一种快速制备硫化钴/石墨烯水凝胶纳米复合材料的方法

文档序号:8944389阅读:406来源:国知局
一种快速制备硫化钴/石墨烯水凝胶纳米复合材料的方法
【技术领域】
[0001]本发明涉及一种纳米材料的制备方法,特别是利用石墨烯水凝胶特性制备硫化钴/石墨稀水凝胶纳米复合材料的方法。
【背景技术】
[0002]作为一种重要的过渡金属硫化物,硫化钴具有价格低廉、环境友好、资源丰富以及优异的物理、化学、电学与光学性能等优点。由于形貌的多态性以及晶体结构的丰富性,它经常被用在超级电容器、锂电池、催化、生物传感器、太阳能电池等领域。然而,硫化钴较差的循环稳定性和功率特性很大程度上限制了它的进一步应用。因此,我们需要将硫化钴与其他材料复合,克服上述缺陷,提高材料性能。
[0003]近年来,石墨烯材料的发展与应用受到了广泛关注。作为一种新的碳的同素异形体,它具有独特的二维纳米结构。由于其优异的导电性能、机械特性、良好的化学稳定性、大的长径比及较大的比表面积等,石墨烯在电子、复合材料、电池、传感器等具有潜在的应用前景。
[0004]Wang B 等人(Wang B, Park J, Su D, et al.Solvothermal synthesis of CoS2-graphene nanocomposite material for high-performance supercapacitors [J].Journal of Materials Chemistry, 2012,22 (31): 15750-15756.)报道了一种溶剂热法制备硫化钴/石墨烯纳米复合物的方法。氧化石墨烯在乙二醇与水混合液中超声分散,与氯化钴溶液、L-半胱氨酸溶液混合后于160°C下恒温反应6h,得到的产物经洗涤、干燥后,置于氩气气氛中400°C下热处理4h。该硫化钴/石墨烯纳米复合物作为超级电容器电极材料时,表现出314F/g的比电容。
[0005]上述制备方法存在以下缺陷:1、实验操作相对复杂,实验条件相对苛刻;2、纳米硫化钴粒子与石墨烯片层在干燥和热处理过程中易发生团聚和堆叠,减少了复合物的有效比表面积,从而降低了其电化学性能。

【发明内容】

[0006]本发明的目的在于提供一种操作简单的软化学方法,在一定条件下利用石墨烯的水凝胶特性,制备了硫化钴/石墨烯纳米复合材料。
[0007]实现本发明目的的技术解决方案为:一种制备硫化钴/石墨烯水凝胶纳米复合材料的方法,包括以下步骤:
[0008]步骤一:将氧化石墨烯搅拌分散于异丙醇溶液中制得分散液;
[0009]步骤二:将分散液、CoCljK溶液、Na 2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中,于100?220°C下恒温反应;
[0010]步骤三:将步骤二中所得的产物洗涤即得硫化钴/石墨烯水凝胶纳米复合材料。
[0011]步骤一中,搅拌分散时间为30?60min。
[0012]步骤二中,CoClyK溶液和Na2S水溶液中的水与异丙醇的体积比为0.5?5:1,氧化石墨稀与CoCl2、Na2S的质量比为0.045?0.908:1: 1,氧化石墨稀在反应液中浓度为2.5?4mg/mL,恒温反应时间为6?24h。
[0013]本发明有以下显著优点:
[0014]1、操作简单,测试方便,无需加入任何粘结剂,仅通过石墨烯自身可自组装为三维水凝胶体系的特性即可得到硫化钴/石墨烯水凝胶纳米复合材料。
[0015]2、以氧化石墨稀为如驱物制备具有水凝I父结构的硫化钻/石墨稀复合材料,是一种新的探索,很好地结合了石墨烯与硫化钴的优点,利用二者间的协同作用,继承了石墨烯较大的比表面积,有效抑制了石墨烯片层的堆叠与硫化钴纳米粒子的团聚现象,进一步提高材料的性能,所得硫化钴/石墨烯复合材料在电化学测试中表现出了优异的电化学性會K。
[0016]下面结合附图和【具体实施方式】对本发明作进一步详细说明。
【附图说明】
