芯片移除头、芯片移除系统及移除芯片的方法与流程

文档序号:33252814发布日期:2023-02-18 05:19阅读:40来源:国知局
芯片移除头、芯片移除系统及移除芯片的方法与流程

1.本技术涉及发光芯片领域,尤其涉及一种芯片移除头、芯片移除系统及移除芯片的方法。


背景技术:

2.micro led(micro light-emitting diode,微小发光二极管)是新兴的显示技术,相对比常规的显示技术,以micro led技术为核心的显示具有响应速度快,自主发光、对比度高、使用寿命长、光电效率高等特点。
3.在micro led产业技术中会将百万甚至千万级的micro led芯片转移至显示背板上,但由于无可避免的制造过程中良品率的问题,即使良品率达到99.999%,也需要将大量不合格的micro led芯片移除甚至修补,例如4k显示面板需要2500万颗micro led芯片,即使不良率为0.001%,也至少需要将2500颗micro led芯片移除。
4.目前对于显示面板上不良micro led芯片的移除,通常利用机械力将micro led芯片推掉,或者采用激光去除micro led芯片,在去除过程中都会破坏micro led芯片,导致需去除的micro led芯片或其碎片无规律飞溅,造成对整面显示面板污染。且显示面板上与该micro led芯片连接的焊盘也容易受外力而被损坏,导致后续在该位置设置新的micro led芯片不能正常与显示背板电连接,影响后续的修复。
5.因此,如何在不对显示面板造成污染及不破坏焊盘的情况下,移除不良micro led芯片是目前亟需解决的问题。
6.申请内容
7.鉴于上述现有技术的不足,本技术的目的在于提供一种芯片移除头、芯片移除系统及移除芯片的方法,旨在解决相关技术中,如何在不对显示面板造成污染及不破坏焊盘的情况下,移除不良micro led芯片的问题。
8.本技术提供一种芯片移除头,包括:加热部以及吸力引导部;
9.所述加热部包括相对的底面和顶面,所述底面为与待移除芯片接触的一面;
10.所述加热部与一外部电源连接,并在所述外部电源作用下产生一解离热量;其中,所述解离热量用以解除所述待移除芯片与一外部基板之间的连接;
11.所述吸力引导部被配置为引导解除连接后的所述待移除芯片吸附在所述加热部的底面。
12.上述芯片移除头,其具有加热部及吸力引导部,加热部与一外部电源连接,在芯片移除过程中,加热部的底面与设于电路板上待移除的待移除芯片(例如可以为但不限于micro led芯片)接触,并在外部电源作用下产生一解离热量,通过该解离热量解除待移除芯片与外部基板之间的连接,而吸力引导部被配置为引导解除连接后的待移除芯片吸附在加热部的底面上,从而只需移动加热部就能将该待移除芯片从基板移除;整个过程不会破坏待移除芯片,也不会破坏基板上对应的焊盘,既能避免待移除芯片在移除过程中对整面基板造成污染,又能保证基板上与该芯片对应的焊盘不被破坏,从而保证待移除芯片移除
后的修复制程的正常进行。
13.基于同样的申请构思,本技术还提供一种芯片移除系统,包括控制装置、移动装置和如上所述的芯片移除头;
14.所述控制装置分别与所述芯片移除头及所述移动装置连接;所述控制装置被配置为控制所述移动装置以带动所述芯片移除头移动,以及控制所述芯片移除头解除所述待移除芯片与所述基板之间的连接,并将解除连接后的所述待移除芯片吸附在所述加热部的底面。
