自动继电器控制器的自适应保护的制作方法

文档序号:7485611阅读:302来源:国知局
专利名称:自动继电器控制器的自适应保护的制作方法
技术领域
本发明总体上涉及电力发送系统领域。更具体地,本发明涉及自动继电器。
背景技术
几乎任何电力发送系统中的共同问题是电力供应的瞬时中断,例如由瞬时短路造成。举例说来,电线杆之间的电力线在风的作用下会晃动,就有可能相互之间或与地之间发生瞬时的接触。某些东西下落时可能通过裸露的电线区,就可能发生电弧放电,或者发生可以引起瞬时电力线短路或电流激增的其他短时行为,导致保险丝的熔断或继电器的跳闸。这些故障大都是自校正过程,并不需要永久的保险丝或自动继电器保护,因为它们很快就结束了。如果保险丝烧断或者继电器跳闸,供电线路就会断开或者用户就会得不到电力供应。那么接下来就需要换保险丝或重置继电器,这样就增加了使用成本。
自动继电器是一种故障中断设备,用来检测电流、电压以及/或者频率并将供电支流的故障区域加以隔离。一台自动继电器控制设备操纵一个自动继电器,它可以是一个电子控制器。自动继电器接在供电线路中用来保护电力发送系统。
更具体地讲,自动继电器是机电设备,和电路断路器相似。自动继电器分布于电力线路上的一个或多个位置,典型情况是向上连接一保险丝。当自动继电器检测到一种故障状态时,自动继电器就会开始中断。换一句话说,当故障状态没有在固定的时间段内自动排除的话,继电器控制器就会发动跳闸来打开自动继电器,固定时间段的长度是电流的函数。然后,通过一段时间延迟后,就像名字中说的那样,自动继电器将会重新闭合,如果故障状态已经排除的话,电力供应就会恢复。但是,如果故障状态没有排除的话,自动继电器控制器就会在第二个固定时间段后打开继电器。如果经过事先设定次数的重新闭合操作以后,故障状态仍未排除,继电器控制器将永久断开继电器(亦即永久断开电路)。电路将保持断开状态直到系统被修复以及/或者故障状态得以排除。
这样,自动继电器的一个主要作用就是节省保险丝。通常来讲,这个过程是这样实现的,自动继电器检测电流的峰值并在保险丝融化之前断开电路。经过一段时间延迟后,自动继电器闭合,系统供电得到恢复直到下一个故障状态被检测到。
保险丝的融化及电流中断的速度是可熔元件的一个加热函数。加热的速度正比于故障产生的能量,每一种保险丝都有一个时间电流特征,它描述了中断故障电流所要求的时间段长度。时间段的长度一般与故障电流的平方根大约成反比。这就要求按被保护的保险丝来调整自动继电器以保证在被保护的保险丝熔化以前自动继电器能断开临时的故障电流。这通常是在估计检测到的故障电流的峰值的平方根的平均值的情况下进行的。
有一点必须明白的是,不是出现在电网中的所有的故障都为暂时的,比如由于树枝暂时掉在电线上造成的故障。有些故障更多地具有长时间的特性,例如由于暴风雪造成整个电线杆倒塌时的故障。为此,自动继电器做成在锁定断开状态前的一段时间内仅进行有限次数的跳闸行为的型式。如果不这样做的话,继电器将无限循环直到损坏,而被保护的保险丝也会烧断。
在某些故障电流条件下,采用立刻中断电流的方式比遵循时间电流反比关系中断更适合。对于中等水平,从电力发送的观点看,允许故障电流维持一段限定的时间,并把故障位置烧断或将保险丝烧断可能比较合适。许多自动继电器有多种时间电流反比特性可供选择来实现这种功能。典型地,一个自动继电器一般提供两个遵循快速时间电流特性的跳闸操作和两个附加的、在锁定断开状态前遵循一种更慢的时间电流特性的操作。在三相系统中,传统的自动继电器在检测到三相中的任意一相发生故障时会把三相的电同时断开。其他三相系统则采用在每一相中安装一单独自动继电器的形式。在这些系统中,每个单独的自动继电器都是单独控制的。这样做造价高,不允许各相之间相互响应。
