子被激发,光生载流子产生,器件的电阻也会随之发生变化,在工作偏压下,电阻变小,器件电流变大,及光生电流变大。光导体探测器的响应率较高,但其光敏性较差,紫外可见抑制比低,且其响应速率较慢。
[0007]
因此zno基紫外探测器的应用还存在一定困难。
[0008]
针对上述缺点也常对zno薄膜材料进行一些处理,对zno薄膜进行快速热退火等。除此以外,对半导体薄膜进行修饰的方式也能在一定程度上实现器件性能的提升,而金属纳米结构的表面等离子激元效应也是当下研究比较多的方向,其所表现的金属纳米结构在表面区域的自由电子和光子相互作用的形成的电磁振荡理论上能够起到提高器件光电性
能的效果。
[0009]
通过多元醇法制备的ag纳米线材料尺寸处于纳米级别,参数丰富可调,长径比可选择范围大,且不会对光线起到阻碍效果,影响探测器响应效率。从而可以通过调整ag纳米线的尺寸来调整其共振峰频率,达到在一定范围内控制紫外探测器截止边的目的,提高紫外可见响应比。
[0010]
选择合适的制备zno薄膜材料的方法是提高zno薄膜材料质量的一种有效手段。目前,制备zno薄膜的方法有很多,例如磁控溅射法,脉冲激光沉积法(pld),喷雾热分解法,电化学沉积法,溶胶凝胶法,水热法,原子层沉积法(ald)等。总体来说,磁控溅射法与pld法是制备高质量zno基薄膜的较为合适的方法,但磁控溅射法往往需要较为复杂的真空设备,生产成本比较高;且其靶材制备工艺复杂且成分控制比较难,生产效率较低,其成膜面积往往会受到限制。溶胶凝胶法,喷雾热分解法和电化学沉积法制备zno薄膜的成本较低,但其制备的zno薄膜的质量较差,其工艺还需要进一步改进。原子层沉积(ald)技术可以通过各种不同的前驱体源来实现不同材料的薄膜气相沉积。因为原子层沉积有连续的自限制反应的特点,有很好的保型性,能实现很精确的厚度控制,并可以通过不同工艺参数来调节薄膜质量,适合于高质量的zno基紫外探测器的设计制造。


技术实现要素:

[0011]
为解决zno基薄膜紫外探测器目前响应较小,紫外可见抑制比小的缺点,本发明提供了一种ald结合银纳米线增强法制备高性能zno薄膜紫外探测器的方法,采用的技术方案如下:
[0012]
本发明的目的在于提供一种ald结合银纳米线增强法制备高性能zno薄膜紫外探测器的方法,该方法包括如下步骤:
[0013]
步骤一:在硅片基板上涂覆一层分布均匀的ag纳米线层;
[0014]
步骤二:采用原子层沉积法在ag纳米线层上沉积制备zno薄膜,经热处理后获得银纳米线/zno薄膜结构;
[0015]
步骤三:在银纳米线/zno薄膜结构上制备电极结构,获得zno薄膜紫外探测器。
[0016]
优选地,步骤一是通过在硅片基板上涂覆浓度为0.05wt%-0.3wt%的ag纳米线墨水形成一层分布均匀的ag纳米线层。
[0017]
优选地,步骤一所述涂覆是在旋涂条件下向清洗并干燥后的硅片基板上滴加纳米线墨水,使ag纳米线墨水覆盖整个基板,并继续旋涂至基板上的ag纳米线墨水分布均匀,烘干。
[0018]
更优选地,所述滴加纳米线墨水是在40r/min~60r/min(优选为50r/min)的旋涂条件下进行的;所述继续旋涂至基板上的ag纳米线墨水分布均匀是在1500r/min~2500r/min(优选为2000r/min)的旋涂条件下进行的。
[0019]
优选地,步骤一所述ag纳米线层采用单层堆叠,银纳米线直径尺寸为30nm-120nm;步骤二所述zno薄膜由100-1000个沉积循环形成20-200nm的厚度。
[0020]
优选地,步骤二所述原子层沉积法是利用原子层沉积设备,将经过步骤一处理后的硅片基板放置于原子层沉积设备反应腔内,在以二乙基锌获二甲基锌为锌源、以过氧化氢或水为氧源、以n2为载气和吹扫气体、沉积反应温度为100℃-200℃的条件下进行沉积反