15.上述芯片移除系统,在芯片移动过程中,控制装置可控制芯片移除头解除待移除芯片与外部基板之间的连接,并将解除连接后的待移除芯片吸附在加热部的底面,并可控制移动装置带动芯片移除头移动,从而将吸附在芯片移除头上的芯片从基板移除;整个过程不会破坏待移除芯片,也不会破坏基板上对应的焊盘,既能避免待移除芯片在移除过程中对整面基板造成污染,又能保证基板上与该芯片对应的焊盘不被破坏,从而保证待移除芯片移除后的修复制程的正常进行;且控制过程简单、高效。
16.基于同样的申请构思,本技术还提供一种利用如上所述的芯片移除系统移除芯片的方法,包括:
17.控制所述移动装置带动所述芯片移除头移动;以及
18.控制所述芯片移除头解除所述待移除芯片与所述基板之间的连接,并将解除连接后的所述待移除芯片吸附在所述加热部的底面。
19.上述移除芯片的方法,在芯片移动过程中,可控制芯片移除头解除待移除芯片与外部基板之间的连接,并将解除连接后的待移除芯片吸附在加热部的底面,并可控制移动装置带动芯片移除头移动,从而将吸附在芯片移除头上的芯片从基板移除。整个芯片移除过程不会破坏待移除芯片,也不会破坏基板上对应的焊盘,既能避免待移除芯片在移除过程中对整面基板造成污染,又能保证基板上与该芯片对应的焊盘不被破坏,从而保证待移除芯片移除后的修复制程的正常进行;且控制过程简单、高效。
附图说明
20.图1为本技术实施例提供的芯片移除头结构示意图一;
21.图2为本技术实施例提供的芯片移除头结构示意图二;
22.图3为本技术实施例提供的绝缘嵌合部结构示意图一;
23.图4为本技术实施例提供的芯片移除头结构示意图三;
24.图5为本技术实施例提供的芯片移除头结构示意图四;
25.图6为本技术实施例提供的芯片移除头结构示意图五;
26.图7为本技术实施例提供的绝缘嵌合部结构示意图二;
27.图8为本技术实施例提供的芯片移除头结构示意图六;
28.图9为本技术实施例提供的芯片移除头结构示意图七;
29.图10为本技术实施例提供的芯片移除头结构示意图八;
30.图11为本技术实施例提供的芯片移除头结构示意图九;
31.附图标记说明:
32.1-电极部,11-正电极部,12-负电极部,13-间隙,14-加热部,141-加热部的底面,
142-加热部的顶面,15-第一通道,16-永磁铁材料层,17-导电绕组,151-第一通道口,152-第二通道口,2-绝缘嵌合部,21-绝缘嵌合部的主体,22-第二通道,221-第三通道口,222-第四通道口,3-连接管,131-第一凹槽,132-第一凸起,211-第二凸起。
具体实施方式
33.为了便于理解本技术,下面将参照相关附图对本技术进行更全面的描述。附图中给出了本技术的较佳实施方式。但是,本技术可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本技术的公开内容理解的更加透彻全面。
34.除非另有定义,本文所使用的所有的技术和科学术语与属于本技术的技术领域的技术人员通常理解的含义相同。本文中在本技术的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本技术。
35.相关技术中,对于显示面板上不良micro led芯片的移除,通常利用机械力将micro led芯片推掉,或者采用激光去除micro led芯片,在去除过程中都会破坏micro led芯片,导致需去除的micro led芯片或其碎片无规律飞溅,造成对整面显示面板污染。且显示面板上与该micro led芯片连接的焊盘也容易受外力而被损坏,导致后续在该位置设置新的micro led芯片不能正常与显示背板电连接,影响后续的修复。
36.基于此,本技术希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
