垂直结构深紫外发光二极管及其制备方法与流程

文档序号:20611812发布日期:2020-05-06 19:39阅读:154来源:国知局
垂直结构深紫外发光二极管及其制备方法与流程

本发明涉及照明、显示和光通信技术领域,尤其涉及一种垂直结构深紫外发光二极管及其制备方法。



背景技术:

发光二极管(lightemittingdiode,led)具有体积小、效率高、寿命长等优点,在照明、显示和光通信领域具有广泛的应用前景。传统的发光二极管以蓝宝石为生长衬底。然而,由于蓝宝石衬底不导电,所以传统的发光二极管通常是采用电极在同一侧的横向结构。这种横向结构至少存在以下两个方面的缺点:一方面,电流在n型层中横向流动不等距,存在电流拥堵现象,导致发光二极管器件局部发热量较高,影响器件性能;另一方面,蓝宝石衬底的导热性较差,限制了发光二极管器件的散热,影响发光二极管器件的使用寿命。为了克服横向发光二极管器件的缺陷,现有技术中出现了垂直结构发光二极管。

然而,在现有的垂直结构发光二极管中,由于厚膜的限制,存在许多光学约束模式(confinedmode)。当电子注入、垂直结构发光二极管发光时,大部分出射光会被限制在发光二极管外延层的厚膜中,造成膜内传输、吸收,极大的降低了发光二极管的出光效率。

因此,如何提高发光二极管的电光转换效率,扩大发光二极管的应用领域,是目前亟待解决的技术问题。



技术实现要素:

本发明提供一种垂直结构深紫外发光二极管及其制备方法,用于解决现有技术中的深紫外发光二极管电光转换效率较低的问题,以扩大深紫外发光二极管的应用领域。

为了解决上述问题,本发明提供了一种垂直结构深紫外发光二极管,包括:

导电衬底,所述导电衬底具有第一表面以及与所述第一表面相对的第二表面;

外延层,位于所述导电衬底的第一表面,包括沿所述第二表面指向所述第一表面的方向依次叠置的p-型gan层、电子阻挡层、量子阱层和n-型algan层,所述外延层的厚度小于1微米;

n-型电极,位于所述外延层背离所述导电衬底的表面;

p-型电极,位于所述第二表面。

可选的,还包括:

透明钝化层,覆盖于所述外延层背离所述导电衬底的表面;

所述n-型电极沿垂直于所述导电衬底的方向贯穿所述透明钝化层,且与所述n-型algan层接触。

可选的,所述透明钝化层的材料为二氧化硅;

所述透明钝化层环绕所述n-型电极的外围分布。

可选的,还包括:

金属键合层,位于所述第一表面;

金属反射层,与所述金属键合层背离所述导电衬底的表面键合,所述外延层位于所述金属反射层表面。

可选的,所述金属键合层的材料为锡金合金,所述金属反射层、所述p-型电极和所述n-型电极的材料均为镍、金、银中的一种或两种以上的组合。

为了解决上述问题,本发明还提供了一种垂直结构深紫外发光二极管的制备方法,包括如下步骤:

形成初始外延层于一生长衬底表面,所述初始外延层包括沿垂直于所述生长衬底的方向依次叠置的缓冲层、非掺杂u-algan层、初始n-型algan层、量子阱层、电子阻挡层和p-型gan层;

形成一导电衬底,所述导电衬底包括第一表面以及与所述第一表面相对的第二表面;

以所述第一表面朝向所述初始外延层的方向键合所述生长衬底和所述导电衬底;

去除所述生长衬底、所述缓冲层和所述非掺杂u-algan层,并减薄所述初始n-型algan层,以减薄后的所述初始n-型algan层作为n-型algan层,形成包括沿所述第二表面指向所述第一表面的方向依次叠置的p-型gan层、电子阻挡层、量子阱层和n-型algan层的外延层,使得所述外延层的厚度小于1微米;