这样,在一种典型的结构里,对于故障,自动继电器会打开来清除它。注意到,对于任何故障,亦即单相—地故障、相—相故障、相—相—地故障以及三相故障,一个典型的自动继电器将断开所有的三相。对于供电支流,由于单相的问题而断开所有三相的电会造成更多的不必要的用户也掉电。然而,如果在发送系统里采用的是传统的单相自动继电器保护的话,就要用到三个独立的单相机械继电器——每一相一个。它为单相故障提供了一种单相方法,但是,如果发生的是展开型故障的话,比方说,两相或三相发生了故障,那时,跳闸和接下来的重新闭合却一直只发生在一相上。完全独立的单相自动继电器也有可能陷入到赛跑状态中去。对于相—相故障,如果其中一相的动作比另一相快,那么自动继电器就不可能正确地将另一相也断开。
自动继电器控制器为自动继电器提供智能,能够使自动继电器检测超量的电流,选择计时操作,为跳闸及重新闭合计时以及锁死。液压单元——自动继电器的一个整体部件被用在所有的单相自动继电器中,在三相继电器中的使用率则低一些。电子控制器通常用在单相继电器中,而在三相继电器中的使用率则更高。这些设备,应该适当地规划,以一种预先定义好的方式进行调整,以便电力发送系统在发生线路问题时能按期望的方式反应。
一般地,当自动电路继电器被用来与保险丝相连时,可以设定为各种各样的模式。举例说来,自动继电器或自动闭合断路器既可以设定为保全保险丝的模式也可以设定为烧断保险丝的模式。在保全保险丝模式里,自动继电器或自动闭合断路器切断瞬时故障的动作比保险丝快。如果故障仍然存在,自动电路继电器的动作就会比保险丝的速度稍微慢一点,以便保险丝烧断并清除故障。在烧断保险丝模式中,自动继电器设定为比与继电器配套的任何保险丝动作时间都长,故障的清除应该在继电器不发生动作的情况下由保险丝的烧断来完成。
有一些基于微处理器的自动继电器控制器,它们能够检测故障状态,并且相应地中断对应的自动继电器。然而,这些以前的设计不能自适应。在这些以前的设计中,故障检测是按照一些事先编程的电流水平绝对值(亦即固定值)的函数来实现的,那样,由于正常的、日常的以及/或者季节性因素引起的渐变性电流波动不予考虑。于是,在电流的波动并没有威胁到系统的时候供电也有可能被不必要地中断。更有甚者,基于绝对电流水平的故障检测方案不一定能检测远程故障(亦即故障发生处相对于自动继电器位置为供电线的末端)。
因此,需要提供一种能克服在先方案所存在的问题的继电器控制器。这样,电子程序可以自适应地设定继电器以特定方式运作,比如保全保险丝模式、保险丝烧断模式、单相或是三相模式,它们以主要条件为基础,如一天里的时间点、每个星期里的天,月或载荷电流。
发明概要本发明涉及自动继电器响应特定保护设定组的运作。根据主要条件如一天里的时间点或载荷电流,自动继电器以一定的方式运作,如单相或保全保险丝模式。
按照本发明范围内的一个实施例,一种用于控制输电线路自动继电器的方法,它包括,确定一个保护设定组,该保护设定组包含至少一个关联特征;确定至少一个关联特征的当前状态;在保护设定组及当前状态基础上为继电器决定一个行为函数;以及将行为函数应用到继电器上,控制继电器按行为函数进行响应。
按照本发明,当前状态被连续监控,行为函数则随监控结果而改变。监控可以按事先规定的次数或事件而进行,如事先规定的时间间隔。
根据本发明范围内的另一个实施例,输电线路的自动继电器控制系统包括一个自动继电器;一个包括保护设定组的存储器;以及一个和自动继电器及存储器连接的自动继电器控制器,其中保护设定组包含至少一个相对关联特征的行为函数,自动继电器控制器用于控制自动继电器响应保护设定组内的至少一个行为函数。
参照附图通过下面对本发明的详细说明,本发明的上述及其它方向将会更加清楚。
附图简介

图1是可以体现本发明的系统的简化示意图;图2是本发明所述的示例性的保护设定组的简化示意图;图3是本发明所述的另一个示例性的保护设定组的简化示意图;以及图4是本发明所述的示例性的操作方法的流程图。