37.本实施例提供了一种芯片移除头,可用于对基板上待移除的芯片进行移除。应当理解的是,本实施例中的基板可为但不限于电路板,电路板可为但不限于显示背板(可以为玻璃背板或pcb背板等)、照明用电路板或其他功能电路板。且本实施例中的电路板可以为柔性电路板,也可为刚性电路板。本实施例中待移除的待移除芯片可以包括但不限于不良芯片、位置设置错误的芯片或其他情况需要移除的芯片。本实施例中的上述待移除芯片可以为但不限于发光芯片、电阻芯片、驱动芯片、电容芯片等。为发光芯片时,可以为芯片尺寸大于200微米的普通尺寸的led芯片或大尺寸led芯片,也可为芯片尺寸小于等于200微米的微型发光芯片,例如mini led芯片或micro led芯片等。为了便于理解,本实施例下面以待移除芯片所连接的基板为电路板为示例进行说明。
38.本实施例提供的芯片移除头包括加热部及吸力引导部,其中:
39.加热部为导电材质,其与一外部电源连接,并在外部电源作用下产生一解离热量,也即加热部与外部电源导通时产生热量,该解离热量用以解除待移除芯片与电路板(即待移除芯片设置于电路板上)之间的连接。本实施例中,解离热量解除待移除芯片与电路板之间的连接,包括通过该解离热量对待移除芯片与电路板之间的连接点加热,从而降低连接点的粘结力。例如,在一些应用场景中,待移除芯片通过其电极与电路板上的焊盘通过焊料焊接或通过导电胶粘接时,此时的连接点包括但不限于待移除芯片与电路板上对应焊盘通过焊料或导电胶连接的电,在该应用场景下,通过该解离热量对焊料或导电胶加热,从而降低其粘接力。
40.应当理解的是,在本实施例中,加热部的电阻值可以根据所需热量的温度以及产生热量的时间等因素灵活选择,本实施例对其不做限制。例如,在一种应用示例中,加热部
可采用但不限于包含钨和钼的合金,其在与外部电源导通时通入电流,利用加热部的高电阻值产生热量形成高温;并可通过控制外部电源的电压、导通时间等调节加热部的瞬间高温值;且采用钨和钼的合金还可保证加热部在高温下长寿命且稳定的工作。当然,应当理解的是,本实施例中加热部的材质也可根据需求等同替换为其他材质,在此不再一一赘述。
41.在本实施例的一些示例中,芯片移除头还可包括电极部,电极部可包括相互绝缘的正电极部和负电极部,加热部则可通过该正电极部和负电极部与外部电源实现电连接。
42.在本实施例中,加热部包括相对的底面和顶面,加热部的底面在芯片移除过程中,与待移除芯片接触,也即是说,加热部的底面为与待移除芯片接触的一面;而吸力引导部被配置为引导解除连接后的待移除芯片吸附在加热部的底面。从而只需移动加热部就能将该待移除芯片从电路板移除;整个过程不会破坏待移除芯片,也不会破坏电路板上对应的焊盘,既能避免待移除芯片在移除过程中对整面电路板造成污染,又能保证电路板上的焊盘不被破坏,从而保证待移除芯片移除后的修复制程的正常进行。
43.应当理解的是,本实施例中加热部的底面可在整个芯片移除过程中都与待移除芯片接触,也可在芯片移除过程中,待移除芯片被吸附在加热部的底面时才与之接触。例如,在一种应用场景中,在利用芯片移除头去除电路板上待移除的待移除芯片时,将加热部移至电路板上待移除的待移除芯片位置处,使得加热部的底面朝向待移除芯片,且加热部的底面可与待移除芯片直接接触,也可与待移除芯片之间具有微小的缝隙;加热部在与外部电源导通流入的电流作用下产生热量,并将产生的热量传递给待移除芯片在电路板上的连接点,从而降低连接点的粘结力(也即解除待转移芯片与电路板之间的连接),且待移除芯片在吸力引导部的引导下被吸附在加热部的底面上;这样在该连接点的粘结力降低到一定程度后,只需移动加热部就能将该待移除芯片从电路板移除。