应,沉积反应过程中将作为前驱体的锌源和氧源交替地脉冲进入ald反应腔室。
[0021]
优选地,步骤三所述热处理是以5℃/min的速度升温至热处理温度500℃-800℃,然后保温10-50min。
[0022]
优选地,步骤三所述电极为金电极、银电极、铂电极、铝电极或钛电极。
[0023]
优选地,步骤三是在ag纳米线/zno薄膜结构上用光刻方法制作掩膜图案,再用蒸镀法蒸镀金属电极,蒸镀后将掩膜图案清除,即得具有金属电极的光导体紫外探测器结构;或者是在ag纳米线/zno薄膜结构上施加紧密贴合的掩膜板,再用蒸镀法蒸镀金属电极,蒸镀后再将掩膜取下或清除,即得具有金属电极的光导体紫外探测器结构。
[0024]
更优选地,所述蒸镀金属电极的厚度为10nm-20nm。
[0025]
本发明有益效果:
[0026]
本发明提供了一种银纳米线增强的高性能zno薄膜紫外探测器的制备方法,该方法是将银纳米结构引入,并采用ald法制备zno薄膜,进而获得了具有等离子激元增强效果的zno基紫外探测器。其中ag纳米线层起到引入银纳米结构,增强zno薄膜的作用,使得zno基紫外探测器具有等离子激元增强效果,该ag纳米线层可以采用旋涂工艺制备,旋涂工艺操作简单,制备的ag纳米线层厚度均一,ag纳米线分布均匀。本发明中zno薄膜采用了原子层沉积(ald)制备,原子层沉积(ald)是一种允许原子一层层生长的薄膜沉积技术,原子层沉积有连续的自限制反应的特点,所以高深宽比结构来说有很优异的保型性,能实现很精确的厚度控制,并可以通过不同沉积循环数下来调节薄膜厚度,实现了在ag纳米线层之上形成了有良好保型性的zno薄膜,克服了zno薄膜探测器结构不能精确可控的技术难题。此外,为改善zno复合结构薄膜材料的性能,得到表面有等离子激元增强效果的银纳米结构,还对其进行热处理,并且在以5℃/min的速度升至热处理温度500-800℃,保温10-50min条件下可以改善zno复合结构薄膜材料的光电性能,如降低紫外探测器的暗电流至na级别,降低了106倍,使银纳米线层热处理后形貌发生变化,由长线状变为棒状,使等离子激元效应增强,提高探测器的的光响应度与紫外可见比。通过对比zno薄膜探测器与增强型zno薄膜探测器光电性能与其最优响应波长,发现增强型zno薄膜探测器在暗电流保持在na级别的同时,光响应电流比zno薄膜探测器最高值提高了十倍,光响应值提高了100倍左右;对紫外区域的最强响应波段则发生了蓝移,紫外可见抑制比和光响应速率也有了极大的提高;说明纳米ag结构的表面等离子激元效应,确实有效增强了zno薄膜探测器的光电性能。本发明方法制备的增强的zno薄膜紫外探测器可有效探测紫外波段的响应光,是紫外探测器的核心组件,紫外探测技术可以应用在航空航天、宇宙探索、民用监测等各领域中。
附图说明
[0027]
图1为本发明ag纳米线/zno的复合结构紫外光探测器示意图;
[0028]
图2为不同ag纳米线墨水旋涂的ag纳米线层的涂覆形貌;图中(a)0.1wt%浓度,(b)0.2wt%浓度;
[0029]
图3为热处理前后的ag纳米线/zno层形貌;图中(a)热处理前,(b)热处理后;
[0030]
图4为不同ald沉积厚度对ag纳米线/zno薄膜紫外探测器的光电性能对比;图中(a)暗电流,(b)光电流,(c)光响应度与光暗电流比,(d)光探测值;
[0031]
图5为紫外探测器对不同波长光照的响应;图中(a)zno薄膜紫外探测器,(b)ag纳
米线/zno薄膜紫外探测器;
[0032]
图6为zno薄膜探测器与ag纳米线/zno薄膜紫外探测器的i-t曲线。
具体实施方式
