用于控制功率转换器中的同步整流器的电路和方法

文档序号:7456908阅读:136来源:国知局
专利名称:用于控制功率转换器中的同步整流器的电路和方法
技术领域
本发明涉及功率转换器,特别涉及一种控制功率转换器中的同步整流器的电路和相应方法。
背景技术
提高功率转换器中的功率效率的一种方式是通过使用同步整流器代替常规续流二极管。具有同步整流的DC-DC功率转换器的特征在于电流不仅通过同步整流器流到输出端,而且在相反方向从输出端返回到转换器中。


图1是在名称为“用于谐振复位正向变换器的同步整流器驱动机构”、2001年1月30日公布的美国专利US6181578中介绍的现有技术功率转换器10的示意图,这里引证供参考。如图1所示,功率转换器10是谐振复位正向变换器,它包括在该转换器的次级侧上的用于控制续流同步整流器的导电周期的门驱动机构。功率开关16与变压器12的初级线圈在节点102串联连接。变压器12的初级线圈13和功率开关16穿过输入DC电压源11连接。功率开关16响应由PWM发生器(未示出)施加于功率开关16的控制栅极的脉宽调制信号(PWM)而在导通周期和关断周期之间交替切换。功率开关16的交变状态穿过变压器12的次级线圈产生AC电压。响应来自反馈回路(未示出)的反馈信号而产生由PWM提供的信号,其中反馈回路穿过转换器10的输出端Vout1和Vout2耦合并响应转换器10的输出电压。
在正向变换器10的次级侧,变压器12的次级线圈14在节点201耦合到正电压轨和在节点202耦合到负电压轨。正向整流器112耦合在变压器12的次级线圈14和次级侧地之间。正向整流器112通常是具有源极、漏极和栅极的MOSFET。正向整流器112的栅极耦合到节点201。正向整流器112的漏极耦合到节点202。正向整流器112的源极耦合到次级侧地。正向整流器112在次级线圈14(在节点202)和转换器10的第二输出端(Vout2)之间提供导电通路。
续流同步整流器116耦合在节点201和正向整流器112的源极之间。在典型实施例中,续流同步整流器116是具有源极、漏极和栅极的MOSFET。续流同步整流器116的漏极耦合到节点201。续流同步整流器116的源极耦合到击穿电感器(shoot-through inductor)118。续流同步整流器116的控制栅极连接到次级侧二极管115。次级侧二极管115具有连接到正向整流器112的漏极的阳极。次级侧二极管115的阴极连接到续流同步整流器116的栅极。当通过给其栅极施加合适的电荷而导通时,续流同步整流器116用以在正电压轨和输出端VOUT2之间提供电流通路。
失超FET114耦合在续流同步整流器116的栅极和次级侧地之间,并且在转换器10的正向电源周期开始时用以快速关断续流同步整流器116。在典型实施例中,失超FET114的漏极在节点117耦合到续流同步整流器116的栅极和次级侧二极管115的阴极。失超FET114的源极连接到次级侧地。失超FET114的栅极在节点201连接到正电压轨。利用这种结构,当功率开关16导通和正向变换器10处于正向功率周期时,续流同步整流器116保持在高电阻状态,即非导通状态。
击穿电感器118(1)在每个正向功率周期开始时,触发续流整流器116固有的漏极向源极电容Cds放电;和(2)在这个过渡期间,减小续流整流器116上的栅极到源极电压Vgs,由此使续流整流器116快速关断。在正向功率周期开始时,通过将存在于续流整流器116的栅极上的电荷分流到地,失超FET114完成续流整流器116的放电。在正向功率周期开始时使续流整流器116的栅极放电可防止同时大电流流过正向整流器112和续流整流器116。
由与滤波器电容器122串联连接的滤波器电感器120构成的输出滤波器100穿过转换器10的输出端Vout1和Vout2耦合。输出滤波器110滤出沿着正电压轨存在的波动电流的任何高频分量并穿过正向变换器10的输出端提供基本上无波动的、基本上恒定的DC输出电压V0。而且如图所示,耦合在正向变换器的两个输出端之间的是典型的负载RLOAD。
因而,在正向功率周期开始时,图1中所示的栅极驱动机构用以导通续流同步整流器,在变压器芯复位和无效周期期间保持续流整流器处于导通状态,并在下一个正向功率周期开始时提供续流整流器的快速放电。