44.例如,在一种应用示例中,待移除芯片的电极与电路板上对应的焊盘通过焊料实现连接,此时的待移除芯片的电极在电路板上对应焊盘的连接点为通过焊料形成的焊点,通过将解离热量传递至该焊点,可以使得焊料融化,从而解除待转移芯片与电路板之间的连接。
45.又例如,在另一种应用示例中,待移除芯片的电极与电路板上对应的焊盘通过导电胶实现连接,此时的待移除芯片的电极在电路板上对应焊盘的连接点为通过导电胶形成的粘接点,通过将解离热量传递至该粘接点,可以使得导电胶融化,从而解除待转移芯片与电路板之间的连接。
46.当然,应当理解的是,待移除芯片的电极与电路板上对应焊盘的连接方式并不限于上述两种示例,还可等同替换为其他方式,在此不再赘述。
47.本实施例中,吸力引导部可利用但不限于真空吸附力、磁力等,引导解除连接后的待移除芯片吸附在加热部的底面。为了便于理解,本实施例下面分别以真空吸附力和磁力为示例进行说明。
48.一种示例所示的芯片移除头参见图1所示,电极部1包括相互绝缘的正电极部11和负电极部12,正电极部11和负电极部12与电源电连接。在图1中,正电极部11和负电极部12通过二者之间的间隙13实现绝缘隔离,当然在一些示例中,二者也可通过其他绝缘物质实现绝缘隔离;图1中加热部14同时与正电极部11和负电极部12电连接。
49.在图1中,正电极部11和负电极部12分别为正电极柱和负电极柱,正电极柱和负电
极柱的下端分别固设在加热部14的顶面142上,正电极柱和负电极柱的上端与电源电连接;正电极柱和负电极柱之间具有将二者绝缘隔离的间隙13;这种结构的设置,使得在加热部14位置处的电阻最大,电流在加热部14位置瞬间(例如可达到毫秒级别)产热,加热部14将热量(即解离热量)传递至待移除芯片在电路板上的连接点,使其粘结力降低。
50.应当理解的是,在本实施例中,正电极部11和负电极部12并不限于图1中所示的正电极柱和负电极柱结构,还可根据需求设置为其他结构,例如一种示例参见图2所示,并可通过但不限于导线或其他导电材质将正电极部11和负电极部12分别与导热部14电连接。
51.为了便于理解,本实施例下面以图1所示的芯片移除头为示例进行说明。应当理解的是,图1中的加热部14、正电极柱和负电极柱的材质可相同,且可一体成型,也可为非一体成型结构。当然,在另一些示例中,加热部14、正电极柱和负电极柱的材质也可相同,在此对其不再赘述。
52.参见图1所示,芯片移除头的吸力引导部包括贯穿加热部14的底面141和顶面142的第一通道15,加热部14的底面141和顶面142为相对的两个面,其中:
53.第一通道15位于加热部14的顶面142上的第二通道口152与负压装置连接,第一通道15位于加热部14的底面141上的第一通道口151在负压装置的作用下产生真空吸附力;且在芯片移除过程中,第一通道口151与待移除芯片相对应,第一通道口151的口径,与待移除芯片的顶面尺寸相匹配,待移除芯片的顶面为待移除芯片朝向加热部14的底面141的一面。
54.本实施例中的负压装置可以为各种使得第一通道15内形成负压产生真空吸附力的装置,例如可以为但不限于真空泵。为了便于理解,本实施例后续内容中的负压装置为真空泵为示例进行说明。
55.在本实施例中,第一通道口151的口径与待移除芯片的顶面尺寸相匹配,是指第一通道口151的最大口径,小于待移除芯片的顶面的最大尺寸(例如待移除芯片的顶面为矩形时,小于该矩形的长度或宽度或对角线等),从而使得待移除芯片被吸附在加热部14的底面141上。
56.在本实施例中的一种示例中,第一通道15的第二通道口152可通过连接管与负压装置连接,例如参见图5所示,第一通道15的第二通道口152可通过连接管3与负压装置连接。