[0033]
下面结合具体实施例对本发明做进一步说明,但本发明不受实施例的限制。
[0034]
实施例1
[0035]
本实施例针对zno基薄膜紫外探测器目前响应较小,紫外可见抑制比小的缺点,用ald方法制备zno薄膜,并引入ag纳米结构,提高zno基薄膜紫外探测器的光电性能。本发明ag纳米线/zno的复合结构紫外光探测器示意图如图1所示。制备方法按照如下步骤进行:
[0036]
1旋涂法制备ag纳米线层
[0037]
ag纳米线层采用旋涂工艺制备,旋涂工艺操作简单,制备的ag纳米线层厚度均一,ag纳米线分布均匀。ag纳米线层制备具体试验步骤如下:
[0038]
(1)将硅片基板材料切割到15
×
15mm大小,然后依次采用无水乙醇、丙酮、无水乙醇超声清洗,超声处理时间15min,干燥待用;
[0039]
(2)将硅片基板放置在kw-4a台式匀胶机上,在50r/min(40r/min~60r/min之间均可)旋涂条件下采用1ml针管滴加ag纳米线墨水,旋涂时间为20s,使ag纳米线墨水覆盖整个基板;银纳米线墨水浓度为0.05wt%-0.3wt%;
[0040]
(3)在2000r/min(1500r/min~2500r/min之间均可)的旋涂条件下旋涂40s,使基板上的ag纳米线墨水分布均匀,同时去除大部分溶剂;
[0041]
(5)将上述得到的硅片基板放置于加热台下烘干,使乙醇充分挥发,即得到涂覆在硅片基板上的ag纳米线层(银纳米线/zno薄膜结构)。
[0042]
2ald法制备zno薄膜,得到ag纳米线/zno薄膜复合结构
[0043]
原子层沉积(ald)是一种允许原子一层层生长的薄膜沉积技术。原子层沉积有连续的自限制反应的特点,所以高深宽比结构来说有很优异的保型性,能实现很精确的厚度控制,并可以通过不同工艺参数来调节薄膜质量。适合制备高质量的zno基紫外探测器的设计制造ald法制备zno薄膜具体试验步骤如下:
[0044]
(1)打开设备控制电源,真空泵电源,加热系统电源以及设备控制软件,将savannah100&200原子层沉积设备预热,将ald阀,前驱体管路,以及反应腔温度都调整到设定的预热温度150℃,打开吹扫气阀,以n2为载气和吹扫气体。
[0045]
(2)将硅片基板放置于设备反应腔内,密闭反应腔,抽真空,使实时真空测量时的曲线稳定到0.1torr(1torr=133.322pa)以下。
[0046]
(3)稳定载气气流,将载气气流稳定在20sccm(1sccm=1ml/min)左右。设定吹扫程序,在未打开ald源阀时,循环吹扫,待真空测量曲线稳定。
[0047]
(4)打开ald源阀,将作为前驱体的锌源dezn和h2o2气态氧源交替地脉冲进入ald反应腔室进行沉积反应,以锌源和氧源交替脉冲进入ald反应腔室一次为一个沉积循环,每个沉积循环通入锌源的时间为80ms、通入氧源的时间为80ms,每个沉积循环中锌源的吹扫时间为8s、氧源的吹扫时间为8s,循环次数为100-1000个沉积循环(每沉积循环厚度gpc约为0.194nm/cycle)、沉积反应温度为100℃-200℃;其中以二乙基锌或二甲基锌为锌源、以水或过氧化氢h2o2为氧源。
[0048]
(5)开始试验,试验过程中时刻观察使载气气流量一直稳定在20sccm(1sccm=1ml/min)左右。
[0049]
(6)待试验完成后,关闭ald源阀,打开反应腔,取出试样,关闭反应腔,再次抽真空到0.1torr以下。
[0050]
(7)稳定载气气流,将载气气流稳定在20sccm左右。设定吹扫程序,在未打开ald源阀时,循环吹扫,待真空测量曲线稳定后,关闭吹扫气阀,关闭载气阀,关闭设备控制电源,关闭真空泵,关闭加热系统,关闭控制软件。
