自适应阵列装置的制作方法

文档序号:6829420阅读:117来源:国知局
专利名称:自适应阵列装置的制作方法
技术领域
本发明涉及利用多个天线自适应地作成方向图的自适应阵列装置。
近年来,在数字方式的通信装置中,为了提高传输效率,通过用数字信息信号(基带信号)调制载波进行信息的传输。
在数字通信中,通过提高传输速度或分时复用而将多个用户收容到同一频率中的多频道化,实现了频率资源的有效利用。其反面则是伴随传输速度的高速化,衰减引起的通信品质的劣化却成了问题,现在,已开发了各种对策技术。
作为衰减对策之一,引人注目的是自适应阵列方式。所谓自适应阵列方式,就是利用多个天线作成方向图(也称为阵列天线图)而电波到达特定方向的用户的方式。例如,具有4组由发信电路、收信电路和天线构成的无线部的自适应阵列装置通过分别调整发信时各发信电路的增益和发信信号的相位以及收信时各收信电路的增益和收信信号的相位,便可形成发信时和收信时的方向图。关于自适应阵列方式的详细情况,记载在「空间领域における适应信号处理とその应用技术论文特集」(电子通信学会论文志VOL.J75-B-II NO.11NOVEMBER)中,这里,省略详细的说明。
为了使用自适应阵列方式进行双工通信,最好双向形成对通信对方的方向图。在应用于无线电话等移动通信时,在移动机侧,有装置的大小和天线数等物理的限制,所以,在移动机侧控制方向图是不现实的。因此,在无线基站,在收信时和发信时都形成方向图。即,在基站中,在发信时也形成和收信时最合适地形成的方向图相同的方向图而发射电波。这样,在无线基站中,通过对多个移动机形成相互不同的方向图,便可重叠到1个频率上同时进行通信。该通信称为路分多址(PDMA(Path Division Multiple Access))通信。关于该PDMA,记载在「パス分割多元接续(PDMA)移动通信方式」(信学技报RCS93-84(1994-01),pp37-44)中,所以,省略详细的说明。
先有技术的自适应阵列装置通过形成不同的方向图,可以有效地利用1个波(1个频率),但是不能相互有效地利用多个波(多个频率)。例如,没有开发在无线电话机的基站中预先限定了分配的频率时更有效地利用频率资源的技术。
本发明的目的旨在提供根据状况高效率地利用多个波并且有效地收容多个移动机的自适应阵列装置。
为了达到上述目的,本发明的自适应阵列装置具有形成所有的天线的阵列天线图的第1形成单元、将多个天线分为由2个以上的天线构成的多个组并对所分的各组使用不同的频率形成组内的天线的阵列天线图的第2形成单元和有选择地切换第1形成单元的方向图形成与第2形成单元的方向图形成的控制单元。
按照该结构,自适应阵列装置切换将全部天线作为1个阵列天线而路径重叠的动作模式和各组作为阵列天线而路径重叠的动作模式,所以,通过根据状况切换某一动作模式而切换1波和多个波的利用,可以高效率地利用频率资源并且可以有效地收容多个移动机。
另外,上述自适应阵列装置可以作为时分多路方式的无线电话机的基站使用,上述控制单元根据线路连接的频道数进行上述切换。
此外,第2形成单元也可以采用在某一组中作为控制频道使用的时间间隙不形成阵列天线图、而在其他时隙形成阵列天线图的结构。
按照该结构,本自适应阵列装置除了上述效果外,还可以作为无线基站而设置,存在不适用于路径重叠的控制频道,所以,与全天线模式相比,在组模式中可以容纳更多的通信频道。
另外,上述自适应阵列装置具有mn(m、n是2以上的整数)条天线,上述第2形成单元分割为由m条天线构成的n个组。
按照该结构,各组的天线条数是相同的,可以使各组的路径重叠数相同,所以,可以更简单地形成阵列天线图。
此外,上述自适应阵列装置具有数字信号处理器,上述第1形成单元在数字信号处理器中通过计算赋予所有的天线的增益和相位来形成阵列天线图,上述第2形成单元在数字信号处理器中通过计算赋予各组内的天线的增益和相位来形成阵列天线图。
按照该结构,阵列天线图的形成可以利用使数字信号处理器动作的程序而实现,所以,任意设定组数、天线数、各组的路径重叠数就是很容易的,而且也可以很容易地实现动态地变更它们。
附图的简单说明

图1是表示本发明实施例1的自适应阵列装置的结构的框图。
