一种阻变层材料、有机忆阻器及其制备方法

文档序号:26543450发布日期:2021-09-07 22:44阅读:162来源:国知局
1.本发明涉及电子器件领域,具体涉及一种阻变层材料、有机忆阻器及其制备方法。
背景技术
::2.忆阻器因为其具有可控的电阻状态,被认为是神经形态计算中最有前途的器件之一。已知有机忆阻器中离子的运动会导致中间层电导发生变化,这一点与生物突触中信号传输发生的情况非常相似。但是有机材料对热效应很敏感,因此循环过程中通常伴随着严重的热失效。例如聚合物电解质在热处理下很容易分解,并且它们的离子电导率在不同温度下变化很大,一般聚合物热诱导降解为非晶碳,会直接导致器件失效。在已报道的聚合物忆阻器中,大多数有机物因循环过程中焦耳热破坏了原分子结构,从而缺乏足够的再现性、耐久性、稳定性、均匀性和耐热性。3.因此,提供一种耐高温的阻变层材料及有机忆阻器成为本领域技术人员亟待解决的技术问题。技术实现要素:4.因此,本发明要解决的技术问题在于克服现有技术中的有机忆阻器容易发生热失效的缺陷,从而提供一种耐高温的阻变层材料及有机忆阻器。5.第一方面,本发明提供一种阻变层材料,包括:聚乙烯亚胺和氮化硼量子点。6.进一步地,所述的阻变层材料还包括溶剂。7.进一步地,所述溶剂包括:乙醇、n,n‑二甲基甲酰胺中的至少一种;所述聚乙烯亚胺的分子量为10000。8.进一步地,所述聚乙烯亚胺与溶剂配制成浓度为8~10mg/ml的聚乙烯亚胺溶液;所述聚乙烯亚胺溶液与所述氮化硼量子点的体积比为30~50∶1。9.第二方面,本发明提供所述的阻变层材料的制备方法,包括:10.将聚乙烯亚胺配制成聚乙烯亚胺溶液;11.向所述聚乙烯亚胺溶液中掺杂氮化硼量子点,得到所述阻变层材料。12.第三方面,本发明提供一种有机忆阻器,包括所述的阻变层材料形成的阻变层。13.进一步地,所述的有机忆阻器包括:第一电极、所述阻变层和第二电极。14.进一步地,所述第一电极包括pt电极,所述第二电极包括ag电极,所述第一电极的厚度为20~30nm,所述阻变层的厚度为200~500nm,所述第二电极的厚度为20~30nm。15.第四方面,本发明提供所述的有机忆阻器的制备方法,包括:16.在衬底上形成所述第一电极;17.在所述第一电极上形成所述阻变层;18.在所述阻变层上形成所述第二电极。19.进一步地,采用电子束蒸发工艺形成所述第一电极和第二电极,采用旋涂工艺形成所述阻变层。20.本发明技术方案,具有如下优点:21.本发明提供的阻变层材料包括聚乙烯亚胺(pei)和氮化硼量子点(bnqds),将掺杂氮化硼量子点形成的聚乙烯亚胺有机薄膜作为阻变层,形成的有机忆阻器在220℃下测试表现出良好的性能,且在室温下测量时可循环万次以上,表现出良好的循环性能和保持性。本发明提供的阻变层材料在将来的存储器件尤其是柔性存储器件上有非常好的应用价值,使得未来存储和未来计算在极端环境下也能正常工作。附图说明22.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。23.图1是本发明实施例1中有机忆阻器的结构示意图;24.图2是本发明实施例1中有机忆阻器的性能测试图。具体实施方式25.提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。26.原料及仪器来源27.聚乙烯亚胺:购自上海阿拉丁生化科技股份有限公司,分子量10000,纯度99%;28.氮化硼量子点参照如下文献合成:29.li,c.a.,etal.″controllablepreparationofboronnitridequantumdotswithsmallsizeandstrongbluephotoluminescence.″colloidsandsurfacesa:physicochemicalandengineeringaspects(2021).30.实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用原料或仪器,均为可以通过市购获得的常规产品,包括但不限于本技术实施例中采用的原料或仪器。31.实施例132.本实施例提供一种有机忆阻器,其制备方法如下:33.(1)将聚乙烯亚胺(pei)与乙醇(分析纯)混合,配制成浓度为10mg/ml的聚乙烯亚胺溶液,向5ml聚乙烯亚胺溶液中掺杂100μl的氮化硼量子点(bnqds),得到阻变层材料;34.(2)采用电子束蒸发工艺在玻璃衬底上蒸镀厚度为5nm的ti金属层,再在ti金属层上蒸镀厚度为30nm的pt电极作为底电极;35.(3)在步骤(2)制备的底电极上旋涂步骤(1)制备的阻变层材料,形成厚度为300nm的阻变层;36.(4)在步骤(3)制备的阻变层上采用电子束蒸发工艺蒸镀厚度为30nm的ag电极作为顶电极,并在顶电极上蒸镀厚度为10nm的ni金属层作为保护层,得到有机忆阻器。37.实施例238.本实施例提供一种有机忆阻器,其制备方法如下:39.(1)将聚乙烯亚胺(pei)与n,n‑二甲基甲酰胺(dmf)混合,配制成浓度为8mg/ml的聚乙烯亚胺溶液,向5ml聚乙烯亚胺溶液中掺杂150μl的氮化硼量子点(bnqds),得到阻变层材料;40.(2)采用电子束蒸发工艺在玻璃衬底上蒸镀厚度为5nm的ti金属层,再在ti金属层上蒸镀厚度为20nm的pt电极作为底电极;41.(3)在步骤(2)制备的底电极上旋涂步骤(1)制备的阻变层材料,形成厚度为500nm的阻变层;42.(4)在步骤(3)制备的阻变层上采用电子束蒸发工艺蒸镀厚度为20nm的ag电极作为顶电极,并在顶电极上蒸镀厚度为10nm的ni金属层作为保护层,得到有机忆阻器。43.实验例44.使用具有双探针系统和加热级半导体表征系统的keithley2636b源表在空气下进行电压‑电流测量,获得如图2所示的i‑v曲线,其中,ag顶电极施加正偏压,同时pt底电极接地,并以20mv/s恒定的步进电压扫描。如图2所示,本发明提供的有机忆阻器在220℃下测试表现出良好的性能。而未掺杂氮化硼量子点的聚乙烯亚胺溶液最高耐热温度只能达到150℃左右,超过此温度后聚乙烯亚胺会发生失效裂解(″robustpolyethylenimineelectrolyteforhighperformanceandthermally‑stableatomicswitchmemristors.″advancedfunctionalmaterials(2020).)。45.显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1