[0051]
3薄膜材料的热处理工艺
[0052]
为改善zno复合结构薄膜材料的性能,得到表面有等离子激元增强效果的银纳米结构,对其进行热处理,以5℃/min的速度升至热处理温度500-800℃,保温30min。
[0053]
4模板法制备光导体紫外探测器(可制备的紫外探测器电极结构的一种)
[0054]
制备好ag纳米线/zno薄膜结构(银纳米线/zno薄膜结构)后,在ag纳米线/zno薄膜结构上用光刻方法制作掩膜图案,再用蒸镀法蒸镀金属电极,蒸镀后将掩膜图案清除(如化学法洗掉),即得具有金属电极的光导体紫外探测器结构;或者是在ag纳米线/zno薄膜结构上施加紧密贴合的掩膜板,再用蒸镀法蒸镀10-20nm的金属电极,蒸镀后再将掩膜取下或清除,即得具有金属电极的光导体紫外探测器结构。
[0055]
为说明本发明所能获得的效果,进行了如下实验:
[0056]
一、本实验分别考察了ag纳米线墨水在0.1wt%浓度和0.2wt%浓度进行旋涂操作时的ag纳米线层的涂覆形貌,如图2所示。从图2中可知:在合适的银纳米线墨水浓度下旋涂法能使ag纳米线在基板上分布均匀,基本上为单层分布,能较好的制备所需要的银纳米线层。
[0057]
二、本实验考察了热处理前后的ag纳米线/zno层形貌,结果如图3所示。从图3可知:银纳米线层热处理后形貌发生变化,由长线状变为棒状,因当银纳米结构长度方向尺寸与入射光波长接近时,能更好的引入等离子激元效应,且变为棒状后能改善该结构电学性能,暗电流为na级别,满足紫外探测器的使用要求。
[0058]
三、对于紫外探测器,光响应度(r)与光探测值(d*)都是评定其光探测性能非常重要的的指标。其中光响应度(r)可以定义为单位光功率及单位面积下产生的光电流,由如下公式计算:
[0059]
r=i
ph
/ps
ꢀꢀꢀ
(1)
[0060]
公式1中,r是光响应度;i
ph
是光电流(i
ph
=i
light-i
dark
);p为激发光的功率,s为光探测器沟道中的有效激发面积。
[0061]
材料的光探测性能一般会受到暗电流的噪音、琼森噪音和热震动噪音这三种噪音的影响,而通常暗电流的噪音会引起主要影响,一般光探测值(d*)能表征器件的灵敏度,按照如下公式计算:
[0062]
d*=r[a/(2ei
d
)]
1/2
ꢀꢀꢀ
(2)
[0063]
公式2中,d*是光探测值;r是光响应度;a为光电晶体管的沟道有效光激发面积;e是基本电荷常数;i
d
是暗电流大小。
[0064]
抑制比及是指器件在峰值的响应度与噪音波长(可见波段)响应度的比值,也是衡量紫外探测器性能的一个重要指标,可称为紫外/可见抑制比,抑制比越高,说明器件甄别
紫外波段响应的能力越强。
[0065]
暗电流为器件在暗态下检测到的电流,其主要是材料本身缺陷与扩散的载流子等原因引起,是器件噪声的体现。光电流与暗电流之比越大说明该探测器的工作状态更敏感。
[0066]
因此就以光响应度(r),光探测值(d*)以及光暗电流之比这三方面综合评比zno基薄膜探测器光电性能。对比zno探测器与ag纳米线/zno增强型探测器性能。
[0067]
(1)zno厚度参数下的光电性能对比
[0068]
将zno薄膜探测器(不含有ag纳米线结构)与ag纳米线/zno薄膜增强型探测器在100,200,300,400,500不同ald沉积循环厚度(每循环增长的厚度gpc为0.194nm/cycle)下的光电性能做对比。由图4(a)可以看到,zno薄膜探测器与ag纳米线/zno薄膜增强型探测器都在na级别,都能较好满足暗电流的要求,而图4(b)中增强型紫外探测器明显要比zno探测器高很多。可以看到随着zno薄膜厚度的增加,zno薄膜探测器光响应度先增高,再减小,在300个循环厚度时综合性能最好,有最高的响应度为13.3a/w,存在最大的光探测值为9.7
