具有抗单粒子烧毁能力的肖特基二极管器件及制备方法

文档序号:31598475发布日期:2022-09-21 07:50阅读:367来源:国知局
具有抗单粒子烧毁能力的肖特基二极管器件及制备方法

1.本发明属于功率半导体器件技术领域,特别是涉及一种基于电场调制效应的功率半导体器件抗单粒子烧毁加固结构及其制备方法。


背景技术:

2.碳化硅(sic)具有宽禁带、高临界击穿电场、高热导率等优异的电学和热学性能,是一种很有前途的电力半导体器件材料。因此,sic肖特基二极管非常适合空间功率转换应用。碳化硅功率半导体器件结势垒肖特基二极管(jbs)结合了肖特基势垒二极管(sbd)低导通电压和pin二极管低泄漏电流的优点,被广泛应用于电力电子系统的电源管理,在航空航天领域具有巨大开发潜力。
3.但是,研究表明sic肖特基二极管对高能离子辐照极为敏感,如果反向偏压足够高,则会导致灾难性的单粒子烧毁(seb)。当器件处于反向偏置状态时,高能离子入射后会产生大量电子-空穴对,从而降低局部电阻率,允许瞬时大电流流动,并产生焦耳加热。同时,离子入射后在肖特基界面产生高电场,从而改变了漂移区的电场分布。强电场和高传导电流密度的结合会导致功耗增加,从而晶格温度将升高到sic的升华温度或金属/sic界面的融化温度以上,导致器件泄漏电流退化或灾难性的seb。


技术实现要素:

4.本发明的主要目的在于提出一种具有抗单粒子烧毁能力的肖特基二极管器件结构及其制备方法,以解决现有技术中的jbs二极管在高能离子入射后出现器件肖特基接触界面最高温度大于金属融化温度和器件内部温度大于sic材料的升华温度的现象,从而发生单粒子烧毁导致器件灾难性失效的问题。
5.为实现上述目标,本发明采用如下的技术方案:
6.一种具有抗单粒子烧毁能力的肖特基二极管器件结构,在半导体功率器件的阳极处形成两个沟槽,所述沟槽底部通过多次离子注入形成p+型区域和p-型缓冲层;在p-缓冲层和第一n型漂移区之间设置n型场截止层;在n型场截止层之上外延形成第二n型漂移区;在第一n型漂移区和n+衬底之间设置n型不同浓度多缓冲层。
7.进一步,所述p+型区域的深度为0.6μm,宽度为2μm,掺杂浓度为5
×
10
18
cm-3
;所述p-型缓冲层的深度为0.2μm,宽度为2μm,掺杂浓度为1
×
10
17
cm-3

8.进一步,所述沟槽的深度为2μm,宽度为2μm,相邻沟槽的距离为2μm。
9.进一步,所述n型场截止层外延宽度为8μm,整体外延厚度为0.4μm,掺杂浓度为1
×
10
17
cm-3

10.进一步,所述第一n型漂移区和第二n型漂移区的掺杂浓度相同,均为2
×
10
15
cm-3

11.进一步,所述n型不同浓度多缓冲层结构外延宽度为8μm,整体外延厚度为15μm,其包括5层厚度为3μm的子层,子层的掺杂浓度由上至下不断增大,掺杂范围为:5.5
×
10
16
cm-3
~8.5
×
10
17
cm-3

12.本发明还提供一种具有抗单粒子烧毁能力的肖特基二极管器件结构制备方法,包括:
13.步骤1、制备肖特基二极管器件所需衬底区域;
14.步骤2、在所述衬底区域经多次外延形成n型不同浓度多缓冲层结构;
15.步骤3、在所述n型不同浓度多层缓冲层上方外延形成第一n型漂移区;
16.步骤4、在所述第一n型漂移区上方利用外延技术形成n型场截止层;
17.步骤5、在所述n型场截止层上方利用外延技术形成第二n型漂移区;
18.步骤6、利用刻槽技术在所述n型漂移区1上方形成沟槽;
19.步骤7、在上述沟槽底部通过两次离子注入形成p-型缓冲层和p+型区域;
20.步骤8、在器件正面和背面生长金属,完成器件制备。
21.本发明的有益效果:
22.本发明采用刻槽后两次离子注入形成p+区域和p-缓冲层,在高能粒子入射后,可以大大地将高电场屏蔽在肖特基界面之外,同时大大地降低了肖特基界面的载流子碰撞电离产生率,从而降低瞬态电流密度,低的瞬态电流密度可以降低热量的产生,进而使器件表面温度大大地降低,避免器件阳极金属融化导致器件灾难性失效,从而提高器件抗seb性能。同时,p-缓冲层和n型场截止层可以减小空间电荷区的厚度和界面处的电子浓度,进而使高能粒子入射后,界面处的温度转移到器件内部。而且,n型多缓冲层结构可以大大降低漂移区和衬底同质结处的电场峰值和碰撞电离率,因此可以大大降低同质结处的晶格温度。通过后续对不同功率器件的仿真验证,引入上述结构的器件在不同位置入射时发生seb的概率降低,抗seb可靠性大大提高。
附图说明
23.后文将参照附图以示例性而非限制性的方式详细描述本技术的一些具体实施例。附图中相同的附图标记标示了相同的或者是类似的部件或者部分。本领域技术人员应该理解,这些附图未必是按照比例绘制的。附图中:
24.图1是传统的jbs二极管器件的元胞结构示意图;
25.图2是基于本发明的沟槽jbs二极管抗单粒子烧毁器件的元胞结构示意图;
26.图3~9是图2所示沟槽jbs抗单粒子烧毁器件制作流程图;
27.图10是图1所示结构的单粒子烧毁效应的器件温度随时间变化曲线图;
28.图11是图2所示结构的单粒子烧毁效应的器件温度随时间变化曲线图;
29.图12是图1所示结构和图2所示结构在粒子从n型区域入射时,不同反向偏置电压下的肖特基接触界面温度。
30.具体实现原理
31.为使得本发明的目的、技术方案和优点更加清楚,一下结合附图对本发明进行具体阐述。
32.如图1、2所示,本发明提供一种具有抗单粒子烧毁能力的肖特基二极管器件结构,所示图2与图1结构不同之处在于,图2中增加了多个不同浓度的n型缓冲层、n型场截止层、p-缓冲层以及刻蚀形成的沟槽。具体地,在器件的n+衬底和第一n-漂移区2之间设置一个n型多层缓冲层结构,所述n型不同浓度多缓冲层结构外延宽度为8μm,整体外延厚度为15μm,
其包括5层厚度为3μm的子层,子层的掺杂浓度由上至下不断增大,掺杂范围为:5.5
×
10
16
cm-3
~8.5
×
10
17
cm-3
;通过刻蚀形成沟槽,并在沟槽填充金属形成器件阳极,所述沟槽的深度为2μm,宽度为2μm,相邻沟槽的距离为2μm;通过两次离子注入形成p+区域和p-缓冲层,所述p+型区域的深度为0.6μm,宽度为2μm,掺杂浓度为5
×
10
18
cm-3
;所述p-型缓冲层的深度为0.2μm,宽度为2μm,掺杂浓度为1
×
10
17
cm-3
;在p-缓冲层和第一n-漂移区2之间设置n型场截止层;所述n型场截止层外延宽度为8μm,整体外延厚度为0.4μm,掺杂浓度为1
×
10
17
cm-3
,在n型场截止层之上外延形成第二n型漂移区;所述第二n型漂移区1和第一n型漂移区2的掺杂浓度相同,均为2
×
10
15
cm-3

