电池包的制作方法

文档序号:21942198发布日期:2020-08-21 15:21阅读:162来源:国知局
电池包的制作方法

本发明涉及电池技术领域,特别涉及一种电池包。



背景技术:

相关技术中,电池包内设置有电池模组,电池模组包括多个电芯,电芯在电池模组的长度方向依次层叠,在电池模组的两端设置端板抑制电芯膨胀力及固定电芯,但是需要模组端板极其坚固才能抑制电芯膨胀力,导致端板厚度和重量增加,提高了电池包的重量,降低了电池包的能量密度。



技术实现要素:

有鉴于此,本发明旨在提出一种电池包,以解决电池包的重量大的问题,也可以解决电池包的能量密度低的问题。

为达到上述目的,本发明的技术方案是这样实现的:

一种电池包包括:上壳体;下壳体,所述上壳体和所述下壳体连接;多个电池模组,多个所述电池模组夹设于所述上壳体和所述下壳体之间,每个所述电池模组均具有多个电芯,所述多个电芯在所述电池包的高度方向依次层叠;冷却机构,所述冷却机构用于与所述电池模组热交换。

在本发明的一些示例中,每个所述电池模组均还具有边框,所述边框与所述电池模组内的多个所述电芯连接以将多个所述电芯固定。

在本发明的一些示例中,所述边框包括:边框侧板、边框顶板和边框底板,所述边框侧板与对应的所述电池模组内的每个所述电芯的侧面均连接;所述边框侧板的上端与所述边框顶板连接,所述边框侧板的下端与所述边框底板连接,所述边框顶板与位于所述电池模组的最上方的所述电芯的上表面连接;所述边框底板与位于所述电池模组的最下方的所述电芯的下表面连接。

在本发明的一些示例中,每个所述电池模组均在所述电池包的宽度方向延伸;多个所述电池模组形成多列模组组件,每列所述模组组件中的多个所述电池模组在所述电池包的长度方向依次排布;每列所述模组组件中的任意相邻的两个所述电池模组间设有导热胶;每列所述模组组件中任意相邻的两个所述电池模组中的至少一个所述电池模组的端部设有防溢结构,所述防溢结构位于两个所述电池模组间。

在本发明的一些示例中,所述的电池包还包括:横梁,所述横梁连接于所述上壳体和所述下壳体之间;所述横梁位于每列所述模组组件中的至少两个所述电池模组间。

在本发明的一些示例中,所述冷却机构的至少部分结构位于相邻的两个所述电池模组间以与相邻的两个所述电池模组热交换。

在本发明的一些示例中,所述冷却机构包括:第一冷却板和第二冷却板,所述第一冷却板与所述第二冷却板连通,所述第一冷却板位于多个所述电池模组的上端,所述第二冷却板位于相邻的两个所述电池模组间;所述第一冷却板与多个所述电池模组间设有支撑件。

在本发明的一些示例中,所述第一冷却板包括:第一子冷却板和多个第二子冷却板,所述第一子冷却板与多个所述第二子冷却板均连通;所述第二冷却板与多个所述第二子冷却板均连通。

在本发明的一些示例中,所述第二冷却板包括:多个第三子冷却板,每个所述第三子冷却板均构造为u型结构,多个所述第三子冷却板在所述第二冷却板的长度方向依次连通;所述第二冷却板还包括:第四子冷却板,所述第四子冷却板连接在相邻的两个所述第三子冷却板间,以使相邻的两个所述第三子冷却板连通。

在本发明的一些示例中,所述上壳体包括:本体,所述本体具有朝向所述下壳体凹的第一凹槽和第二凹槽,所述第一凹槽的底壁设有第一连接部,所述第一连接部与所述横梁连接;所述第二凹槽的底壁设有第二连接部,所述下壳体设有纵梁,所述第二连接部与所述纵梁连接。

相对于现有技术,本发明所述的电池包具有以下优势:

根据本发明的电池包,通过上壳体、下壳体和电池模组配合,电池模组安装在电池包内后,上壳体和下壳体能够抑制电芯膨胀力,与现有技术相比,可以取消端板的设置,从而可以降低电池包的重量,也可以提升电池包的能量密度。

附图说明

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例所述的电池包的示意图;

图2为本发明实施例所述的电池包的内部结构示意图;

图3为本发明实施例所述的电池包的剖视图;

图4为本发明实施例所述的电池包的电池模组设有防溢结构的示意图;

图5为本发明实施例所述的电池包的模组组件中电池模组和横梁的排列示意图;

图6为本发明实施例所述的电池包的冷却机构的示意图;

图7为本发明实施例所述的电池包的冷却机构的另一个实施例的示意图

图8为本发明实施例所述的电池包的俯视图;

图9为本发明实施例所述的上壳体的避让槽的底壁为弧型的示意图;

图10为本发明实施例所述的电池包的电池模组的侧视图。

附图标记说明:

电池包10;

电池模组20;电芯201;边框202;间隔件203;边框侧板204;边框顶板205;边框底板206;防溢结构207;模组组件208;

上壳体30;本体301;第一凹槽302;第一连接部303;第二凹槽304;第二连接部305;侧壁306;顶壁307;连接翻边308;第三连接部309;避让槽310;

下壳体40;安装空间401;

横梁50;

冷却机构60;

第一冷却板601;第一子冷却板6011;第二子冷却板6012;冷媒进口6013;冷媒出口6014;第五子冷却板6015;第六子冷却板6016;

第二冷却板602;第三子冷却板6021;第四子冷却板6022;

纵梁70。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

下面将参考附图并结合实施例来详细说明本发明。

如图1-图10所示,根据本发明实施例的电池包10包括:上壳体30、下壳体40、冷却机构60和多个电池模组20。上壳体30和下壳体40连接,例如:上壳体30和下壳体40螺接在一起。每个电池模组20均具有多个电芯201,多个电芯201在电池包10的高度方向依次层叠布置,电池包10的高度方向是指图3中的上下方向,多个电池模组20被电池包10的上壳体30和下壳体40夹设于上壳体30和下壳体40之间。冷却机构60用于与电池模组20进行热交换,冷却机构60内具有冷媒,冷媒可以为水。

其中,多个电芯201在电池模组20的高度方向依次层叠设置,电池模组20的高度方向与电池包10的高度方向相同,电池模组20的高度方向和电池包10的高度方向均为图3中上下方向。电池模组20安装在电池包10内后,电池模组20位于电池包10的上壳体30和下壳体40之间,由于多个电芯201在电池包10的高度方向依次层叠,电芯201发生膨胀时,电芯201的膨胀方向为电池包10的高度方向,上壳体30和下壳体40能够抑制电芯201的膨胀,与现有技术相比,电池模组20不需要设置端板就能抑制电芯201的膨胀,可以取消端板的设置,从而可以降低电池模组20的重量,进而可以降低电池包10的重量,也可以降低电池模组20的生产成本。

并且,由于取消厚端板的设置,能够节省电池包10内装配空间,可以增加电池包10内电池模组20的设置数量,从而可以提升电池包10的能量密度,同时,也能够减少组成电池模组20的零部件数量,可以简化电池模组20的装配工序,从而可以降低电池包10的生产成本。另外,由于多个电芯201在电池包10的高度方向依次层叠布置,电芯201的重力也能抑制电芯201的膨胀,可以很好地抑制电池膨胀力对电池包10的影响。

在本发明的一些实施例中,冷却机构60的至少部分结构位于相邻的两个电池模组20之间,冷却机构60可以与其相邻的两个电池模组20进行热交换,例如:需要对电池模组20加热时,冷却机构60与电池模组20进行热交换使电池模组20温度升高,需要对电池模组20冷却时,冷却机构60与电池模组20进行热交换使电池模组20温度降低。