×
109jones,在300个循环厚度时,光暗电流比达到47。而随着zno薄膜厚度的增加,ag纳米线/zno薄膜增强型探测器光响应度先增高,再减小,再增大,其暗电流都处于na级别,且其光电流都处于ma级别,且在400个循环厚度时,光响应度为120.7a/w,且此时光探测值为3.47
×
10
11
jones,最高。光暗电流比也最高为6700倍。
[0069]
ag纳米线/zno薄膜增强型探测器比普通的zno薄膜增强型探测器,有效的提高了近10倍的光响应值,且光暗电流比提高了142倍,性能显著提升。
[0070]
(2)对不同波长光照的响应对比
[0071]
对比zno薄膜探测器(不含有ag纳米线结构)与ag纳米线/zno薄膜增强型探测器在不同入射波长(300-600nm波长)下的光电响应,如图5所示。如图5(a)zno薄膜紫外/可见抑制比可达189倍,有着较高的抑制比,因此虽然zno薄膜探测器在可见光区域有一个较小的响应带,但仍有比较可观的抑制比。结合各个参数整体评价,发现该zno薄膜紫外探测器,对365nm波段的光的响应度最高,光探测值最大,及灵敏度最高。图5(b)所示,光响应度最高为波长为350nm的光照时,为131a/w。增强型zno紫外探测器在350nm左右达到一个最高的光响应。且紫外/可见抑制比可达1824倍,有着极高的抑制比。因此增强型紫外探测器比zno紫外探测器的最大响应波长发生了蓝移,此时紫外可见抑制比提高了十倍,探测器性能得到大大提高。
[0072]
(3)响应速率的对比
[0073]
对比zno薄膜探测器(不含有ag纳米线结构)与ag纳米线/zno薄膜增强型探测器的光响应速率i-t曲线,如图6所示。由图6可以看到,zno薄膜的紫外探测器的响应上升和下降时间均大于400s,响应速率极慢。这是因为zno薄膜在ald生长时往往内部存在大量缺陷,表面存在大量氧空位,虽然热处理后在一定程度上改善了内部缺陷,减小了氧空位数量,提高了薄膜质量,但其内部的缺陷与氧空位仍阻碍了光生载流子的发生与复合,因此在光开启状态下,光生载流子不能被马上激发出来,光关闭下光生载流子不能马上与空穴发生复合,使光响应速率极慢。这种现象,也是zno材料独有的弛豫现象。再加了ag纳米线结构后,其响应速率大大上升,上升约100s左右,下降时间约15s左右,据推测这可能是因为ag的引入能够提高载流子产生与复合后的传输速度,进而提高了响应速率。总体来说响应速率还是比较慢的。器件响应速度较慢可能是受到了多种因素的影响,最主要的就是因为实验中采用
的结构为光电导型器件。该结构能更好的反映ag纳米线/zno复合结构的增强效果,影响因素少,但由于没有结效应,这种结构是几种光电探测器中速度最慢的一种,而且相较于前面讨论的叉指状电极的msm结构的光电导型器件,条状电极的光电导型器件的电极间距更大,导致载流子在材料内部迁移的距离大大增加,进一步加长了器件的响应时间,光响应速率慢是该探测器结构所决定的。
[0074]
通过上述(1)至(3)的实验对比了zno薄膜探测器与增强型zno薄膜探测器光电性能与其最优响应波长发现:增强型zno薄膜探测器在暗电流保持在na级别的同时,光响应电流比zno薄膜探测器最高值提高了十倍,光响应值提高了100倍左右。对紫外区域的最强响应波段则发生了蓝移,紫外可见抑制比和光响应速率也有了极大的提高。说明纳米ag结构的表面等离子激元效应,确实有效增强了zno薄膜探测器的光电性能。
[0075]
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1