[0017]图1是本发明利用水凝胶体系制备硫化钴/石墨烯水凝胶纳米复合材料方法的流程不意图。
[0018]图2是按实施例1反应条件所得硫化钴/石墨烯水凝胶纳米复合材料的样品照片。
[0019]图3是按实施例1反应条件所得硫化钴/石墨烯水凝胶纳米复合材料的(a)循环伏安曲线图与(b)恒电流充放电图。
【具体实施方式】
[0020]如附图1所示,本发明利用水凝胶体系制备硫化钴/石墨烯水凝胶纳米复合材料的方法,其特征包括以下步骤:
[0021]步骤一:将氧化石墨稀溶解于异丙醇中,搅拌以充分分散(30?60min);
[0022]步骤二:将CoCl2.6Η20与Na2S.9Η20以质量比1:1分别溶解于等体积的水中,得到CoClyK溶液与Na 2S水溶液;
[0023]步骤三:将步骤一所得的氧化石墨烯醇溶液、步骤二所得的CoCljK溶液、Na2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中于100?220°C下恒温反应6?24h,其中,反应液中氧化石墨稀的浓度为2.5?4mg/mL,氧化石墨稀与CoCl2、Na2S的质量比为0.045?0.908:1: 1,水与异丙醇的体积比为0.5?5:1 ;
[0024]步骤四:将步骤三中所得的产物洗涤后即得硫化钴/石墨烯水凝胶纳米复合材料。
[0025]下面结合实施例和附图对本发明做进一步详细的说明:
[0026]实施例1:
[0027]步骤一:将106mg氧化石墨稀溶解于15mL异丙醇中,搅拌以充分分散(60min);
[0028]步骤二:将 2.14g CoCl2.6H20 与 2.14g Na2S.9H20 分别溶解于 7.5mL 水中,得到CoCIjK溶液与Na 2S水溶液;
[0029]步骤三:将步骤一所得的氧化石墨烯醇溶液、步骤二所得的CoCljK溶液、Na 2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中于220°C下恒温反应18h ;
[0030]步骤四:将步骤三中所得的产物洗涤后即得硫化钴/石墨烯水凝胶纳米复合材料。
[0031]所得产物及其经冷冻干燥处理后的照片如附图2所示,表明产物具有三维水凝胶结构。将冷冻干燥后的样品制成电极进行电化学测试,其循环伏安曲线与恒电流充放电曲线如附图3(a) ,3(b)所示。经计算,产物比电容为435.7F/g,表明产物具有较好的电化学性能,暗示了其在超级电容器领域具有较好的应用前景。
[0032]实施例2:
[0033]步骤一:将53mg氧化石墨稀溶解于10.5mL异丙醇中,搅拌以充分分散(60min);
[0034]步骤二:将 1.07g CoCl2.6H20 与 1.07g Na2S.9H20 分别溶解于 5.25mL 水中;
[0035]步骤三:将步骤一所得的氧化石墨烯醇溶液、步骤二所得的CoCljK溶液、Na 2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中于200°C下恒温反应18h ;
[0036]步骤四:将步骤三中所得的产物洗涤后即得硫化钴/石墨烯水凝胶纳米复合材料。
[0037]经恒电流充放电曲线计算,该实施例得到的产物比电容为394.0F/g。
[0038]实施例3:
[0039]步骤一:将106mg氧化石墨稀溶解于7.5mL异丙醇中,搅拌以充分分散(45min);
[0040]步骤二:将 428mg CoCl2.6H20 与 428mg Na2S.9H20 分别溶解于 11.25mL 水中;
[0041]步骤三:将步骤一所得的氧化石墨烯醇溶液、步骤二所得的CoCljK溶液、Na 2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中于180°C下恒温反应12h ;
[0042]步骤四:将步骤三中所得的产物洗涤后即得硫化钴/石墨烯水凝胶纳米复合材料。