具体地,如图2、图5和图6所示,冷却机构60包括:第一冷却板601和第二冷却板602,第一冷却板601和第二冷却板602均与其相邻的电池模组20进行热交换,第一冷却板601与第二冷却板602连通,冷媒可以在第一冷却板601和第二冷却板602之间循环流动,第一冷却板601位于多个电池模组20的上端,第一冷却板601能够与电池模组20进行热交换,可以对电池模组20加热或冷却。

并且,第一冷却板601与多个电池模组20之间可以设置有支撑件,支撑件可以为泡棉,泡棉对第一冷却板601有支撑、缓冲作用。同时,第二冷却板602位于与其相邻的两个电池模组20间,如此设置能够保证相邻的两个电池模组20共用一个第二冷却板602,可以减少第二冷却板602的设置数量,从而可以进一步降低电池包10的重量,有利于电池包10的轻量化设计。

另外,冷媒可以从第一冷却板601内流入第二冷却板602内,通过将第二冷却板602设置于与其相邻的两个电池模组20间、第一冷却板601设置于多个电池模组20的上端,在第一冷却板601内冷媒重力的作用下,能够使第二冷却板602内充满冷媒,可以保证第二冷却板602的换热效果。

由此,通过第一冷却板601和第二冷却板602配合,能够增加冷却机构60与电池模组20的接触面积,可以提升冷却机构60与电池模组20的换热效率,也可以提升对电池模组20的降温效果,从而可以防止电池包10发生热失控,并且,也能够使相邻的两个电池模组20共用同一个第二冷却板602,与现有技术相比,能够减少第二冷却板602的设置数量,可以降低电池包10的重量及成本,也可以节省电池包10内的安装空间,从而可以增加电池包10内电芯201的设置数量,进而可以提升电池包10的能量密度。

在本发明的一些实施例中,每个电池模组20均在电池包10的宽度方向延伸布置,其中,电池包10的宽度方向是指图2中的左右方向,如此设置能够使多个电池模组20的布置方式更加适宜,可以在安装空间401内布置更多电池包10,从而可以进一步提升电池包10的能量密度,也可以提升安装空间401的利用率。

在本发明的一些实施例中,如图2所示,多个电池模组20可以形成多列模组组件208,例如:多个电池模组20可以形成两列模组组件208,每列模组组件208中的多个电池模组20在电池包10的长度方向依次排布,其中,电池包10的长度方向是指图2中的前后方向,这样设置能够使多个电池模组20在电池包10内的排列更加紧凑,可以增加电池包10内电池模组20的布置数量,从而可以进一步提升电池包10的能量密度。

在本发明的一些实施例中,如图2所示,冷却机构60的设置数量可以与模组组件208的设置数量相同,冷却机构60与模组组件208一一对应。如图6所示,第一冷却板601可以包括:第一子冷却板6011和多个第二子冷却板6012,第一子冷却板6011与多个第二子冷却板6012均连通,如此设置能够使冷媒在第一子冷却板6011和多个第二子冷却板6012之间流动,可以使第一冷却板601更好地与电池模组20进行换热。

在本发明的一些实施例中,如图6所示,多个第二子冷却板6012在第一子冷却板6011的长度方向间隔开设置,其中,第一子冷却板6011的长度方向是指图6中的左右方向,优选地,第二子冷却板6012可以设置为三个,三个第二子冷却板6012在第一子冷却板6011的长度方向间隔开设置,相邻的两个第二子冷却板6012之间的间隔距离相等,这样设置能够使多个第二子冷却板6012均匀地布置在模组组件208的电池模组20的上端,可以使第一冷却板601与模组组件208上端的不同区域换热效果大致相同,从而可以避免模组组件208的局部发生过热,进而可以冷却板601更好地与模组组件208进行换热。