图2是全部天线模式的动作说明图。
图3是组模式的动作说明图。
图4是天线10a~80a的配置例。
图5是表示全天线模式的基带部1的TDMA/TDD处理和路径重叠处理的情况的说明图。
图6是表示组模式的基带部1的TDMA/TDD处理和路径重叠处理的情况的说明图。
图7是表示信号处理部2的更详细的结构的框图。
图8是表示由第1图形计算部6计算的参量的相互关系的说明图。
图9是表示由第2图形计算部7计算的参量的相互关系的说明图。
图10是表示由第3图形计算部8计算的参量的相互关系的说明图。
图11是表示控制部3进行的切换全天线模式和组模式的处理的流程图。
图12是表示实施例2的自适应阵列装置的结构的框图。
图13是表示组模式的基带部1的TDMA/TDD处理和路径重叠处理的情况的说明图。
实施发明的最佳的形式(实施例1)实施例1的自适应阵列装置作为利用由PHS标准规定的双工分时多路(TDMA/TDD)方式通过线路连接PHS电话机的PHS基站而设置,除了上述分时多路外,也进行路分多址(以下,称为路径重叠)。
<全体结构>
图1是表示实施例1的自适应阵列装置的结构的框图。
如图所示,本自适应阵列装置由基带部1、信号处理部2、控制部3、本机振荡器4和5、天线10a~80a、前端模块(以下,称为FEM)10b~80b和无线部10c~80c构成,形成全部天线10a~80a的路径重叠用的方向图,分割为由天线10a~40a构成的组(以下,称为组A)和由天线50a~80a构成的组(以下,称为组B),分割的各组使用不同的频率,切换组内的天线形成路径重叠用的方向图。下面,将形成全部天线10a~80a的路径重叠用的方向图而进行通信的情况称为「全天线模式」,将在组A和组B中使用不同的频率并且各组形成4条天线的路径重叠用的方向图而进行通信的情况称为「组模式」。另外,上述方向图也称为阵列天线图。
图2表示全天线模式的动作说明图。图中,表示在全天线模式中对4台子机PS1~PS4使用相同频率f1进行路径重叠的情况。
另外,图3表示组模式的动作说明图。图中,表示在组模式中利用组A对2台子机PS1、PS2使用频率f1进行路径重叠,同时,利用组B对2台子机PS3、PS4使用频率f2进行路径重叠的情况。图2和图3表示分时多路的1时隙的路径重叠的情况。
在图1中,基带部1在通过电话交换网而连接的多个线路与信号处理部2之间收发多个信息信号(表示声音或数据的基带信号)。在本实施例中,对于分时多路复用,对各TDMA/TDD帧多路化为4个频道,对于路径重叠用,对TDMA/TDD帧中的每1个频道最多重叠4个信息信号。这里,所谓TDMA/TDD帧,就是具有5ms的周期、由可以8等分的上行(从PHS无线电话机向本基站)4时隙和下行(从本基站向PHS无线电话机)4时隙构成。
信号处理部2全天线模式中将8条天线作为1个阵列天线,计算用于对应路径重叠的各信号形成方向图的各种参量(第1图形计算部6),在组模式中将组A、组B分别作为1个阵列天线,计算用于对各组应路径重叠的各信号形成方向图的各种参量(第2、第3图形计算部7、8)。这里,所谓各种参量,包括赋予对应路径重叠的各信号收发该信号的多个天线的增益和相位量。即,1个信号的方向图,在从多个天线同时发或收该信号时通过对各天线调整赋予该信号的增益和相位量而形成。增益的调整,通过调整例如与天线对应的发信部或收信部的放大率或者通过对各天线调整发信信号或收信信号本身的振幅而进行。结果,就是对各天线调整了发信信号的振幅。相位的调整,通过将信号本身的相位附加到各天线上而进行。路径重叠,通过对多个收发信号形成不同的方向图而实现。
控制部3根据基带部1的通信量(线路连接的PHS无线电话机的台数)等切换全天线模式和组模式。
本机振荡器4对无线部10c~40c生成本地频率信号,本机振荡器5对无线部50c~80c生成本地频率信号。本机振荡器4、5在控制部3的控制下,在全天线模式中生成同一频率的本地频率信号,在组模式中生成不同的频率的本地频率信号。另外,本机振荡器4、5在内部具有2个频率合成器,通过对备时隙交替地切换频率合成器,对各时隙生成不同的本地频率信号。