优选实施例详述本发明涉及用于自适应地控制继电器的系统和方法,以便其能响应主要条件如时间或载荷电流而按一定的方式运作。
输电线路和发电设备必须得到保护以防止故障及接下来的短路对它们的影响,这些故障可能会导致供电系统的瘫痪,损坏重要或昂贵的设备,以及人身伤害。另外,经常的电力中断,可能导致那些希望得到可靠及可信的公共服务的用户们的不满。故障保护设施如保险丝和保护继电器的任务就是将故障线路分离或通过跳闸来形成隔离。另外,在发生保护故障或其它系统故障时,电力发送操作员使用自动电力恢复元件可以自动地在线恢复电力发送系统。
自动继电器设备在电力发送系统中被用来保护高压电线。它们一般安在用于支撑电线的电线杆或电线塔上。然而,也有用于地下系统的情况。自动继电器用来尽量减少由于输送或故障造成的电力发送中断次数。
典型地,在系统扰动过程中,就会发生电流的剧增亦即故障。通过检测电流的增加,继电器将打开并切断电流,以便保护发送系统部件及其它连在发送系统上的设备。因为许多故障状态都是暂时的,继电器设计成经过一个短时间的延迟以后再闭合,这样重新建立正常电流。比方说,在雷雨时,如果闪电击中了发送系统,送往某人家里的电力就会中断一会儿,造成照明及其它家电关掉(自动继电器打开),然后又打开(自动继电器闭合)。一旦自动继电器闭合,如果它仍检测到电流的增大状态,(即故障电流,而非正常负载电流),它又会重新打开。在自动继电器保持稳定断开状态之前,这样打开又闭合的循环过程可能会进行三次。
当自动电力恢复系统和别的保护设施如保险丝和保护继电器配合使用时,它可以以两种模式进行运作,即保全保险丝模式和烧断保险丝模式。在保全保险丝模式里,自动电力恢复装置试图清除瞬时故障的反应速度比与之配合的保险丝的反应速度快。在自动电力恢复装置试图恢复系统时如果故障仍然存在,自动电力恢复装置的反应速度就会比保险丝的反应速度慢而让保险丝来清除故障。在烧断保险丝模式中,自动继电器设定为比与继电器配套的任何保险丝动作时间都长,故障的清除在继电器不发生动作的情况下由保险丝的烧断来完成。
图1表示了一个实施本发明的系统的简化示意图。自动继电器10是断开或闭合电线5(亦即处于变电所与负载之间)的开关,它由一个如电子控制器的自动继电器控制装置20所操作。需要理解的是“自动继电器”这个词是自动继电器、区域性继电器、电路断路器等等的统称,它们也有可能用在本发明所包含的领域里来。电线5是三相电线。自动继电器10包括三个电极15。每个电极15与电线5中的一根与之关联的电线相连,这样它就由相应的相来供电。
自动继电器10的基本组成部分是一个高速电路断电器、过载保护、跳闸逻辑以及一个带计数器的闭合逻辑单元。当流过自动继电器10的过载电流达到充分大时(亦即超过了预先设定的允许电流的大小),跳闸动作就会被激发,电极15的接触状态被打开,同时计数器前进一个数。经过一段预设的时间延迟后,自动继电器触点将自动闭合,从而重新给电线5供电。如果故障仍然存在,该跳闸与重新闭合的循环过程就会重复由控制器20预先设定的次数,直到停止运作的命令被激发。如果故障是瞬时的,即故障在自动继电器10的任何一个打开状态期间被排除,则自动继电器20将在一段短时间的延迟后保持闭合状态,并且复位到初始状态以预备下一次的运作。
一个用于本发明的示例性的自动继电器是VR-3S继电器,由位于北卡罗莱纳州罗利的ABB电力T&D公司制造并销售。采用电磁激励来打开并闭合继电器的主触点。
自动继电器10由基于微处理器的控制器20控制,控制器中包含有软件。基于微处理器的控制器20有两个基本设计区。物理单元如集成电路、电阻、电容、显示器、开关等被成为“硬件”。一旦制造出来以后,它们将是不可改变的。在微型计算机里的第二个基本设计区包括计算机程序和文件。因为这些元素易于改变,所以它们被称作“软件”。