在本发明的一些实施例中,如图6所示,第二冷却板602可以由折弯形成,在第二冷却板602的长度方向,如此设置能够增加第二冷却板602的设置面积,可以增加第二冷却板602与相邻电池模组20的换热面积,从而可以提升第二冷却板602与电池模组20的换热效率。并且,第二冷却板602与多个第二子冷却板6012均连通,这样设置能够使冷媒在第二冷却板602与第二子冷却板6012之间流动,可以使冷媒带走电池模组20的热量。

在本发明的一些实施例中,如图6所示,第二冷却板602可以包括:多个第三子冷却板6021,每个第三子冷却板6021均构造为u型结构,多个第三子冷却板6021在第二冷却板602的长度方向依次连通,如此设置能够使冷媒在多个第三子冷却板6021之间流动,也能够增加第二冷却板602的设置面积。

在本发明的一些实施例中,如图6所示,在第一子冷却板6011的长度方向,即图6中的左右方向,位于最外侧的两个第二子冷却板6012分别与位于第二冷却板602两端的两个第三子冷却板6021连通,这样设置能够保证第二冷却板602和第二子冷却板6012连通,使冷媒在第二冷却板602、第一子冷却板6011和第二子冷却板6012之间流动。

在本发明的一些实施例中,如图4和图6所示,第二冷却板602还可以包括:第四子冷却板6022,第四子冷却板6022连接在相邻的两个第三子冷却板6021之间,从而可以使相邻的两个第三子冷却板6021连通。需要说明的是,如图4所示,第四子冷却板6022可以设置为四个,第三子冷却板6021可以设置为三个,三个第三子冷却板6021分别连接在相邻的两个第四子冷却板6022之间,第二子冷却板6012可以为三个,位于中间的第二子冷却板6012与其中一个第四子冷却板6022连通。

在本发明的一些实施例中,第一子冷却板6011可以限定出主流道,每个第二子冷却板6012均可以限定出第一流道,每个第二子冷却板6012的第一流道均与主流道连通,这样设置可以实现将第一子冷却板6011和第二子冷却板6012连通的工作目的。

在本发明的一些实施例中,第三子冷却板6021可以限定出第二流道,第四子冷却板6022可以限定出第三流道,第三流道的两端分别与相邻的两个第三子冷却板6021的第二流道连通,如此设置可以实现将第三子冷却板6021和第四子冷却板6022连通的工作目的。

在本发明的一些实施例中,如图6所示,第一子冷却板6011可以设置有冷媒进口6013和冷媒出口6014,冷媒进口6013和冷媒出口6014均与主流道连通,其中,冷媒可以从冷媒进口6013流入与冷媒进口6013连通的第二子冷却板6012内,使冷媒流入冷却机构60,冷媒可以从冷媒出口6014流出冷却机构60,冷媒在冷却机构60内循环流动时,可以源源不断带走电池模组20的热量。具体地,冷媒进口6013可以设置为一个,冷媒出口6014可以设置为两个,在第一子冷却板6011的长度方向,冷媒进口6013位于两个冷媒出口6014之间,可以将主流道分隔成不连通的三段子主流道,三段子主流道分别与冷媒进口6013和两个冷媒出口6014连通,如此设置能够使与电池模组20换热完成的冷媒迅速流出冷却机构60,可以保证冷却机构60的换热效率。并且,通过一个冷媒进口6013向冷却机构60内流入冷媒、两个冷媒出口6014流出冷媒且冷媒进口6013位于两个冷媒出口6014之间,可以使冷媒在冷却机构60内的流动更加平缓,从而可以避免冷媒在冷却机构60内产生涡流。

