近红外表面等离激元近场增强型高迁移率晶体管探测器

文档序号:31166685发布日期:2022-08-17 08:47阅读:93来源:国知局
近红外表面等离激元近场增强型高迁移率晶体管探测器

1.本发明涉及一种近红外表面等离激元近场增强型高迁移率晶体管探测器,属于半导体器件技术领域。


背景技术:

[0002]ⅲ族氮化物是典型的宽禁带半导体材料,作为第二代半导体材料的代表是仅次于硅的半导体材料之一,而其中gan在光电子学和电力电子学中都有广泛的应用。gan高迁移率场效应晶体管(high electrical mobility transistor,hemt)在各种电子设备中都有广泛应用,有望超越摩尔定律的极限。由于异质结中诱导二维电子气的高电子迁移率和材料的高临界电场,gan hemt不仅有利于实现在大尺寸高性能器件的新型结构以达到高功率集成,还可以应用于更小尺寸的器件,并已经得到了广泛应用。本发明设计了一种au纳米颗粒表面等离激元增强型特殊组分结构的ingan/gan hemt探测器,探索实现近红外多用途hemt探测器。
[0003]
对于hemt探测器而言,材料的禁带宽度是限制探测器对应波长的一个关键因素,然而传统的gan/algan结构为宽禁带半导体,响应波段为紫外波段。生物分子的分子光谱多位于红外波段,因此找到合适的红外响应材料、且材料满足形成二维电子气的要求成为亟待解决的问题。除此之外,引入表面等离激元,通过光诱导表面等离激元共振实现红外波段的光场增强,可以将光能更有效转化为电信号,在生物传感等方面有着很大潜力。


技术实现要素:

[0004]
本发明的目的在于提供一种近红外表面等离激元近场增强型高迁移率晶体管探测器。
[0005]
本发明的目的通过以下技术方案实现:
[0006]
一种近红外表面等离激元近场增强型高迁移率晶体管探测器,其特征在于自下而上依次包括:衬底层、成核gan层、底部gan缓冲层、ingan渐变层、inn层、gan顶层,源极和漏级,所述gan顶层在源极和漏级之间设有散布或矩阵分布金纳米颗粒的区域,形成表面等离激元结构。
[0007]
优选的,所述金纳米颗粒的直径为20~~200nm,分布间距为200nm~2μm。
[0008]
优选的,所述金纳米颗粒的形状为棒状、球状、环状、星型结构、钳形结构。
[0009]
优选的,所述ingan渐变层的in组分由0逐渐增加为100%,靠近底部gan缓冲层的区域in组分为0,靠近inn层的部分in组分达到100%,在inn层与gan顶层的界面处分布二维电子气。
[0010]
优选的,所述ingan渐变层的厚度为500~2500nm,inn层厚度为25nm~150nm。
[0011]
优选的,所述衬底层为蓝宝石、si或sic材料。
[0012]
优选的,所述gan顶层为势垒层,厚度为15nm~100nm。
[0013]
本发明器件的栅极为开放性拓展栅极,被测物质与表面等离激元结构耦合,共同
作用形成栅信号。
[0014]ⅲ族氮化物作为第三代半导体,其直接带隙的特点使之广泛应用在光电探测领域。由于ⅲ族氮化物可以通过改变三元化合物组分的方式实现禁带宽度连续可调,由其制备而成的光电探测器响应范围为紫外波段(aln,禁带宽度6.2ev)到红外波段(inn,禁带宽度0.7ev)。
[0015]
gan和inn异质结构中,由于其较大的禁带宽度差距,半导体导带的偏移较大,在异质结附近有强烈的自发和压电极化效应,在非故意掺杂的情况下便能在界面处产生高浓度的二维电子气(2deg)。二维电子气具有极高的载流子面密度和极高的迁移率,利用2deg的这些特性可以制备高电子迁移率晶体管(hemt)。这种晶体管广泛应用于电力电子器件以及传感探测。与传统的algan/gan异质结构不同,gan/inn异质结构中,gan对可见和红外光透过性较好。当光源照射在器件表面时,会穿过gan势垒层并被其下的inn吸收,inn可有效吸收近红外光产生的光生电子会引起二维电子气浓度的变化,从而改变源漏之间的电流。利用这一特性可以将gan/inn hemt用作高效近红外光电探测器。
[0016]
表面等离激元共振是金属吸收特定波长的电磁波后其表面引起的的自由电子集体振荡,这种现象可以将光能进行增强,这恰恰符合我们对光电响应的设计。在各种可引起等离激元的金属中,金以其极稳定的物理化学性质、且共振波长近红外可调等特点,在生物传感领域脱颖而出。当金纳米颗粒作用在传感器表面,会将大部分共振波长的光源吸收,并在其周围集中共振,二者的作用叠加使得金纳米颗粒附近广场大大增强,利用合适尺寸的金纳米颗粒使得其等离激元共振波长对应生物大分子反射光波长,此时入射光依据与等离激元共振的待测物波长,发生特定的增强,由此可以实现生物传感,且同样的gan/inn hemt器件结构可以用不同尺寸的金纳米颗粒实现对不同大分子对象的检测。
[0017]
本发明通过窄禁带半导体异质结实现红外响应,采用表面等离激元增强型晶体场效应管结构以通过光增强提高灵敏度,实现了近红外探测。
附图说明
[0018]
图1是本发明等离激元近场增强型高迁移率晶体管探测器结构原理图。
[0019]
图2是本发明表面等离激元为au纳米棒阵列结构的结构原理图。
[0020]
图3是本发明模拟计算得到的au纳米棒扩展栅光响应图。
[0021]
图4是本发明模拟计算得到au纳米棒表面等离激元特定光增强图。
[0022]
图5是有机基团特征波长图。
[0023]
图6是本发明表面等离激元为随机分布的au纳米钳结构原理图。
具体实施方式
[0024]
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。图1为本发明的原理图。
[0025]
实施例1
[0026]
如图2所示,一种灵敏度的近红外表面等离激元近场增强型高迁移率晶体管探测
器结构,其结构自下而上依次包括:
[0027]
(1)蓝宝石衬底层;
[0028]
(2)成核层,为30nm厚度的gan;
[0029]
(3)底部gan缓冲层,厚度是1200nm的gan层;
[0030]
(4)ingan渐变层,厚度是1200nm的渐变ingan层;
[0031]
(5)inn层,厚度是100nm;
[0032]
(6)gan顶层,厚度是30nm的i型gan势垒层;
[0033]
(7)表面等离激元结构,直径为30nm、长度为80nm,间距为40nm的金纳米棒阵列结构;
[0034]
(8)形成欧姆接触电极的金属为钛/铝/镍/金(20nm/300nm/20nm/300nm)
[0035]
(9)源漏电极长度为150μm,源漏间距为50μm。
[0036]
利用silvaco tcad软件对gan/inn异质结的形成进行了建模,在此基础之上得到了gan/inn hemt器件结构,分别设置有光/无光的条件,其中光照波长范围为0.4~2μm。研究了不同的栅压(vgate)对输运特性和光电响应的影响,并获得了较好的器件光电响应,如图3所示。在各个栅压下,获得各个条件下的光电流,可见有光的输出(虚线)相对无光的输出(实线)都有了显著的增加。显示出该结构对近红外光有显著的探测响应。
[0037]
利用fdtd软件,通过电磁场基本原理利用米氏散射理论进行建模,模拟了不同大小、不同长径比的金纳米棒的消光截面,获得了强烈的近红外等离激元共振峰及较小的半高宽,且共振波长可连续调节。如图4所示,在相同截面尺寸的条件下,金纳米棒的长度(l)可对共振波长产生显著的调制作用,可覆盖所有近红外波段。这种共振增强的特定光信号将进一步增强输出的电信号。
[0038]
各个有机基团组合都有特征的波长,如图5所示,本发明器件可以通过改变金纳米棒的长度的方法,调整共振波长,可对图中双箭头范围的对应有机基团及含有其组合的有机分子进行探测。对于球状、环状、星型结构等其他结构的金纳米颗粒,也可以通过改变其粒径的方式,调整共振波长,从而与对应的有机基团的特征波长匹配,实现对含有该有机基团的分子的探测。
[0039]
实施例2
[0040]
如图6所示,本灵敏度的近红外表面等离激元近场增强型高迁移率晶体管探测器结构,除表面等离激元结构外,其余结构与实施例1相同。表面等离激元结构为:最大直径为60nm,最大宽度为10nm,平局间距200nm随机分布的金纳米钳形结构。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1