一台以微处理器为基础、与存储器及接口元件配套而成的微型计算机用在继电器控制器20中,用来处理适合自动继电器控制的输入信号。微处理器用来完成控制的算法和逻辑功能。特别地,所要求的逻辑电路与服务的功能一样,都被包含在内。
一个典型的自动继电器控制系统中一般包含一个电源为自动继电器控制系统的其它元件供电,并且包括能量储存装置,当被保护线路断路时用于存储能量。当微型计算机不能实施自动继电器的跳闸动作时,一个备用的过载跳闸电路将独立于计算机之外来控制跳闸。一个保护性的输入网保护控制器的弱电元件免受周围电力发送系统环境的影响,同时换算装置被用来提高微型计算机以及关联电路在有精度要求的输入信号大小范围内的运作精度,并使得控制可以在一个宽的输入信号范围内通过有限数量的组元来运行。
寄存器或存储器30用来暂时和/或永久存储数据。举例说来,在自动继电器10中,这些数据将包含线电流的大小及命令信息如各种时间—电流特征曲线以及在后面将进一步描述的保护设定组。存储器可以是随机存储器(RAM)或只读存储器(ROM),或者其它任何型式的存储器。ROM因易于修改而很适合电子编程,并用来存储程序信息。寄存器30可以内置到控制器20中,如图所示,或者也可以放在控制器20的外面。
继电器控制器20的前面板可以包括一台用于显示信息的显示器。键盘或其它输入设备可用来输入信息。指示灯用来提供状态信息如继电器断开、继电器闭合、控制被关、高于最小跳闸值、故障以及紧闭等。
通过使用上述的开关和键盘,设备的操纵可以通过命令信息来进行。对于一个自动继电器控制器,典型的命令信息包括相电流及地电流的第一时间电流特征,以及相电流和地电流的第二时间电流特征,其中前者通常造成继电器10更快地跳闸,而后者通常造成继电器10在故障条件下能更久地保持闭合状态。其它命令信息包括相电流和地电流的最小跳闸水平、当发生相或地故障时锁定前的重复次数以及给定的时间电流特性的使用次数,其中最小跳闸电流水平在继电器中用于启动按时间电流特征进行的计时过程。其它的命令信息可能还包括清零的时间间隔长度和重新闭合时间间隔,其中清零时间间隔长度决定了在无故障条件下计数器的计数信息保留时间的长短,而重新闭合时间间隔决定了继电器保持断开状态的时间长度。另外的命令信息还包括高电流稳定时间特征,它使继电器10在一定大小的故障电流条件下只允许保持闭合状态一段固定的时间。这样,如果有故障发生,电线5将被断开一段很短的时间。在电线5维持断开状态的给定时间段的结束处,自动继电器10会闭合电线5。如果非正常状态仍然存在,自动继电器10将再次断开并再次闭合电线5。
本发明所述的命令信息还包括许多独立的保护设定组。不管系统是在线还是不在线,保护设定组均可以由技术员或用户编程获得。保护设定组是用于控制一个基于一定条件的自动继电器的指令。一个示例性的保护设定组如图2所示。在这里,保护设定组以一天里的时间和星期里的天为基础。对某个特定的时间段或日子(亦即星期一到星期五的工作时间)采用了烧断保险丝模式,而在余下的时间段里(亦即周末或下班时间里)则采用保全保险丝模式。在这种方式里,在星期一到星期五的上班时间内,供电质量根据大部分消费者的需要进行了优化,而当对供电质量要求不是那么严格的时候(周末或下班时间),运作的费用又被控制在最低的水平。
另一个示例性的保护设定组如图3所示。在这里,根据一年中的月份,继电器被分别设定为一相(单相)模式和三相模式。从十月到三月采用的是单相模式,从四月到九月采用的是三相模式。在这种方式里,举例说来,在农村地区,一年中的许多个月都需要灌溉,为了保护水泵的电机,这时采用三相保护模式比较合适。而在余下的月份里,则采用单相保护模式比较合适,因为这时负载均为单相负载,这样采用单相保护有利于将出现故障的影响降低到最小程度。这样,时钟和日历就被用来控制继电器是采用单相保护还是三相保护,并且/或者是采用保全保险丝模式还是烧断保险丝模式。