57.在本实施例的另一种示例中,参见图3所示,吸力引导部包括形成有第二通道22的绝缘嵌合部2,第二通道22形成于绝缘嵌合部2的主体21内,并贯穿绝缘嵌合部2的上端和下端。其中,参见图4所示,绝缘嵌合部2嵌设于间隙13内,绝缘嵌合部2的下端靠近加热部14的顶面142,第二通道22的第三通道口221位于绝缘嵌合部2的下端与第一通道15的第二通道口152对接,第二通道22的第四通道口222位于绝缘嵌合部2的上端,与负压装置连接,例如也可通过但不限于连接管与负压装置连接。这样第一通道15通过第二通道22与负压装置形成连接。
58.在本实施例中,绝缘嵌合部2可采用耐高温的绝缘材质,例如一些应用场景中,绝缘嵌合部2的材质可采用但不限于高温陶瓷,聚醚醚酮或石英。在另一些应用场景中,绝缘嵌合部2也可由导电层和绝缘层所形成的复合层构成,例如导电层形成第二通道,绝缘层包裹导电层,绝缘层和导电层可采用耐高温材质。
59.在本实施例的一些示例中,为了提升绝缘嵌合部2在间隙13内固定的稳定性和可
靠性,可设置绝缘嵌合部2嵌设于间隙内后,绝缘嵌合部2与正电极柱和负电极柱形成过盈配合,从而使得绝缘嵌合部2牢牢的嵌合于间隙13内。
60.在本实施例的一些示例中,为了提升绝缘嵌合部2在间隙13内固定的稳定性和可靠性,设正电极柱和负电极柱相对的两侧面构成间隙的侧壁;并在至少一个侧壁上设有向加热部的顶面延伸的第一凹槽和/或第一凸起;并在绝缘嵌合部与间隙13的侧壁相对的至少一个外壁上设有向绝缘嵌合部的下端延伸的第二凸起和/或第二凹槽,其中:
61.上述第一凹槽与第二凸起相对应,第一凸起与第二凹槽相对应;在绝缘嵌合部嵌设于间隙内时,如果设有上述第一凹槽与第二凸起,则第二凸起卡合于第一凹槽内,和/或,如果设有上述第一凸起与第二凹槽,则第一凸起卡合于第二凹槽内。
62.为了便于理解,下面结合两种设置示例进行说明。
63.一种示例参见参图6至图8所示,其中,参见图6所示,在正电极柱和负电极柱相对的两侧面上设有从上往下延伸的第一凹槽131(也可只在其中一个侧面上设置第一凹槽131),参见图7所示,在绝缘嵌合部2与间隙13的侧壁相对的两个外壁(也可只在其中一个外壁)上设有向绝缘嵌合部2的下端延伸的第二凸起211;参见图8所示,在绝缘嵌合部2嵌设于间隙13内时,第二凸起211卡合于第一凹槽131内。
64.另一种示例参见参图9所示,其中,参见图9所示,在正电极柱和负电极柱相对的两侧面上设有从上往下延伸的第一凸起132(也可只在其中一个侧面上设置第一凸起132),在本应用示例中,在绝缘嵌合部2与间隙13的侧壁相对的两个外壁(也可只在其中一个外壁)上设有向绝缘嵌合部2的下端延伸的与第一凸起相应的第二凹槽(图中未示出),在绝缘嵌合部2嵌设于间隙13内时,第一凸起132卡合于第二凹槽内。
65.应当理解的是,上述对应的第一凸起、第二凹槽和/或对应的第一凹槽和第二凸起所设置的个数可以根据具体情况灵活选用,且可选择同时设置第一凸起、第二凹槽、第一凹槽和第二凸起,在此不再赘述。且应当理解的是,本实施例中第一凸起、第二凹槽、第一凹槽和第二凸起的具体形状可以灵活设置,本实施例对其形状不做限制。
66.在本实施例的中,正电极柱和负电极柱的横截面形状为弧形和尺寸可根据应用场景灵活设置。例如,在一些示例中,正电极柱和负电极柱的横截面形状可以相同,也可不同,且正电极柱和负电极柱的横截面形状可以为弧形(包括半圆形和非半圆形)、矩形、三角形、菱形等规则形状,也可为非规则形状,在此不再赘述。