形成n-型电极于所述外延层背离所述导电衬底的表面,并形成p-型电极于所述第二表面。

可选的,形成初始外延层于一生长衬底表面的具体步骤包括:

提供一生长衬底;

沿垂直于所述生长衬底的方向依次沉积缓冲层、非掺杂u-algan层、初始n-型algan层、量子阱层、电子阻挡层和p-型gan层于所述生长衬底表面,形成初始外延层,所述初始外延层的厚度大于所述垂直结构深紫外发光二极管发射的光线的波长。

可选的,以所述第一表面朝向所述初始外延层的方向键合所述生长衬底和所述导电衬底的具体步骤包括:

形成金属键合层于所述第一表面;

形成金属反射层于所述初始外延层背离所述生长衬底的表面;

键合所述金属键合层和所述金属反射层。

可选的,形成n-型电极于所述外延层背离所述导电衬底的表面的具体步骤包括:

形成透明钝化层于所述外延层背离所述导电衬底的表面,所述透明钝化层中具有暴露所述n-型algan层的窗口;

形成与所述n-型algan层接触的n-型电极于所述窗口内。

可选的,所述透明钝化层的材料为二氧化硅;

所述透明钝化层环绕所述n-型电极的外围分布。

本发明提供的垂直结构深紫外发光二极管及其制备方法,通过形成包括p-型gan层、电子阻挡层、量子阱层和n-型algan层的外延层,使得发光二极管能够发射深紫外波长的光线;而且,将所述外延层的厚度设置为小于1微米,从而有效抑制了器件内部的波导模式,降低了器件的热效应,提高了器件的响应速度,且使得器件的电光转换效率显著提升,扩展了深紫外发光二极管的应用领域。

附图说明

附图1是本发明具体实施方式中垂直结构深紫外发光二极管的结构示意图;

附图2是本发明具体实施方式中垂直结构深紫外发光二极管的制备方法流程图;

附图3a-3j是本发明具体实施方式中在制备垂直结构深紫外发光二极管的过程中主要的工艺截面示意图。

具体实施方式

下面结合附图对本发明提供的垂直结构深紫外发光二极管及其制备方法的具体实施方式做详细说明。

本具体实施方式提供了一种垂直结构深紫外发光二极管,附图1是本发明具体实施方式中垂直结构深紫外发光二极管的结构示意图。如图1所示,本具体实施方式提供的垂直结构深紫外发光二极管,包括:

导电衬底10,所述导电衬底10具有第一表面以及与所述第一表面相对的第二表面;

外延层11,位于所述导电衬底10的第一表面,包括沿所述第二表面指向所述第一表面的方向依次叠置的p-型gan层111、电子阻挡层112、量子阱层113和n-型algan层114,所述外延层11的厚度d1小于1微米;

n-型电极12,位于所述外延层11背离所述导电衬底的表面;

p-型电极13,位于所述第二表面。

具体来说,所述导电衬底10的材料可以为金属材料,也可以为低阻硅材料,本领域技术人员可以根据实际需要进行选择。所述外延层11包括沿y轴正方向依次叠置于所述导电衬底10的所述第一表面的p-型gan层111、电子阻挡层112、量子阱层113和n-型algan层114。深紫外波长的光线自所述外延层11背离所述导电衬底10的一侧射出,即图1中的箭头方向表示所述垂直结构深紫外发光二极管发射的光线的方向。所述电子阻挡层112为p-型电子阻挡层,所述量子阱层113可以为ingan/gan多量子阱层。