图1中所示的正向变换器的缺点在于当由于故障条件使PWM信号关断或具有遗漏周期时,续流同步整流器的栅极电荷不能完全快速地放电。结果是,经过功率变压器反映到初级主功率开关的大负电流将在反向方向经过续流同步整流器从输出端返回流到转换器中。
同步整流器的双向电流流动能力可能导致严重的问题,即当这种整流器用在具有共享输出总线的并联功率转换器中时,大的负电流将导致续流同步整流器或初级功率MOSFET的损坏,除非使用ORing二极管保护每个功率转换器。换言之,尽管并联功率转换器提供用于两个或更多个单独、小的、高密度功率转换器模块的方式以便输送由电流产生负载所需的更高的功率和/或提供冗余,当续流同步整流器导通时,这种布局还使电流共享总线耦合非控制量电流返回到转换器。
图2是并联转换器(这里还称为“功率模块”)的系统的方框图。对于图2中所示的并联转换器结构,功率输送给公共输出电压总线,由此输送给负载。如图2所示,功率模块1、功率模块2、……、功率模块N各耦合到单电源输出端口25,用于给负载输送功率。所示典型负载26耦合到系统20的输出端口25。在优选实施例中,在单一功率输入端口22将功率输送给功率模块1到N。本领域技术人员将认识到不需要在单一功率输入端口给功率模块1-N输送功率。此外,每个功率模块可从分开的电源如分开的AC-DC转换器(未示出)接收功率。系统20中的每个功率模块具有并联管脚24,并且如图2所示,功率模块1-N的并联管脚24都经过总线28彼此耦合在一起。
尽管任何大的负电流将产生严重问题,但是功率转换器中的同步整流器的双向电流流动能力的优点在于通过产生小负电流,由于负电流在输出电压的放电中起辅助作用,因此从全负载阶跃到零负载的过渡响应增加了。
用于控制续流同步整流器以防止负电流的常规电路取决于下列一个或多个因素定时、电流检测信号、电压检测信号、电流共享系统、和正向同步整流器的操作。
因此,需要提供一种用于控制功率转换器中的续流同步整流器的电路和方法,用于防止在任何故障条件期间产生任何大的负电流并在电路中实现这种功能和使用相应的方法,该方法与定时、电流检测和电压检测信号、电流共享系统和正向同步整流器的操作无关,而是只取决于PWM栅极驱动输出。特别需要提供一种这样的电路和相应方法用于在具有并联功率转换器的系统中的功率转换器。

发明内容
本发明通过(特别是为具有并联功率转换器的系统中的功率转换器)提供一种快速有效地控制续流同步整流器的控制电路和相应方法,解决了现有技术的转换器的问题,以便防止大的负电流流动,大的负电流流动可能导致在PWM信号截止的故障条件下损坏转换器的部件或具有错误周期。
本发明的控制电路和相应方法的实施例比较了主时钟信号和PWM控制器的栅极驱动输出,以便识别故障条件和快速提供同步整流器的控制,从而防止否则可能导致部件损坏的大负电流流过同步整流器。
广泛地说,本发明提供一种正向变换器,包括具有初级线圈和次级线圈的变压器;与该变压器串联连接并耦合到输入电源的功率开关,该功率开关能在导通周期和关断周期之间随着包括由PWM电路产生的脉冲的PWM信号的变化而交替地转换,并且对其响应而在次级线圈上产生AC电压;输出滤波器,它用以给输出负载提供基本上恒定的DC电压;正向整流器,它具有控制输入并用以在导通周期期间在次级线圈和输出滤波器之间提供正向导电;续流整流器,它具有控制输入和用以在关断周期期间给输出滤波器提供用于保持电流的第二导电通路;和控制电路,它耦合到续流同步整流器的控制输入,用于控制其状态,该控制电路接收在高电压和低电压之间变化的时钟信号,时钟信号具有等于或大于PWM信号的频率,包括用于通过使PWM信号的后沿以预定速度在电压上下降而产生PWM参考信号的参考电路,使得如果没有产生PWM信号的下一个脉冲,PWM参考信号下降到低电压以下并保持在低电压以下;比较器电路,用于比较PWM参考信号与时钟信号,和用于随着其变化而产生输出信号,从而在PWM参考信号低于低电压时,输出信号处于导通状态;和驱动器电路,它响应输出信号和PWM信号,以便在输出信号导通时使续流同步整流器关断,并且在输出信号截止时使PWM信号控制续流同步整流器。