如图6和图7所示,图6所示的冷却机构60为一种实施例,图7所示的冷却机构60为另一种实施例,图7所示冷却机构60的实施例与图6所示冷却机构60的实施例不同之处为,第一子冷却板6011包括:第五子冷却板6015和第六子冷却板6016,第五子冷却板6015和第六子冷却板6016均限定出主流道,第五子冷却板6015与多个第二子冷却板6012中的部分第二子冷却板6012连通,第六子冷却板6016与多个第二子冷却板6012中的另一部分第二子冷却板6012连通。优选地,第二子冷却板6012可以设置为三个,第五子冷却板6015与位于中间的第二子冷却板6012连通,第六子冷却板6016与位于中间的第二子冷却板6012两侧的两个第二子冷却板6012连通。冷媒进口6013和冷媒出口6014中的一个设置于第五子冷却板6015,冷媒进口6013和冷媒出口6014中的另一个设置于第六子冷却板6016,例如:冷媒进口6013设于第五子冷却板6015,冷媒出口6014设于第六子冷却板6016。这样设置能够保证冷媒在冷却机构60内循环流动,也能够保证冷媒可流入和流出冷却机构60,可以保证冷却机构60的换热效率。

在本发明的一些实施例中,第一子冷却板6011的截面、第二子冷却板6012的截面、第三子冷却板6021的截面、第四子冷却板6022的截面均可以设置为矩形,这样设置可以增加冷却机构60与电池模组20的接触面积,也可以增加第一子冷却板6011内流道、第二子冷却板6012内流道、第三子冷却板6021内流道、第四子冷却板6022内流道的面积,从而可以使冷却机构60内具有足够的冷媒,进而可以提升冷却机构60的换热性能。

进一步地,每列模组组件208中的任意相邻的两个电池模组20间均可以设置有导热胶,导热胶能够将相邻的两个电池模组20粘接在一起,可以提升模组组件208的结构强度,从而可以保证模组组件208的安装稳定性,并且,导热胶能够在两个电池模组20间进行热传递,可以使模组组件208中的热量传递至位于模组组件208两端的两个电池模组20上,从而可以使模组组件208中的热量从两端的散发。另外,当第二冷却板602与相邻的电池模组20之间不完全贴合时,通过设置导热胶可以起到热传递的效果,有利于第二冷却板602与相邻的电池模组20进行热交换。

在本发明的一些实施例中,如图4所示,每列模组组件208中任意相邻的两个电池模组20中的至少一个电池模组20的端部可以设置有防溢结构207,防溢结构207位于相邻的两个电池模组20之间。其中,防溢结构207可以设置为泡棉,优选为硅泡棉,在电池模组20的宽度方向,电池模组20的至少一侧设有防溢结构207,优选地,电池模组20的两侧均设有防溢结构207,在电池模组20的长度方向,防溢结构207靠近电池模组20的端部设置,在相邻的两个电池模组20间设置导热胶时,导热胶容易在相邻的两个电池模组20之间溢出,通过设置防溢结构207,可以防止导热胶从相邻的两个电池模组20之间溢出。

在本发明的一些实施例中,如图2和图5所示,电池包10还可以包括:横梁50,横梁50连接于上壳体30和下壳体40之间,其中,横梁50与上壳体30可以通过螺栓连接在一起,横梁50与下壳体40可以通过fds(flowdrillscrew-流钻螺钉拧紧工艺)连接在一起,如此设置能够将上壳体30和下壳体40可靠地装配在一起,可以提升电池包10的结构强度,也可以使上壳体30和下壳体40形成一个整体,从而可以使上壳体30和下壳体40对电池模组20具有压紧力,对抑制电芯201的膨胀起到很好的作用。

在本发明的一些实施例中,横梁50可以位于每列模组组件208中的至少两个电池模组20间,其中,如图5所示,每列模组组件208具有多个电池模组20,每隔两个电池模组20可以设置有一个横梁50,横梁50能够对电池模组20起到支撑作用,可以对电池模组20进行支撑,从而可以防止电池模组20摇晃。需要说明的是,如图5所示,在每列模组组件208内,按照电池模组20、第二冷却板602、横梁50的排列顺序依次排列。

如图3和图9所示,每个电池模组20均还具有:边框202。多个电芯201在电池模组20的高度方向依次层叠设置,边框202与电池模组20内的多个电芯201均连接,这样设置可以将多个电芯201固定装配在一起。