在本具体实施方式中,在沿垂直于所述导电衬底10的方向上(即图1中的y轴方向上),所述n-型电极12与所述p-型电极13位于所述外延层11的相对两侧,使得电流几乎全部沿垂直方向流过所述外延层11,几乎没有横向(即图1中的x轴方向)流动的电流,提高了电注入效率。同时,将所述外延层11的厚度d1设置为小于1微米,使得所述垂直结构深紫外发光二极管不受约束模式的限制,深紫外发光二极管内部的波导模式被抑制,减少甚至是消除了发光二极管发出的光线在所述外延层11内部的传输,降低了内部的吸收损耗,从而实现了所述垂直结构深紫外发光二极管电光转换效率的显著提升,热效应的降低,以及响应速度的大幅度提升,使得所述垂直结构深紫外发光二极管可以作为发光器件和探测器件使用,用于显示、照明和光通信等领域。

可选的,所述垂直结构深紫外发光二极管还包括:

透明钝化层14,覆盖于所述外延层11背离所述导电衬底10的表面;

所述n-型电极12沿垂直于所述导电衬底10的方向贯穿所述透明钝化层14,且与所述n-型algan层114接触。

可选的,所述透明钝化层14的材料为二氧化硅;

所述透明钝化层14环绕所述n-型电极12的外围分布。

具体来说,光线自所述透明钝化层14向外射出。通过设置覆盖所述n-型algan层114的所述透明钝化层14,避免了在制造所述垂直结构深紫外发光二极管的过程中对所述外延层11的整体刻蚀(即形成台阶状结构),简化了所述垂直结构深紫外发光二极管的制造工艺,提高了所述垂直结构深紫外发光二极管的良率;同时,增大了所述垂直结构深紫外发光二极管整体的出光面积,从而进一步提高了所述垂直结构深紫外发光二极管的出光效率。本领域技术人员还可以根据实际需要选择其他透明绝缘材料形成所述透明钝化层14。

可选的,所述垂直结构深紫外发光二极管还包括:

金属键合层15,位于所述第一表面;

金属反射层16,与所述金属键合层15背离所述导电衬底10的表面键合,所述外延层11位于所述金属反射层16表面。

可选的,所述金属键合层15的材料为锡金合金或者金属铟,所述金属反射层16、所述p-型电极13和所述n-型电极12的材料均为钛、铂、金中的一种或两种以上的组合。举例来说,所述金属反射层16的材料可以为钛、铂、金三者的合金,所述金属键合层15的材料为铟。

具体来说,通过所述金属键合层15与所述金属反射层16的键合,使得所述外延层11可以在任意合适的生长衬底表面生长形成之后再转移至所述导电衬底10。所述金属反射层16的设置,还能够对出射光线进行反射,从而进一步减少了光线的损伤,提高了所述垂直结构深紫外发光二极管的出光效率。

不仅如此,本发明具体实施方式还提供了一种垂直结构深紫外发光二极管的制备方法,附图2是本发明具体实施方式中垂直结构深紫外发光二极管的制备方法流程图,附图3a-3j是本发明具体实施方式中在制备垂直结构深紫外发光二极管的过程中主要的工艺截面示意图,本具体实施方式制备的垂直结构深紫外发光二极管的结构可参见图1。如图1-图2、图3a-图3j所示,本具体实施方式提供的垂直结构深紫外发光二极管的制备方法,包括如下步骤:

步骤s21,形成初始外延层34于一生长衬底32表面,所述初始外延层34包括沿垂直于所述生长衬底32的方向依次叠置的缓冲层33、非掺杂u-algan层(未掺杂的algan层)115、初始n-型algan层314、量子阱层113、电子阻挡层112和p-型gan层111,如图3c所示。

可选的,形成初始外延层34于一生长衬底32表面的具体步骤包括:

提供一生长衬底32;

沿垂直于所述生长衬底32的方向依次沉积缓冲层33、非掺杂u-algan层115、初始n-型algan层314、量子阱层113、电子阻挡层112和p-型gan层111于所述生长衬底32表面,形成初始外延层34,所述初始外延层34的厚度d0大于所述垂直结构深紫外发光二极管发射的光线的波长。