另一种示例性的保护设定组可以基于负载电流而设定。基于负载电流的时候,也可以采用不同的模式,如保全保险丝模式或烧断保险丝模式,单相或三相保护等。在这种方式下,根据处于激活状态的保护设定组的不同以及主要条件的不同,针对给定的故障形式将有不同的保护方式。
可以理解,许许多多的微处理器都可以用来实现上述同样的作用。每个制造厂家均要求他们设备的特性作为自动继电器控制器20的微型计算机的一部分能满足要求,在这里,非常详细地去描述各功能性控制以及全面而充分地描述各替用设备的使用情况显然是不可能的。通过阅读另一设备的厂家提供的技术说明书,本领域技术人员很轻易地就能放大和修改已知的说明以适应别的厂家制造的设备。而且,如果想试着去描述软件中的每一个细微的细节的话,可能会陷入极端的迷茫,因为本领域技术人员很容易地就能理清其中的构架来,因此这里只描述了那些更一般化的软件模块和程序。
一种示例性的控制元件是PCD2000电力控制装置,由位于北卡罗莱纳州罗利的ABB电力T&D公司制造并销售。控制设备可以提供用于远程通信的接口,用于与使用MODBUS RTU MODBUS ASCII以及DNP3.0协议的SCADA系统相联。控制器可以使用别的协议来编程。还有可以用来与外界进行联系的接口如无线通信、调制解调器以及直接光纤通信。
图4是本发明所述的一种操作方法的流程图。在电力输送时,自动继电器10监控电线5。在第100步,设定组被决定、选择或确定下来。设定组可以从寄存区30处(亦即一个内置或捆绑于继电器控制器20上的一个存储器)得到。许多设定组(相关或不相关)都可以存储于寄存区30处,当系统在线或不在线的时候,技术员或用户均可以从中选择合适的设定组。
当设定组确定以后,与设定组相关的特征的当前或主要的状态在110步确定。例如,如果图2中设定组处于激活状态,则一天中的时间及星期中的天将被确定,因为,保全保险丝模式与烧断保险丝模式的选择取决于这两个参数。作为另一个例子,如果图3中的设定组处于激活状态,一年中的月份就会被确定,因为单相还是三相操作的确定是对一年中特定月份的反应。
在第120步中,合适的继电器行为由在主要条件基础上建立起来的保护设定组确定。这是通过将第110步中的主要条件与第100步中的保护设定组的条件条目进行比较而得到的,相匹配的条目在第130步将被用到。这样,例如,如果图2中的设定组处于激活状态,而时间为星期三下午1点,那么根据保护设定组条目,将应用烧断保险丝模式。
在第140步,当前或主要条件被连续监控,以决定继电器的行为是否需要改变,如第150步所决定的一样。如果行为应该改变,则新的行为就会被确定并应用到第130步的过程中。如果行为不应该改变,则监控过程将继续,象140步的过程一样。通过技术员或用户的编程,主要条件被按照事先规定好的间隔(如时间)或其它事件发生方式而监控着。
这样,例如,如果图2中的设定组处于激活状态,当时间从星期三下午500变成下午501时,模式就从烧断保险丝模式变成保全保险丝模式。保全保险丝模式会一直用到星期四上午800,那时,又会变成烧断保险丝模式。
在不脱离本发明的实质和范围的情况下,本发明既可以通过合适的计算机软件,也可以通过合适的硬件,或者通过合适的软件与硬件的组合来实施。关于这些硬件和/或软件的更进一步的细节对相关的普通大众而言都是显而易见的。因此,在这里就这些硬件和/或软件做更进一步的描述是没有必要的。
尽管这里参照特定的具体实施例用图示及描述的方式对本发明进行了说明,本发明仍不只限于所述的细节。在权利要求书的范围内可以作出各种细节上的修改,而不脱离本发明的范围。
权利要求