由天线10a、具有大功率放大器13和低噪音放大器14以及天线开关15的FEM10b和具有发信部11和收信部12的无线部10c构成的电路部分使用从本机振荡器4输出的本地频率信号收发应路径重叠的多个信号。对于电路部分a、b、c~电路部分40a、b、c也一样。
由天线50a、FEM50b和无线部50c构成的电路部分使用从本机振荡器5输出的本地频率信号收发应路径重叠的信号。对于电路部分60a、b、c~电路部分80a、b、c也一样。
<天线配置>
图4表示天线10a~80a的配置例。图中,表示从上看8条垂直天线时的配置关系,表示将全部天线等间隔地配置在圆周上、同时将在组模式中分割的组内的4个天线配置在正方形的4个顶点的例子。
除了这样配置在圆周上以外,最好如将不同的组的2条天线交替地配置为4列时等那样配置为容易在多个方向形成方向图。另外,为了容易形成方向图,天线条数不限于8条,越多越好。
<基带部1>
图5是表示全天线模式的基带部1的TDMA/TDD处理和路径重叠处理的情况的说明图。
图中,横轴为时间轴,表示1周期的TDMA/TDD帧。R1~R4是收信时隙,T1~T4是发信时隙。f-CCH、f1、f2、f3与基带部1无直接关系,表示从8条天线收发的载波频率。f-CCH是控制频道的收发用的频率,在PHS标准中是固定的。f1、f2、f3是通话频道用的频率,在PHS标准中,决定任意使用多个波中存在空频道的频率。因此,f1、f2、f3根据周边的其他基站的使用状况有f1=f2=f3的情况,也有各时间间隙不同的情况。
另外,纵轴表示使用全部天线在1个频率上路径重叠的数。在本例中,表示重叠4个并通过对各时隙形成4各方向图而对4台PHS子机的信号重叠的情况。
但是,由图中标有×符号的时隙R1和T1构成的控制频道是该频率控制频道专用的,所以,不能重叠到通信频道上。
如图所示,在全天线模式中,除去控制频道用的时隙后的时隙可以作为与PHS子机的通话频道使用,所以,在全天线模式中,本自适应阵列装置最多可以收容12台PHS子机。
图6是表示组模式的基带部1的TDMA/TDD处理和路径重叠处理的情况的说明图。
图中,横轴是时间轴,和图5一样。纵轴表示路径参数。如图中上2级所示的那样,在本例中使用组A在同一频率上进行2次重叠。同样,下2级使用组B并使用与组A不同的同一频率进行2次重叠。
如图所示,控制频道用的时隙设置在组A中,所以,组B可以将全部时隙作为通话频道进行路径重叠。结果,在组模式中,本自适应阵列装置最多可以同时收容14台PHS子机。
<信号处理部2>
图7是表示信号处理部2的详细结构的框图。
该信号处理部2具有在全天线模式中计算各种参量的第1图形计算部6、在组模式中计算各种参量的第2、第3图形计算部7、8和模式切换用的开关群。图中的8个○符号表示开关群的各开关。
更具体而言,信号处理部2由DSP(数字信号处理器)构成,第1~第3图形计算部6~8和开关群分别通过执行在DSP中描述它们的功能的程序而实现。
图中的第1图形计算部6与图2、图5的例子相同,最多将4个信号进行路径重叠,另外,第2、第3图形计算部7、8与图3、图6相同,分别最多将2个信号进行路径重叠。另外,图中的S1~S8表示各天线的收发信号,U1~U4表示在TDMA/TDD帧内的1时隙中应路径重叠的4个线路的基带信号。
第1图形计算部6对各时隙计算用于将基带信号U1~U4分别从8条天线分散开收发的各天线的增益G1-n~G8-n和相位量φ1-n~φ8-n。这里,n表示存在与路径重叠数相同数量的参量,与基带信号U1~U4对应地存在n=1~4的4个参量。
图8表示这些参量的相互关系的说明图。
图中,纵轴表示增益,横轴表示用户的区别。A1~A8表示天线10a~80a。例如,用户U1从天线10a以增益G1-1、相位量φ1-1进行收发,从天线20a以增益G2-1、相位量φ2-1进行收发。对于天线30a~80a也一样。这样,就对8条天线分别赋予增益和相位量。这时,8条天线的全部发信输出是250mW,每1个用户的8条天线的发信输出为62.5mW。
另外,从天线10a以各自的增益和相位量重叠地收发4个基带信号U1~U4。第1图形计算部6在收信时计算适合于从信号S1~S8中分离出基带信号U1~U4的增益和相位量,在发信时使用收信时计算的增益和相位量根据基带信号U1~U4生成信号S1~S8。