67.在本实施例中的一些示例中,为了使得芯片移除头能更好的与待移除芯片匹配,且预留更丰裕的操作空间以及尽可能减少在芯片移除过程中,影响与待移除芯片邻近的其他芯片,可设置正电极柱和负电极柱在靠近其下端的横截面尺寸组件减小。例如参见图4所示,其中正电极柱和负电极柱的横截面形状为弧形,正电极柱和负电极柱在靠近其下端的横截面尺寸逐渐减小,形成类似锥形的形状。在本示例中,对于设置于间隙13内的绝缘嵌合部2的也可参考正电极柱和负电极柱设置,且绝缘嵌合部2的形状和尺寸可与间隙13相适配,且绝缘嵌合部2可以将间隙13完全填满,也可仅填充其中的一部分。
68.在本实施例的一种示例中,加热部的形状也可对应灵活设置,例如,加热部可为圆柱形加热部或圆锥形加热部,且加热部的上端横截面的尺寸,与正电极柱和负电极柱的下端横截面的尺寸相适配。例如,一种应用场景参见图4所示,加热部14为圆柱形,加热部14上端的横截面尺寸与正电极柱和负电极柱下端的横截面尺寸相适配,也即加热部14上端的外
边缘与正电极柱和负电极柱的下端的外边缘共面。且加热部14和正电极柱和负电极柱可以一体成型。这样在制作时,可以直接对一根完整的导电金属棒进行简单的加工,从而得到图1所示的芯片移除头,制作形成芯片移除头的工艺简单且成本低,且芯片移除头整体结构以及一体性好。
69.利用以上各示例中的芯片移除头去除电路板上待移除的待移除芯片时,将加热部14移至电路板上待移除的待移除芯片位置处,使得加热部14的底面141朝向待移除芯片,且加热部的底面可与待移除芯片直接接触(也可不接触,只要能保证热量传递和吸力吸附即可),加热部在正电极部11和负电极部12与电源导通流入的电流作用下产生热量,并将产生的热量传递给待移除芯片在电路板上的连接点,从而降低连接点的粘结力,且待移除芯片在负压装置通过第一通道和第二通道(即吸力引导部)产生的真空吸附力的引导下被吸附在加热部14的底面141上,在该连接点的粘结力降低到一定程度后,真空吸附力大于连接点的粘结力时,只需移动加热部14就能将该待移除芯片从电路板移除;整个过程不会破坏待移除芯片,也不会破坏电路板上对应的焊盘,既能避免待移除芯片在移除过程中对整面电路板造成污染,又能保证电路板上的焊盘不被破坏,从而保证待移除芯片移除后的修复制程的正常进行。在移动加热部14将待移除芯片从电路板移除后,可控制负压装置关闭从而使得产生的真空吸附力消失,进而将待移除芯片从芯片移除头释放,例如在将芯片移除头移动至对应的芯片回收位后,则将待移除芯片从芯片移除头释放将其放置于芯片回收位。
70.为了便于理解,本实施例以吸力引导部利用磁力,引导解除连接后的待移除芯片吸附在加热部的底面为示例进行说明。
71.在一种应用示例中,参见图10所示,吸力引导部包括设于加热部14的底面141上,产生磁吸力的永磁铁材料层16;通过永磁铁材料层16与待移除芯片上可被磁力吸附的具有磁性的层结构(例如金属电极、或在待移除芯片中设置的其他层结构)相配合,使得待移除芯片通过永磁铁材料层16产生的吸力下被引导吸附在加热部14的底面141上。在本应用示例中,在移动加热部14将待移除芯片从电路板移除后,可通过外力或其他方式将待移除芯片从芯片移除头释放;本示例中可将永磁铁材料通过溅射等方式设置于加热部14的底面141上。
72.应当理解的是,本应用示例中的永磁铁材料层16可以将加热部14的底面141全部覆盖,也可仅覆盖其中一部分,只要能与对应的待移除芯片配合将待移除芯片吸附在加热部14的底面141上即可。
73.应当理解的是,本应用示例中,永磁铁材料层16所采用的材质可以灵活设置,例如:永磁铁材料层16可以采用但不限于金属合金磁铁,可采用但不限于以下中的至少一种:
74.钕铁硼磁铁:是目前磁性最强的磁铁,被称为磁王,拥有极高的磁性能其最大磁能积高过铁氧体10倍以上。钕铁硼的机械加工性能非常好。工作温度最高可达200℃。而且地坚硬,性能稳定,有很好的性价比。但因为其化学活性很强,可以对其表面涂层处理,例如如锌zn,镍ni,环氧等。
75.铁氧体磁铁:主要原料包括ba0或sr0及fe
203
。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,己成为应用最为广泛的永磁体。
76.铝镍钻磁铁:是由铝、镍、钻、铁和其它微量金属元素构成的一种合金。铸造工艺可
以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钻永磁有着最低可逆温度系数,工作温度可高达600℃以上。铝镍钻永磁产品广泛应用于各种仪器仪表和其他应用领域。
77.衫钴磁铁:衫钴作为稀土永磁铁,不但有着较高的磁能积、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,衫钴磁铁更适合工作在高温环境中。
78.在另一种应用示例中,参见图11所示,吸力引导部包括设于加热部14上的导电绕组17,加热部14的底面141在导电绕组通电时产生磁吸力。也即加热部14及设置于其上的导电绕组17一起构成电磁铁。导电绕组17可以采用螺线管,当在通电螺线管内部插入金属材质的加热部14后,加热部14被通电螺线管的磁场磁化;磁化后的加热部14也变成了一个磁体,这样由于两个磁场互相叠加,从而使螺线管的磁性大大增强。电磁铁是可以通电流来产生磁力的器件,属非永久磁铁,可以很容易地将其磁性启动或是消除,也即其具有通电生磁,断电消磁的特性。且电磁铁所产生的磁场与电流大小、线圈圈数及中心的铁磁体有关。在设计电磁铁时,可根据当前需求设置线圈的分布和铁磁体(即加热部14)的选择,并利用电流大小来控制磁场。
79.在本应用示例中,可以设置导电绕组17的两电连接端分别与正电极部11和负电极部12电连接,从而提成芯片移除头的集成度。在本实施例的另一示例中,也可设置导电绕组17的两电连接端单独连接电源,具体可根据应用需求灵活设置。
80.利用本应用示例中的芯片移除头去除电路板上待移除的待移除芯片时,将加热部14移至电路板上待移除的待移除芯片位置处,使得加热部14的底面141朝向待移除芯片,且加热部的底面可与待移除芯片直接接触,也可不接触,加热部在正电极部11和负电极部12与电源导通流入的电流作用下产生热量,并将产生的热量传递给待移除芯片在电路板上的连接点,从而降低连接点的粘结力,且待移除芯片在导电绕组17通电后在磁吸力的引导下被吸附在加热部14的底面上,在该连接点的粘结力降低到一定程度后,磁吸力大于连接点的粘结力时,从而只需移动加热部14就能将该待移除芯片从电路板移除;整个过程不会破坏待移除芯片,也不会破坏电路板上对应的焊盘,既能避免待移除芯片在移除过程中对整面电路板造成污染,又能保证电路板上的焊盘不被破坏,从而保证待移除芯片移除后的修复制程的正常进行。在移动加热部14将待移除芯片从电路板移除后,可控制导电绕组17断电从而使得产生的磁吸力消失,进而将待移除芯片从芯片移除头释放,例如在将芯片移除头移动至对应的芯片回收位后,则将待移除芯片从芯片移除头释放将其放置于芯片回收位。
81.另一可选实施例:
82.本实施例提供了一种芯片移除系统,其中,包括控制装置、移动装置和如上实施例所示的芯片移除头,其中:
83.控制装置分别与芯片移除头及移动装置连接。应当理解的是,在本实施例的一些示例中,控制装置可分别直接与芯片移除头及移动装置连接,也可通过移动装置与芯片移除头连接,或通过芯片移除头与移动装置连接。