[0043]经恒电流充放电曲线计算,该实施例得到的产物比电容为298.8F/g。
[0044]实施例4:
[0045]步骤一:将106mg氧化石墨稀溶解于5mL异丙醇中,搅拌以充分分散(30min);
[0046]步骤二:将 4.28g CoCl2.6H20 与 4.28g Na2S.9H20 分别溶解于 12.5mL 水中;
[0047]步骤三:将步骤一所得的氧化石墨烯醇溶液、步骤二所得的CoCljK溶液、Na 2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中于100°c下恒温反应24h ;
[0048]步骤四:将步骤三中所得的产物洗涤后即得硫化钴/石墨烯水凝胶纳米复合材料。
[0049]经恒电流充放电曲线计算,该实施例得到的产物比电容为161.8F/g。
[0050]实施例5:
[0051]步骤一:将212mg氧化石墨稀溶解于26mL异丙醇中,搅拌以充分分散(30min);
[0052]步骤二:将 428mg CoCl2.6H20 与 428mg Na2S.9H20 分别溶解于 13mL 水中;
[0053]步骤三:将步骤一所得的氧化石墨烯醇溶液、步骤二所得的CoCljK溶液、Na 2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中于180°C下恒温反应6h ;
[0054]步骤四:将步骤三中所得的产物洗涤后即得硫化钴/石墨烯水凝胶纳米复合材料。
[0055]经恒电流充放电曲线计算,该实施例得到的产物比电容为131.4F/g。
【主权项】
1.一种制备硫化钴/石墨稀水凝胶纳米复合材料的方法,其特征在于,包括以下步骤: 步骤一:将氧化石墨烯搅拌分散于异丙醇溶液中制得分散液; 步骤二:将分散液、CoClyK溶液、Na 2s水溶液依次置于容器中得到反应液,再置于密闭反应釜中,于100?220°C下恒温反应; 步骤三:将步骤二中所得的产物洗涤即得硫化钴/石墨烯水凝胶纳米复合材料。2.如权利要求1所述的制备硫化钴/石墨稀水凝胶纳米复合材料的方法,其特征在于,步骤一中,搅拌分散时间为30?60min。3.如权利要求1所述的制备硫化钴/石墨稀水凝胶纳米复合材料的方法,其特征在于,步骤二中,CoClyK溶液和Na2S水溶液中的水与异丙醇的体积比为0.5?5:1。4.如权利要求1所述的制备硫化钴/石墨稀水凝胶纳米复合材料的方法,其特征在于,步骤二中,氧化石墨烯与CoCl2、Na2S的质量比为0.045?0.908:1:1。5.如权利要求1所述的制备硫化钴/石墨稀水凝胶纳米复合材料的方法,其特征在于,步骤二中,氧化石墨稀在反应液中浓度为2.5?4mg/mL。6.如权利要求1所述的制备硫化钴/石墨稀水凝胶纳米复合材料的方法,其特征在于,步骤二中,恒温反应时间为6?24h。
【专利摘要】本发明公开了制备硫化钴/石墨烯水凝胶纳米复合材料的方法,包括以下步骤:将氧化石墨烯搅拌分散于异丙醇溶液中制得分散液;将分散液、CoCl2水溶液、Na2S水溶液依次置于容器中得到反应液,再置于密闭反应釜中,于100~220℃下恒温反应;将所得的产物洗涤即得所述复合材料。本发明所述制备方法简单,测试方便,无需加入任何粘结剂;且很好地结合了石墨烯与硫化钴的优点,利用二者间的协同作用,继承了石墨烯较大的比表面积,有效抑制了石墨烯片层的堆叠与硫化钴纳米粒子的团聚现象,进一步提高材料的电化学性能。
【IPC分类】H01G11/86, B82Y30/00, H01G11/30, H01G11/24
【公开号】CN105161317
【申请号】CN201510298807
【发明人】朱俊武, 孙欢, 汪信, 付永胜, 丁静, 孟晓茜
【申请人】南京理工大学
【公开日】2015年12月16日
【申请日】2015年6月3日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1