在图8中,将路径参数取为4,但是,第1图形计算部6根据实际连接的频道数计算1个或多个(在本实施例中,最多为4个)方向图用的参量。
第2、第2图形计算部7、8与第1图形计算部6相比,只是路径参数和天线数不同,除此以外都相同,所以,省略其说明。
图9、图10表示分别由第2、第3图形计算部7、8计算的参量的相互关系的说明图。对于图9、图10,和图8一样。在图9、图10中,分别将路径重叠数取为2,但是,第2、第3图形计算部7、8根据实际连接的频道数计算1个或多个(在本实施例中,最多为2个)方向图用的参量。
<控制部3>
图11是表示由控制部3切换全天线模式和组模式的处理的流程图。
控制部3监视基带部1的通信量(线路连接数),在通信量增加(连接新的线路)并且通信量达到N1(例如12)以上时(步骤11、12yes),就从全天线模式切换到组模式(步骤13),在通信量减少(连接中的线路重新切断)并且通信量减少到N2(例如11)以下时(步骤14、15yes),就从组模式切换到全天线模式(步骤16)。
在该切换处理中,之所以将N1、N2定为12、11,是因为在本实施例中在全天线模式中最多可以连接12台、而在组模式中最多可以连接14台,所以,在从11台变为12台的时刻,将从全天线模式切换为组模式,在从12台变为11台的时刻,就从组模式切换为全天线模式。这样,N1、N2就可以根据组模式、全天线模式可以连接的数来决定。
如上所述,按照本实施例的自适应阵列装置,可以切换全天线模式和组模式。另外,如本实施例那样作为无线基站使用时,存在不适合于与通信频道的路径重叠的控制频道,所以,与全天线模式相比,在组模式中,可以确保更多的通信频道。
无线基站的每1波的发信输出,在标准上规定了上限,所以,与路径重叠数相应地每1台子机的有效的发信输出也不同。例如,在图2中,设8条天线的发信输出的总和为250mW时,进行4次重叠,所以,每1台子机的有效的发信输出为62.5mW。另外,在图3中,设各组的4条天线的发信输出的总和为250mW时,进行2次重叠,所以,每1台子机的有效的发信输出就是125mW。
这样,在全天线模式和组模式中,每1台子机的有效的发信输出不同,所以,可以根据设置状况或连接状况切换模式。
另外,在本实施例中,将全天线数取为8、将组数取为2、将组内的天线数取为4,但是,这些都可以任意设定。可以将组内的天线数对各组取为不同的数。
(实施例2)图12是表示实施例2的自适应阵列装置的结构的框图。该图的结构与图1的结构相比,不同的地方在于新增加了天线90a~160a、FEM90b~160b、无线部90c~160c、本机振荡器44及55、4输入1输出的选择器10d~160d,把具有基带部100、信号处理部200和控制部300,取代基带部1、信号处理部2和控制部3,通过增加天线数来增加组数和频道数,对于1台子机,可以分配多个通信频道。以下,对于具有相同功能的结构要素标以相同的符号,所以省略其说明,主要双不同的地方。
天线90a~160a、FEM90b~160b、无线部90c~160c与天线10a~80a、FEM10b~80b、无线部10c~80c相同。
本机振荡器44、55分别与图1的本机振荡器4相同。
选择器10d~160d从本机振荡器4、5、44、55生成的4各本地频率信号中选择1个,并向无线部10c~160c输出。
基带部100与基带部1不同的地方是,可以通过电话交换网连接的线路数为33,每1时隙的路径重叠数最多为8。除此以外,打破相同。
信号处理部200支持使用16条天线进行路径重叠的全天线模式和对由4条天线构成的4个组A~D使用不同的频率进行路径重叠的组模式。这里,组A由天线10a~40a构成、组B由天线50a~80a构成、组C由天线90a~120a构成、组D由天线130a~160a构成。
因此,信号处理部200具有对16条天线计算增益和相位量的第4图形计算部和对4条天线计算增益和相位量的第5~第8图形计算部。这些图形计算部与实施例1的第1图形计算部相比,都仅仅是天线数和路径重叠数不同,除此以外都相同。