1.一种用于控制用在输电线上的继电器的方法,包括保护设定组的确定,保护设定组具有至少一个关联特征;至少一个关联特征的当前条件的确定;在保护设定组以及当前条件基础上继电器行为函数的确定;继电器行为函数的执行,从而控制继电器响应行为函数。
2.如权利要求1所述的方法,进一步包括对当前条件的连续监控以及改变行为函数以响应监控结果。
3.如权利要求2所述的方法,其特征在于,对当前条件的监控包括在预先确定的时间间隔内的监控。
4.如权利要求1所述的方法,其特征在于,至少一个关联特征包括一天里的时间、一星期里的天以及一年里的月份其中之一。
5.如权利要求1所述的方法,其特征在于,至少一个关联特征包括负载电流。
6.如权利要求1所述的方法,其特征在于,行为函数包括保全保险丝模式以及烧断保险丝模式中的一个。
7.如权利要求1所述的方法,其特征在于,行为函数包括单相操作以及三相操作中的一个。
8.一种用于输电线路的继电器控制系统,包括一个继电器;一个包含保护设定组的存储器,其中设定组具有至少一个对应一个关联特征的行为函数;一个继电器控制器,它与继电器以及存储器相结合,用于控制继电器至少响应保护设定组内的一个行为函数。
9.如权利要求8所述的继电器控制系统,其特征在于,继电器控制器监控保护设定组中每个行为函数的每个关联特征的当前条件,并在当前条件的基础上决定行为函数。
10.如权利要求8所述的继电器控制系统,其特征在于,继电器控制器包括存储器。
11.如权利要求8所述的继电器控制系统,其特征在于,一个关联特征包括一天里的时间、一星期里的天以及一年里的月份其中之一。
12.如权利要求8所述的继电器控制系统,其特征在于,关联特征包括负载电流。
13.如权利要求8所述的继电器控制系统,其特征在于,至少一个行为函数包括保全保险丝模式以及烧断保险丝模式中的一个。
14.如权利要求8所述的继电器控制系统,其特征在于,至少一个行为函数包括单相操作以及三相操作中的一个。
15.一种计算机可读的介质,它具有计算机可执行的分步实施的指令,包括用于输电线路上继电器操作的保护设定组的确定,保护设定组具有至少一个关联特征;至少一个关联特征的当前条件的确定;在保护设定组以及当前条件基础上继电器行为函数的确定;继电器行为函数的执行,从而控制继电器响应行为函数。
16.如权利要求15所述的计算机可读介质,进一步包括可计算机执行的指令,用于连续监控当前条件以及根据当前监控结果改变行为函数。
17.如权利要求16所述的计算机可读媒介,其特征在于,当前条件的监控包括预先设定时间间隔内的监控。
18.如权利要求15所述的计算机可读介质,其特征在于,至少一个关联特征包括一天里的时间、一星期里的天、一年里的月份以及负载电流其中之一。
19.如权利要求15所述的计算机可读介质,其特征在于,行为函数包括保全保险丝模式以及烧断保险丝模式中的一个。
20.如权利要求15所述的计算机可读介质,其特征在于,行为函数包括单相操作以及三相操作中的一个。
全文摘要
继电器被自适应地控制,以便它能以一种响应主要条件如一天里的时间、一星期里的天以及负载电流等的方式运作。自动继电器控制器可以使用的保护设定组存储在一个存储器中,并且包含基于主要条件的、用于控制自动继电器的一组指令。主要条件处于连续监控状态,自动继电器的控制则基于主要条件以及保护设定组。
文档编号H02H3/00GK1368773SQ0114483
公开日2002年9月11日 申请日期2001年12月27日 优先权日2000年12月27日
发明者杰弗里·L·大穆塞尔雷, 卡尔·J·拉普拉斯, 戴维·G·哈特, 威廉·M·埃戈尔, 格雷姆·N·穆克卢尔 申请人:Abb输配电技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1