本发明还提供一种控制功率转换器中的同步整流器的状态的方法,该功率转换器具有耦合输入DC电压的输入端和提供输出DC电压的输出端,该方法包括以下步骤接收由PWM电路产生的PWM信号;接收在高电压和低电压之间变化的时钟信号,该时钟信号具有等于或大于PWM信号的频率;通过使PWM信号的后沿以预定速度在电压上下降而产生PWM参考信号,使得如果没有产生PWM信号的下一脉冲,PWM参考信号下降到低电压以下并保持在低电压以下;随着PWM参考信号和时钟信号的变化产生输出信号,使得当PWM参考信号低于低电压时输出信号导通;当输出信号导通时关断续流同步整流器;和当输出信号截止时,使PWM信号能够控制续流同步整流器。
本发明还提供一种用于并联功率转换器的系统中的功率转换器的电路和相应方法。
本发明的优点在于提供续流同步整流器的控制,以便防止任何大的负电流流动,并且所采用的方式使得与PWM控制器栅极驱动输出相关,并与定时、电流检测信号、电压检测信号、电流共享系统和正向同步整流器的操作无关。
附图简述本发明的前面的方案和附带优点将通过下面结合附图的详细说明更容易被理解,其中图1是包括同步整流的现有技术正向变换器的示意图;图2是并联转换器的系统的方框图;图3是根据本发明第一实施例的具有控制电路的正向变换器的示意图;图4是根据本发明优选实施例的具有控制电路的正向变换器的示意图;图5是根据本发明第三实施例的具有控制电路和提供混合同步整流器驱动控制的正向变换器的示意图;图6是根据本发明第四实施例的具有控制电路和提供用于续流同步整流器的缓冲器栅极驱动控制的正向变换器和正向整流器的示意图;图7是根据本发明第五实施例的具有电路的降压变换器的示意图;图8是表示选择电压波形的时序图,它表示根据本发明实施例的的转换器的操作;和图9是表示附加选择电压波形的时序图,它表示根据本发明实施例的转换器的操作。
具体实施例方式
本发明克服了已知现有技术转换器的缺陷。转换器的并联系统中的每个转换器的第一实施例示于图3中。参见图3,转换器200包括在节点102与变压器12的初级线圈13串联连接的功率开关16。变压器12的初级线圈13和功率开关16跨接输入DC电压源11。功率开关16响应PWM信号而在导通周期和关断周期之间交替转换,其中PWM信号是在节点243由PWM控制器240施加于功率开关16的控制栅极。功率开关16的交变状态使得在变压器12的次级线圈14上产生AC电压。由PWM控制器240提供的PWM信号是响应反馈信号产生的。参见图2,耦合到PWM控制器240的反馈信号是由常规分压器产生的,而该常规分压器由耦合到转换器200的输出电压Vo并响应它的电阻器224和226形成。
在转换器200的次级侧,变压器12的次级线圈14在节点201耦合到正电压轨和在节点202耦合到负电压轨。正向整流器112在变压器12的次级线圈14和次级侧地之间耦合。正向整流器112优选是具有源极、漏极和栅极的MOSFET。正向整流器112的栅极耦合到节点201和耦合到栅极驱动电路262,以便由这些源极的一个或另一个进行其控制。栅极驱动电路响应在节点243的PWM信号,用于在转换器200的导通周期期间使正向整流器112导通。正向整流器112的漏极耦合到节点202。正向整流器112的源极耦合到次级侧地。在转换器200的导通周期期间,正向整流器112在次级线圈14(在节点202)和转换器10的第二输出端(Vout2)之间提供正向导电通路。
续流同步整流器116耦合在节点201和正向整流器112的源极之间。优选地,续流同步整流器116是具有源极、漏极和栅极的MOSFET。续流同步整流器116的漏极耦合到节点201。续流同步整流器116的源极耦合到正向整流器112的源极。续流同步整流器116用以当通过给其栅极施加合适的电荷时、提供在正电压轨和输出端Vout2之间的电流通路。
输出滤波器100包括与电容器122串联连接的电感器120,并耦合在转换器200的输出端Vout1和Vout2之间。输出滤波器100滤出沿着正电压轨存在的波动电流的任何高频分量并穿过正向变换器200的输出端提供基本上无波动的、基本上恒定的DC输出电压Vo。而且还示出了耦合在正向变换器的输出端之间的是典型负载RLOAD。
控制电路250耦合到续流同步整流器116的栅极。控制电路250在接点243接收PWM信号和时钟信号44。时钟信号44还输入到PWM控制器240。时钟信号44由源(未示出)提供并优选在施加输入电压V1时是有效的。时钟信号44优选是三角形斜波时钟信号,但是也可以使用任何合适的方波时钟信号来实施本发明。该时钟信号在高电压和低电压之间变化并具有等于或大于PWM信号的频率。