具体来说,所述生长衬底32可以为ⅲ-ⅴ族材料衬底、蓝宝石衬底或者硅衬底,本领域技术人员可以根据实际需要进行选择。在本具体实施方式中,所述生长衬底32优选为蓝宝石衬底。所述缓冲层33用于降低所述生长衬底32与所述非掺杂u-algan层115之间的应力。所述缓冲层33的具体材料本领域技术人员可以根据实际需要进行选择,例如aln。

步骤s22,形成一导电衬底10,所述导电衬底10包括第一表面以及与所述第一表面相对的第二表面,如图3a所示。

具体来说,所述导电衬底10的材料可以为金属材料,也可以为低阻硅材料,本领域技术人员可以根据实际需要进行选择。在本具体实施方式中,所述导电衬底10优选为低阻硅衬底。

步骤s23,以所述第一表面朝向所述初始外延层34的方向键合所述生长衬底32和所述导电衬底10,如图3e所示。

可选的,以所述第一表面朝向所述初始外延层34的方向键合所述生长衬底32和所述导电衬底10的具体步骤包括:

形成金属键合层15于所述第一表面,如图3b所示;

形成金属反射层16于所述初始外延层34背离所述生长衬底32的表面,如图3d所示;

键合所述金属键合层15和所述金属反射层16,如图3e所示。

具体来说,在键合所述生长衬底32与所述导电衬底10的过程中,以所述金属键合层15朝向所述金属反射层16的方式键合。由于所述金属键合层15与所述金属反射层16的材料均为金属材料,从而有助于加强所述生长衬底32与所述导电衬底10之间键合强度。

步骤s24,去除所述生长衬底32、所述缓冲层33和所述非掺杂u-algan层115,并减薄所述初始n-型algan层314,以减薄后的所述初始n-型algan层314作为n-型algan层114,形成包括沿所述第二表面指向所述第一表面的方向依次叠置的p-型gan层111、电子阻挡层112、量子阱层113和n-型algan层114的外延层11,使得所述外延层11的厚度d1小于1微米,如图3g所示。

具体来说,在键合所述生长衬底32与所述导电衬底10之后,首先,采用研磨抛光技术去除(剥离)所述生长衬底32,形成如图3f所示的结构;之后,进一步去除所述缓冲层33和所述非掺杂u-algan层115并减薄所述初始n-型algan层314,使得形成的所述外延层11的厚度d1小于1微米,如图3g所示。

步骤s25,形成n-型电极12于所述外延层11背离所述导电衬底10的表面,并形成p-型电极13于所述第二表面,如图3j所示。

可选的,形成n-型电极12于所述外延层11背离所述导电衬底10的表面的具体步骤包括:

形成透明钝化层14于所述外延层11背离所述导电衬底10的表面,所述透明钝化层14中具有暴露所述n-型algan层114的窗口141,如图3h所示;

形成与所述n-型algan层114接触的n-型电极12于所述窗口141内,如图3i所示。

可选的,所述透明钝化层14的材料为二氧化硅;

所述透明钝化层14环绕所述n-型电极12的外围分布。

具体来说,于所述n-型algan层114表面生长所述透明钝化层14之后,于所述透明钝化层中定义并形成所述窗口141,如图3h所示;之后,蒸镀n-型电极12于所述窗口141,如图3i所示;接着,减薄所述导电衬底10至封装器件所需的厚度,并于所述导电衬底10背离所述外延层11的表面蒸镀所述p-型电极13,形成如图3j所示。

在其他具体实施方式中,也可以不形成所述透明钝化层14,而是直接于所述n-型algan层114沉积形成所述n-型电极12。

本具体实施方式提供的垂直结构深紫外发光二极管及其制备方法,通过形成包括p-型gan层、电子阻挡层、量子阱层和n-型algan层,使得发光二极管能够发射深紫外波长的光线;而且,将所述外延层的厚度设置为小于器件发射的光线的波长,从而有效抑制了器件内部的波导模式,降低了器件的热效应,提高了器件的响应速度,且使得器件的电光转换效率显著提升,扩展了深紫外发光二极管的应用领域。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1