33.进一步,本发明功率器件抗单粒子烧毁加固结构,该结构通过刻槽后两次离子注入形成p+区域和p-缓冲层,在高能粒子入射后,可以大大地将高电场屏蔽在肖特基界面之外,同时大大地降低了肖特基界面的载流子碰撞电离产生率,从而降低瞬态电流密度,低的瞬态电流密度可以降低热量的产生,进而使器件表面温度大大地降低,避免器件阳极金属融化导致器件灾难性失效,从而提高器件抗seb性能。同时,p-缓冲层和n型场截止层可以减小空间电荷区的厚度和界面处的电子浓度,进而使高能粒子入射后,界面处的温度转移到器件内部。因此,本发明器件结构的seb安全工作电压得到显著地提高。
34.如图3-9所示,本发明还提供一种具有抗单粒子烧毁能力的肖特基二极管器件结构制备方法,包括:
35.步骤1、制备肖特基二极管器件所需衬底区域;
36.步骤2、在所述衬底区域经多次外延形成n型不同浓度多缓冲层结构;
37.步骤3、在所述n型不同浓度多层缓冲层上方外延形成n型漂移区2;
38.步骤4、在所述n型漂移区2上方利用外延技术形成n型场截止层;
39.步骤5、在所述n型场截止层上方利用外延技术形成n型漂移区1;
40.步骤6、利用刻槽技术在所述n型漂移区1上方形成沟槽;
41.步骤7、在上述沟槽底部通过两次离子注入形成p-型缓冲层和p+型区域;
42.步骤8、在器件正面和背面生长金属,完成器件制备。
43.下面采用仿真验证方式仅仅对图1和图2所示两种结构进行对比研究讨论:
44.传统结构的元胞宽度为8μm,漂移区浓度为2
×
10
15
cm-3
,p+区域的厚度为0.8μm;加固结构的元胞宽度为8μm,漂移区1和漂移区2的浓度均为2
×
10
15
cm-3

45.仿真过程中,选择入射粒子的能量(linear energy transfer,let)为0.5pc/μm(对于sic材料,0.1pc/μm=15.1mev/mg/cm2),粒子入射位置为n型区域和p型区域(粒子垂直入射且贯穿整个器件),入射轨迹半径为0.05μm,电荷产生的初始时间为4
×
10
12
s,高斯分布函数的时间宽度为2
×
10
12
s。
46.根据图10仿真结果,当入射粒子的let值为0.5pc/μm时,器件的反向偏置电压为1000v,粒子分别从n型区域和p型区域上方垂直入射时,图1结构的器件最高晶格温度远远超过3100k,器件发生热击穿导致灾难性失效。
47.图11显示了图2结构当入射粒子的let值为0.5pc/μm,器件的反向偏置电压为1000v,粒子分别从n型区域和p型区域上方垂直入射时的仿真结果。仿真结果显示,粒子从n型区域和p型区域上方垂直入射时全局最高温度分别为1989k和1973k,未发生热击穿。
48.根据图12仿真结果,可以得出本发明器件结构在反向偏置很高时,器件肖特基界
面处的温度依然保持较低的温度,从而避免器件阳极金属融化,导致器件失效。而传统jbs结构的肖特基界面在较小的反向偏置电压时,器件肖特基界面处的温度就达到相对较高温度。正是由于图2结构引入了沟槽结构,大大地降低了肖特基界面处的电场和载流子碰撞电离产生率,从而降低瞬态电流密度,低的瞬态电流密度可以降低热量的产生,进而使器件表面温度大大地降低,使器件的seb安全工作电压得到显著提升。
49.显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的要点和范围。因注意到的是,以上所述仅仅为本发明的具体实施例,并不限制本发明,凡在本发明的精神和原则之内,所做的调整和优化,皆属于本发明权利要求的涵盖范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1