在转换器200的正常工作状态下,PWM控制器240应该响应来自分压器的反馈信号而产生PWM信号的下一个脉冲,其中该分压器由电阻器224和226形成并连接在转换器200的输出端之间。在PWM信号关断或具有错误周期的故障条件下,如保持转换器200的操作所需要的那样,将不产生下一脉冲。
控制电路250包括用于产生PWM参考信号的参考电路254。通过使PWM信号的后沿在节点243以预定速度在电压上下降,参考电路254在节点211产生PWM参考信号,使得如果没有产生PWM信号的下一脉冲,则PWM参考信号下降到时钟信号44的低电压以下并保持在低电压以下。
控制电路250包括比较器电路244,用于将在节点243的PWM参考信号与时钟信号44相比较。作为PWM参考信号和时钟信号44的函数,在比较器244的输出端产生输出信号,以便当PWM参考信号低于时钟信号44的低电压时输出信号导通。控制电路250包括驱动器电路256,如图3中的NOR门示意性示出。驱动器电路256具有连接到比较器电路的输出端的一个输入端和在节点243连接到PWM信号的另一输入端。驱动器电路256的输出端耦合到续流同步整流器116的栅极。驱动器电路256响应比较器244的输出信号和PWM信号,以便当输出信号导通时关断续流同步整流器116,并且当输出信号截止时使PWM信号能够控制续流同步整流器。
因而,转换器200的控制电路和相应方法比较了主时钟信号和PWM控制器的栅极驱动输出,以便识别故障条件和快速提供续流同步整流器116的控制,从而防止大负电流流过续流同步整流器116,否则大负电流可能导致部件损坏。
根据本发明第一实施例的转换器200具有提供续流同步整流器116的控制以防止任何大负电流流动的优点,这样做所采用的方式取决于PWM控制器栅极驱动输出而与定时、电流检测信号、电压检测信号、电流共享系统、和正向同步整流器的操作无关。
图4表示转换器的并联系统中的正向变换器的优选实施例,并在下面进一步说明。转换器500具有相对于地电位在输入端306耦合输入DC电压Vin的输入端304和输出端532,其中在输出端532提供相对于地的每个转换器模块的输出DC电压VOUT。
参见图4,功率开关34连接到变压器42的初级线圈4的第一端。优选地,还功率开关36并在节点301连接到初级线圈4的第二端。功率开关34与初级线圈4、功率开关36和电阻器40穿过输入DC电压端串联连接。优选地,在转换器500中包括二极管30和二极管38。二极管30在初级线圈4的第一端和输入端306之间与电阻器40串联连接。二极管38串联连接在初级线圈4的第二端和输入端304之间。每个功率开关34、36优选是具有源极、漏极和栅极的MOSFET。
功率转换器500包括提供脉宽调制信号(在图中标上“PWM”信号)的PWM控制器340,该脉宽调制信号耦合到功率开关34和36的每个控制输入端。PWM控制器340优选是具有固定开关频率和如图4所示的典型输入和输入管脚的AS3842电流模式PWM控制器,尽管可以使用任何合适控制器来实施本发明。PWM控制器340的管脚示于图4中,并具有典型的说明标记,如“Osc”表示公知为“Rt/Ct”管脚,这对于本领域技术人员来说是公知的。在PWM控制器340的“Vp”输入端提供DC电压,优选为12V。“Gnd”管脚连接到地,如图4所示。时钟信号44(未示出源)耦合到“Osc”输入端,并且通过电阻器352耦合到PWM控制器340的“Refv”输入。优选由常规分压器产生的反馈信号耦合到PWM控制器340的“Vfb”输入,其中所述分压器由耦合到转换器500的输出电压V。的电阻器324和326形成并对其响应。