控制部300根据基带部100的通信量切换全天线模式和组模式。此外,控制部300进行向1台子机分配多个频道的控制。具体而言,在从子机发出呼叫要求、同时接收希望分配的频道数的指定并存在充分空闲的通信频道时,就分配指定的数量的通信频道。
图13是表示组模式的基带部100的TDMA/TDD处理和路径重叠处理的情况的说明图。
该图与图6相比,不同的地方是进而追加了组C、D的分时多路和路径重叠。结果,通信频道数成为31。
下面,说明上述结构的本实施例的自适应阵列装置的动作。
本自适应阵列装置的路径重叠动作与实施例1相同,所以,省略其说明,下面,仅说明控制部300的频道分配。
在图13所示的组模式中,控制部300根据子机的频道数的指定向1台子机分配多个频道。同时,可以分配的频道,从组A、B、C、D中分别可以分配3、4、4、4频道,所以,最多为15频道。
例如,控制部300在从子机指定了频道的分配时,如果组B、C、D的某一组具有4个空闲频道,就分配1组内的4频道。另外,在指定了5频道以上的分配时,就从例如组A中分配3频道、从组B中分配2频道。
另一方面,子机也可以采用在只指定了同一频率的4个频道时就对现有的PHS子机在呼叫时通过控制频道进行频道数指定并使用同一频率的4个频道进行收发的结构。
另外,在指定了5频道以上时,必须进而用多个不同的频率进行收发,所以,子机可以采用具有2个系统的无线部的结构。
为了接收最多分配15频道,子机可以采用具有4个系统的无线部。
如上所述,按照本实施例的自适应阵列装置,可以切换全天线模式和组模式,从而可以灵活地变更构成组的天线的组合。
此外,由于是向1台子机分配多个通信频道的结构,所以,适合于高速数据通信。例如,在分配了最多15个频道时,可以确保480kbps(32kbps×15频道)的传输速度或带宽,例如,可以实时地高品质地实现动图像的无线传输。另外,可以从子机指定频道数,所以,可以根据传输的数据尺寸及实时性而确保所需要的传输速度或带宽。
在上述实施例中,天线数、组数、路径重叠数可以任意设定。另外,路径重叠数可以是多个或单个。
另外,以上,说明了作为PHS无线基站使用的情况,但是,可以是PHS以外的无线电话的基站,也可以是其他无线台。
本发明的自适应阵列装置可以有选择地切换使用全部天线形成方向图和对各天线组使用一部分天线独立形成方向图,适合于作为移动体通信系统的基站使用。
权利要求
1.一种具有多个天线的自适应阵列装置,其特征在于具有形成所有的天线的阵列天线图的第1形成单元、将上述多个天线分为由2个以上的天线构成的多个组并对所分的各组使用不同的频率形成组内的天线的阵列天线图的第2形成单元和有选择地切换第1形成单元的方向图形成与第2形成单元的方向图形成的控制单元。
2.按权利要求1所述的自适应阵列装置,其特征在于作为分时多路方式的无线电话机的基站使用,上述控制单元根据线路连接的频道数进行上述切换。
3.按权利要求2所述的自适应阵列装置,其特征在于上述第2形成单元在某一组中作为控制频道使用的时隙不形成阵列天线图、而在其他时隙形成阵列天线图。
4.按权利要求1或2所述的自适应阵列装置,其特征在于具有mn(m、n是2以上的整数)条天线,上述第2形成单元分割为由m条天线构成的n个组。
5.按权利要求1、2或3所述的自适应阵列,其特征在于具有数字信号处理器,上述第1形成单元在数字信号处理器中通过计算赋予所有的天线的增益和相位来形成阵列天线图,上述第2形成单元在数字信号处理器中通过计算赋予各组内的天线的增益和相位来形成阵列天线图。
全文摘要
第1图形形成部形成全部天线的阵列天线图,第2、第3图形形成部分别使用全部天线的一部分的天线组和与其他部分的天线组不同的频率形成组内的天线的阵列天线图。控制部3有选择地切换第1图形形成部与第2、第3图形形成部的图形形成。
文档编号H01Q5/00GK1331854SQ99814844
公开日2002年1月16日 申请日期1999年10月28日 优先权日1998年10月30日
发明者饭沼敏范 申请人:三洋电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1