其中,电池模组20的高度方向与电池包10的高度方向相同,电池模组20的高度方向和电池包10的高度方向均为图3中上下方向。电池模组20安装在电池包10内后,电池模组20位于电池包10的上壳体30和下壳体40之间,由于多个电芯201在电池模组20的高度方向依次层叠,电芯201发生膨胀时,电芯201的膨胀方向为电池模组20的高度方向,上壳体30和下壳体40能够抑制电芯201膨胀力,与现有技术相比,可以取消端板的设置,从而可以降低电池模组20的重量,进而可以降低电池包10的重量,也可以降低电池模组20的生产成本,并且,由于取消厚端板的设置,能够节省电池包10内装配空间,可以增加电池包10内电池模组20的设置数量,从而可以提升电池包10的能量密度。

同时,现有技术中的电池模组通过端板和侧板共同对多个电芯201进行固定,结构比较复杂,装配不方便。而在本申请中通过设置边框202,能够将多个电芯201固定在一起,与现有技术相比,本申请的电池模组20结构简单,装配方便。

在本发明的一些实施例中,每个电芯201的厚度方向与电池模组20的高度方向相同,其中,电芯201的厚度方向是指图9中的上下方向,如此设置能够保证电芯201的膨胀方向与电池模组20的高度方向相同,可以保证上壳体30和下壳体40对电芯201的膨胀力起到抑制作用,从而可以使电芯201的布置方式更加合理。

在本发明的一些实施例中,如图9所示,在上下方向,相邻的两个电芯201间隔开设置,其中,电芯201在电芯201的厚度方向发生膨胀时,通过相邻的两个电芯201间隔开设置,能够防止电芯201将膨胀力传递给与其相邻的电芯201,可以保证电芯201的正常膨胀,也可以避免电芯201受到挤压,从而可以保证电芯201的工作可靠性。

在本发明的一些实施例中,如图9所示,电池模组20还可以包括:间隔件203,间隔件203可以设置于相邻的两个电芯201之间,相邻的两个电芯201之间可以设置有多个间隔件203,多个间隔件203在电芯201的宽度方向间隔开设置,电芯201的宽度方向是指图9中的左右方向,其中,通过间隔件203支撑在相邻的两个电芯201之间,能够保证相邻的两个电芯201间隔开设置,可以使多个电芯201可靠地层叠在一起。

进一步地,间隔件203可以设置为泡棉,泡棉具有缓冲作用,电池模组20受到力时,泡棉能够将力吸收,可以对电池模组20内的电芯201起到保护作用,并且,电芯201膨胀时,电芯201的与间隔件203接触的位置也发生膨胀,泡棉能够将电芯201的与间隔件203接触位置的膨胀力吸收,可以防止电芯201的膨胀力通过间隔件203传递至与其相邻的电芯201。

在本发明的一些实施例中,如图9所示,边框202可以设置于每个电芯201的第一侧和/或第二侧,其中,边框202可以为铝质材质,电芯201的第一侧是指图9中电芯201的左侧,电芯201的第二侧是指图9中电芯201的右侧,优选地,边框202设为两个,一个边框202设置于每个电芯201的第一侧,另一个边框202设置于每个电芯201的第二侧,如此设置能够将多个电芯201可靠地装配在一起,可以提升电池模组20的装配强度,从而可以使电池模组20的结构更加可靠。

在本发明的一些实施例中,边框202与电芯201可以通过粘接的方式装配在一起,例如:边框202与多个电芯201可以通过导热结构胶粘接在一起,通过设置导热结构胶,电芯201能够将热量传递给边框202,可以使电池模组20的热量从边框202散发,有利于电池模组20的散热。