84.控制装置被配置为控制移动装置以带动芯片移除头移动,例如控制装置控制移动装置带动芯片移除头移至待移除芯片位置处,及从待移除芯片位置处移走。控制装置还被配置为控制芯片移除头解除待移除芯片与所述基板之间的连接,并将解除连接后的待移除芯片吸附在加热部的底面。
85.其中,一种利用如上所示的芯片移除系统移除芯片的方法包括:
86.控制移动装置带动芯片移除头移动,以控制芯片移除头解除待移除芯片与基板之间的连接,并将解除连接后的待移除芯片吸附在所述加热部的底面,例如,一种控制示例如下:
87.控制移动装置带动芯片移除头移至待移除芯片位置处,并控制正电极部和负电极部与外部电源导通,也即控制加热部与外部电源导通;
88.在待移除芯片在电路板上的连接点受热粘结力降低,且待移除芯片在吸力的作用下被吸附在加热部的底面上后,控制移动装置带动芯片移除头从待移除芯片位置处移走,并控制正电极部和负电极部与电源断开。
89.应当理解的是,本实施例中的控制装置可以为但不限于后台控制平台,例如后台控制主机、服务器等。本实施例中的移动装置可以采用各种能带动芯片移除头移动的装置,可为但不限于机械臂、移动轨道,只要能在控制装置的控制下,带动芯片移除头移至待移除芯片位置处,及从待移除芯片位置处移走即可。为了便于理解,本实施例下面以芯片移除头为图4所示的结构进行说明,在本示例中,芯片移除系统还包括负压装置,利用该芯片移除系统进行芯片移除的过程如下:
90.将芯片移除头电气连接,包括将芯片移除头的正电极部和负电极部与电源正、负电极相连接,将第一通道孔通过第一通道和第二通道与负压装置连接。
91.机械电机(即移动装置的一种示例)带动芯片移除头移动至需要移除的目标位置处并与待移除的待移除芯片接触。
92.开启真空吸附,并在正负电极通入电流(可以在上一步骤中同时在正负电极通入电流,也可在上一步骤执行之前在正负电极通入电流,也可在上一步骤执行之后在正负电极通入电流;相应的,开启真空吸附的控制类似,在此不再说明),电流在加热部处高电阻值下产生高温,可通过控制电压、时间调节瞬间高温值,达到待移除芯片在电路板上的连接点的粘结力(例如焊点的焊接力)降低的目的。
93.机械电机带动芯片头向远离电路板的方向移动(在该步骤之前,可以先断开正电极部和负电极部与电源的电连接,也可在该步骤之后,断开正电极部和负电极部与电源的电连接,或只有在所有的待移除芯片都移除后再断开正电极部和负电极部与电源的电连接),在真空吸附力的作用下,实现待移除芯片被从电路板移除。
94.机械电机带动移除头到达次品回收位后,通过去真空实现待移除芯片的释放,重复以上动作,进行一下坏点移除。
95.应当理解的是,在本实施例中,芯片移除系统可以进行其他的等同替换。例如,在一种应用示例中,也可设置移动承载台,该移动承载台用于承载电路板,控制装置可控制移动承载台移动至芯片移除头下,并使得电路板上需要移除的待移除芯片与芯片移除头相对应;当然,在另一些示例中,也可控制芯片移除头和电路板都移动,且相对移动从而使得电路板上需要移除的待移除芯片与芯片移除头相对应等。
96.又例如,在一些应用示例中,芯片移除头也可采用图10或图11中所示的产生磁吸力的移除头,且其进行芯片移除的控制过程与以上示例的芯片移除过程类似,在此不再赘述。
97.应当理解的是,本技术的应用不限于上述的举例,对本领域普通技术人员来说,可
以根据上述说明加以改进或变换,所有这些改进和变换都应属于本技术所附权利要求的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1