一种提升铁基纳米晶合金磁性的工艺的制作方法

文档序号:23832517发布日期:2021-02-03 18:32阅读:56来源:国知局
一种提升铁基纳米晶合金磁性的工艺的制作方法

[0001]
本发明涉及非金合金技术领域,特别是一种提升铁基纳米晶合金磁性的工艺。


背景技术:

[0002]
非晶合金是由超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,组成它物质的分子(或原子、离子)不呈空间有规则周期性,没有晶态合金的晶粒、晶界存在。这种非晶合金具有许多独特的性能,由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。铁基纳米晶合金是一类集高的磁导率、低的矫顽力、相对高的饱和磁化强度和低的中高频磁芯损耗等优异软磁性能于一身的新型金属材料,使用铁基非晶带材制备的配电变压器与现行的s9硅钢系列变压器相比,其空载损耗下降70~80%,空载电流下降50%,且设备重量轻,体积小,工作效率高,是一类有着广泛应用前景的高效节能型配电变压器。
[0003]
铁纳米晶合金是一种广泛应用于大功率开关电源、逆变电流、高频变压器、高频扼流圈铁芯、高频转换器等电磁转换功能的元器件中。这些应用对铁芯材料提出了较高的磁性能要求,如高饱和磁化强度、高初始磁导率、高频磁感应下的低损耗等。


技术实现要素:

[0004]
本发明需要解决的技术问题是提供一种铁纳米晶合金的,具有高饱和磁化强度、高初始磁导率、高频磁感应下的低损耗等优点。
[0005]
为解决上述技术问题,本发明所采取的技术方案是:一种提升铁基纳米晶合金磁性的工艺,具体步骤如下:
[0006]
第一步:母合金锭,将原材料放入高真空电弧熔炼炉内熔炼得母合金锭;
[0007]
第二步:制备带材,将母合金锭放入熔炼炉内熔融,氮化硼喷嘴将熔融的合金喷在下方的铜辊上,高速旋转的铜辊将合金快速凝固为连续的薄带并甩出,将甩出的带材卷入分卷机内缠绕成卷,然后冷却;
[0008]
第三步:轧制带材,采用双滚对压冷轧制,将成卷带材装到滚轴上,将带材折叠后进行反复轧制,轧制后将带材卷入分卷机缠绕成卷;
[0009]
第四步:制作铁芯,使用辊剪机上的圆盘刀将轧制后的带材对剪,将细带材卷入分卷机内缠绕成卷得铁芯;
[0010]
第五步:纳米晶化铁芯,将非晶材质的铁芯放入真空热处理炉内热处理后,室温冷却得到纳米晶化铁芯。
[0011]
作为本发明进一步的方案,所述第二步熔融温度为2800~3200℃,熔断时间为3~4h,所述氮化硼喷嘴流速为12~18kg/min,所述铜辊转速为350~650r/min,所述薄带厚度为22~25μm,所述薄带宽度为60~70mm,所述成卷带材的宽度为30~40mm,所述冷却温度为10~25℃,所述冷却时间为30~60min。
[0012]
作为本发明进一步的方案,所述第二步熔融温度为3000℃,熔断时间为3.5h,所述
氮化硼喷嘴流速为15kg/min,所述铜辊转速为500r/min,所述薄带厚度为24μm,所述薄带宽度为65mm,所述成卷带材的宽度为35mm,所述冷却温度为20℃,所述冷却时间为45min。
[0013]
作为本发明进一步的方案,所述第三步轧制力度为2000~5000n,所述轧制后的带材厚度对比轧制前有3%~5%的应变量,所述成卷带材直径为19~21cm。
[0014]
作为本发明进一步的方案,所述第三步轧制力度为3500n,所述轧制后的带材厚度对比轧制前有2%的应变量,所述成卷带材直径为20cm。
[0015]
作为本发明进一步的方案,所述第四步细带的宽度为8~12mm,所述成卷带材的外径为25~35mm,所述成卷带材的重量为18~22g。
[0016]
作为本发明进一步的方案,所述第四步细带的宽度为10mm,所述成卷带材的外径为30mm,所述成卷带材的重量为20g。
[0017]
作为本发明进一步的方案,所述第五步真空压强为7~8*10-3
pa,所述热处理温度逐级升高的范围为0~560℃。
[0018]
本发明具有的优点和积极效果是:由于本发明采用如上技术方案,具有高饱和磁化强度、高初始磁导率、高频磁感应下的低损耗,可以广泛应用在大功率开关电源、逆变电流、高频变压器、高频扼流圈铁芯、高频转换器等电磁转换功能的元器件中。
附图说明
[0019]
图1是本发明一种提升铁基纳米晶合金磁性的工艺的流程图。
[0020]
图2是铁芯的示意图。
[0021]
图3是轧制前带材表面的形貌图。
[0022]
图4是轧制后带材表面的形貌图。
[0023]
图5是初始材料的磁芯磁滞回线图。
[0024]
图6是本发明工艺处理后带材的磁芯磁滞回线图。
具体实施方式
[0025]
下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0026]
如图1~6所示,本发明的一种提升铁基纳米晶合金磁性的工艺,具体步骤如下:
[0027]
第一步:将原材料放入高真空电弧熔炼炉内熔炼得母合金锭;
[0028]
第二步:将母合金锭放入熔炼炉内以3000℃熔融3.5h,通过扁平氮化硼喷嘴将以15kg/min的熔融的合金喷射在铜辊表面上,以转速为500r/min的铜辊将合金快速凝固为厚度为24μm、厚度为65mm的连续薄带并甩出,将甩出的带材卷入分卷机内缠绕成卷,成卷带材宽度为35mm,然后在20℃下冷却45min;
[0029]
第三步:选用并装配好硬质轧辊,采用双滚对压冷轧制,将成卷带材装到滚轴上,调节轧制力度为3500n,将成卷的35mm宽的带材装到滚轴上,将带材折叠后进行反复轧制,轧制后将带材卷入分卷机缠绕成卷,成卷带材直接为20cm,轧制后的带材厚度对比轧制前有3%~5%的应变量;
[0030]
第四步:使用辊剪机上的圆盘刀将轧制后的带材对剪,实现整卷的裁剪,得到10mm宽的带材,将裁剪完的细带材卷入分卷机内缠绕成卷的内径为20mm、外径30mm、高度10mm、重量20g的铁芯;
[0031]
第五步:将非晶材质的铁芯放入真空热处理炉内,将气压调节到7~8*10-3
pa,温度逐级从0℃升高到560℃进行热处理得到纳米晶化铁芯。
[0032]
铁基纳米晶合金性能测试
[0033]
设铁芯本身的饱和磁感应强度为b
s
,则可求出闭合铁芯和气隙铁芯的饱和磁场强度关系式为:
[0034]
h
气隙铁芯
=h
闭合铁芯