在本发明的一些实施例中,如图9所示,边框202可以包括:边框侧板204,边框侧板204与对应的电池模组20内的每个电芯201的侧面均连接,需要说明的是,如图9所示,设于电芯201左侧的边框202的边框侧板204与电芯201的左侧面连接,设于电芯201右侧的边框202的边框侧板204与电芯201的右侧面连接,这样设置能够将多个电芯201连接为一个整体,可以使多个电芯201固定安装在一起。

在本发明的一些实施例中,如图9所示,边框202还可以包括:边框顶板205和边框底板206,边框侧板204的上端与边框顶板205连接,边框侧板204的下端与边框底板206连接,边框顶板205与位于电池模组20的最上方的电芯201的上表面连接,边框底板206与位于电池模组20的最下方的电芯201的下表面连接,其中,通过设置边框顶板205和边框底板206,能够将多个电芯201夹设在边框顶板205和边框底板206之间,可以防止多个电芯201在电池模组20的高度方向移动,从而可以保证电池模组20的装配可靠性。

具体地,生产电池模组20时,先将一个电芯201装配到工装,然后将间隔件203放置在该电芯201的上表面,然后在间隔件203的上表面放置第二个电芯201,以此类推,用同样的方法在电池模组20的高度方向放置若干电芯201,将电芯201放置完毕,在电芯201的第一侧和第二侧设置边框202,将多个电芯201固定在一起。

如图1、图2、图3和图9所示,上壳体30的边缘与下壳体40连接。上壳体30包括:本体301,本体301具有朝向下壳体40凹的第一凹槽302,第一凹槽302的底壁可以设置有第一连接部303,第一凹槽302的底壁止抵在电池包10内的电池模组20的上表面,下壳体40和上壳体30之间设置有横梁50,第一连接部303与横梁50连接。

现有技术中,电池包的上壳体的边缘与下壳体连接,实现下壳体和上壳体装配。

在本申请中,通过第一连接部303与横梁50连接,能够将上壳体30和下壳体40可靠地连接在一起,可以提升上壳体30和下壳体40的连接强度,从而可以防止上壳体30和下壳体40分离,进而可以提升电池包10的安装可靠性。

并且,电池包10内设置有电池模组20,电池模组20具有多个电芯201,多个电芯201在电池包10的高度方向依次层叠布置,电池包10的高度方向是指图3中的上下方向,电池模组20被电池包10的上壳体30和下壳体40夹设于上壳体30和下壳体40之间,通过第一连接部303与横梁50连接,能够将电池模组20稳固地夹设在上壳体30和下壳体40之间,可以对电芯201的膨胀起到很好的抑制作用。同时,通过设置第一凹槽302,能够提升上壳体30的结构强度和刚度,可以防止上壳体30变形,从而可以更好地对电芯201的膨胀进行约束。

在本发明的一些实施例中,第一凹槽302在上壳体30的长度方向延伸设置,上壳体30的长度方向是指图9中的前后方向,这样设置能够在第一凹槽302的底壁上设置有多个第一连接部303,多个第一连接部303在第一凹槽302的长度方向间隔开设置,其中,下壳体40和上壳体30之间可以设置有多个横梁50,多个横梁50在上壳体30的长度方向依次间隔开设置,多个横梁50和多个第一连接部303一一对应,如此设置能够将上壳体30和下壳体40更加可靠地装配在一起,可以更好地对电芯201的膨胀进行约束。

进一步地,第一凹槽302的延伸方向与电池模组20的延伸方向垂直设置,其中,电池模组20在上壳体30的宽度方向延伸布置,这样设置能够使第一凹槽302的底壁止抵在更多电池模组20的上表面,从而可以更好地对电芯201的膨胀进行约束。

在本发明的一些实施例中,第一凹槽302可以设置为多个,多个第一凹槽302在上壳体30的宽度方向间隔开设置,壳体的宽度方向是指图9中的左右方向,这样设置能够在相邻的两个第一凹槽302之间形成朝向远离下壳体40方向凹的避让槽310。其中,电池包10内可以设置有冷却机构60,冷却机构60具有第一冷却板601,电池模组20的上端可以设置有第一冷却板601,上壳体30与下壳体40装配在一起后,避让槽310能够与第一冷却板601进行避让,可以避免电池包10的高度增加。

并且,如图5所示,避让槽310的底壁的纵截面可以构造为朝向下壳体40方向凹的弧型,其中,在第一冷却板601和避让槽310的缝隙之间可以设置有缓冲泡棉,缓冲泡棉的厚度略大于第一冷却板601和避让槽310间的间隔距离,避让槽310会压缩泡棉,使上壳体30的底壁发生变形,通过上壳体30变形会产生变形力,通过变形力可以对第一冷却板601起到压紧作用,从而使第一冷却板601的位置更加稳固。

同时,在电芯201发生热失控时,电池包10内气压增加,在压力的作用下,避让槽310的底壁会朝向远离下壳体40方向变形,此时避让槽310的底壁可以为平面结构,使上壳体30具有更大的接触面积,通过压力公式可知:p=f·s,p代表压强,f代表压力,s代表接触面积,在相同的压强情况下,对于更大的接触面积,可减小局部压力,减小内部膨胀气体对上壳体30的冲击。另外,通过上壳体的底壁朝向远离下壳体40方向变形,能够增大电池包10内部空间,通过公式可知:p·v=n·r·t,p代表压强,v代表体积,t代表温度,电池包10内部体积相对增大,内部压强相对减小,可以减小热失控所产生损害。

在本发明的一些实施例中,如图3和图9所示,本体301还具有朝向下壳体40凹的第二凹槽304,第二凹槽304的底壁可以设置有第二连接部305,下壳体40可以设置有纵梁70,纵梁70位于上壳体30和下壳体40之间,第二连接部305与纵梁70连接,这样设置能够使上壳体30和下壳体40的连接更加稳固,可以使上壳体30和下壳体40的结构更加紧凑,从而可以更好地对电芯201的膨胀进行约束。

进一步地,如图9所示,第二凹槽304在上壳体30的长度方向延伸布置,在第二凹槽304的长度方向,第二凹槽304的底壁可以设置有多个第二连接部305,纵梁70在上壳体30的长度方向延伸布置,如此设置能够增加上壳体30和纵梁70之间的连接点,可以使上壳体30和纵梁70的连接更加可靠。

在本发明的一些实施例中,如图1和图9所示,本体301可以包括:侧壁306和顶壁307,侧壁306围绕顶壁307的边缘设置,第一凹槽302和第二凹槽304均设置于顶壁307,如此设置能够使第一凹槽302和第二凹槽304的设置位置更加适宜,可以便于第一连接部303与横梁50连接,也可以便于第二连接部305与纵梁70连接,还可以便于避让槽310与第一冷却板601进行避让。

在本发明的一些实施例中,如图1和图9所示,在上壳体30的长度方向,第一凹槽302的至少一端、第二凹槽304的至少一端延伸至侧壁306。其中,如图1所示,第一凹槽302的后端、第二凹槽304的后端均延伸至侧壁306,这样设置能够增加第一凹槽302和第二凹槽304的设置长度,可以进一步增加上壳体30的结构强度和刚度,从而可以更好地防止上壳体30变形。

在本发明的一些实施例中,如图1和图9所示,侧壁306的自由端可以设置有连接翻边308,连接翻边308可以设置有第三连接部309,第三连接部309与下壳体40连接,如此设置能够将上壳体30的边缘与下壳体40连接在一起。

在本发明的一些实施例中,第一连接部303、第二连接部305和第三连接部309均可以设置为装配孔,第一连接部303与横梁50、第二连接部305与纵梁70、第三连接部309与下壳体40均可以通过螺栓连接,这样设置能够将第一连接部303与横梁50、第二连接部305与纵梁70、第三连接部309与下壳体40可拆卸地装配在一起,可以便于电池包10的维修。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1