bs
/u0[0035]
从上式可以看出,气隙铁芯的饱和磁场强度大于闭合铁芯的饱和磁场强度,而且气隙比越大,气隙铁芯的饱和磁场强度越大。
[0036]
铁芯开气隙后,磁特性发生了明显的变化,具体表现在:
[0037]
1)铁芯的剩磁显著降低;
[0038]
2)铁芯的抗饱和能力增强;
[0039]
3)铁芯的磁导率减小;
[0040]
4)铁芯线性度变好。
[0041]
如图3和图4所示,经过本发明的工艺处理后的带材上出现了明显的细小纹路和斑点。
[0042]
表1为带材经本发明工艺处理前后的材料性能对比
[0043][0044]
综上所述,由表1可知,利用交流磁芯磁性测量仪测定磁芯样品处理前后的磁导率、剩磁比和高频铁损,经该工艺处理后的铁芯在剩磁比和铁损方面性能有了可观的改善,剩磁比降低了14%~19%,铁损降低了37~42%。
[0045]
表2为初始材料的磁芯磁滞回线表
[0046][0047]
表3为本发明工艺处理后带材的磁芯磁滞回线表
[0048][0049]
综上所述,由表1、表2、图5和图6可知,磁滞回线具有结构灵敏的性质,很容易受各种因素的影响。磁滞回线的产生则是由于技术磁化中的不可逆过程引起的,这种不可逆过程在畴壁移动和磁畴转动的过程中都可能发生。磁滞回线所包围的面积,表示铁磁物质磁化循环一周所需消耗的能量,这部分能量往往转化为热能而被消耗掉。利用直流磁滞回线测量仪测试磁芯在25hz频率、100a/m的磁场强度下得到如上图所示的磁滞回线。
[0050]
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离本发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1