在正向变换器500的次级侧,变压器42具有次级线圈6。优选地,变压器42包括辅助次级线圈408。次级线圈6在节点505耦合到正电压轨并在节点509耦合到负电压轨。正向整流器370串联连接在次级线圈6(在节点509)和次级侧地之间。正向整流器370优选是具有源极、漏极和栅极的MOSFET。二极管402具有连接到节点505的阴极和在节点501连接到正向整流器370的栅极的阳极。正向整流器370的漏极耦合到节点509。正向整流器370的源极耦合到次级侧地。在转换器500的导通周期期间,正向整流器370在次级线圈6(在节点509)和第二输出端534之间提供正向导电通路。正向整流器370的栅极优选在节点501也连接到辅助线圈408的第一端。二极管404和电阻器406并联连接在节点501和次级侧地之间。二极管404具有连接到次级侧地的阳极和连接到节点501的阴极。辅助线圈408的第二端连接到节点511。
参见图4所示,转换器500包括具有电感器320和电容器322的输出滤波器330。电感器320串联连接在节点505和输出端532之间。电容器322连接在输出端532、534之间。输出滤波器330滤出沿着正电压轨存在的波动电流的高频分量并穿过转换器500的输出端532、534提供基本上无波动的、基本上恒定的DC输出电压Vo。优选地,由电阻器324和电阻器326形成的分压器与跨接转换器500的输出端的电容器322并联连接。
具有控制输入的续流同步整流器380耦合在节点505和次级侧地之间。在典型实施例中,续流同步整流器380是具有源极、漏极和栅极的MOSFET。续流同步整流器380的源极耦合到次级侧地。电阻器56、二极管54、和二极管52串联连接在续流同步整流器380的(控制输入)栅极和次级侧地之间。电阻器56在节点511和续流同步整流器380的控制输入栅极之间与二极管54串联连接。二极管52具有连接到次级侧地的阳极和在节点511连接到二极管54的阳极的阴极。电阻器56在二极管54的阴极和续流同步整流器380的栅极之间串联连接。
参见图4所示,转换器500包括连接到续流同步整流器380的控制栅极的控制电路550。控制电路550优选包括同步整流器580,该同步整流器580具有控制输入并耦合在续流同步整流器380的栅极和次级侧地之间。同步整流器580优选是具有源极、漏极和栅极的MOSFET。同步整流器580的漏极耦合到续流同步整流器380的栅极。同步整流器580的源极连接到次级侧地。电阻器58连接在续流同步整流器380的栅极和次级侧地之间。
控制电路550包括在节点343和地之间与电容器354串联连接的二极管342。二极管342具有连接到节点343的阳极和在节点311连接到电容器354的阴极。参见图4,控制电路550包括参考电路358。参考电路358优选包括由电阻器346形成的RC网络,电阻器346在节点311和地之间与电容器354并联连接。控制电路550包括比较器344,该比较器344具有在节点311连接到二极管342的负“-”输入端和连接到时钟信号44的正“+”输入端。控制电路550包括OR门356,OR门356的一个输入端在节点343连接到PWM信号,另一个输入端连接到比较器344的输出端。OR门356的输出端在节点351连接到同步整流器580的栅极。参见图4所示,转换器500包括连接在时钟信号44和地之间的电容器348。PWM控制器340的PWM信号输出端在“Vout”管脚连接到OR门356的一个输入端(在节点343)。
优选地,转换器500是具有并联功率转换器(模块)的系统中的一个转换器,并优选如图2中的实施例所示那样连接。提供并联控制电路360,它具有连接到“并联管脚”的输入端N1,用于检测在并联转换器互连的点上的共享电流。并联控制电路360具有另一输入端N2,它连接到电阻器40、开关36和二极管30的结点。因此,用于转换器500中的功率开关36检测的电流被输入到输入端N2,用于并联连接转换器的共享电流被输入到并联控制电路360的输入端N1。并联控制电路360的输出端连接到PWM控制器340的“Comp”管脚。并联控制电路360用以控制“Comp”管脚,以便响应在并联转换器当中在N1或N2检测到的电流误差而调整PWM控制器340的输入信号。
下面将进一步详细说明转换器500的操作。每个功率开关34、36响应施加于其控制栅极的PWM信号而在导通周期和关断周期之间交替切换。PWM信号是由PWM控制器340提供的。这些交变状态使得在变压器42的次级线圈6和辅助次级线圈408上产生AC电压。本领域普通技术人员都知道,连接在输入电压端和初级线圈之间的二极管30和38提供用于在功率开关关断时使变压器芯复位的通路。
通过从在节点501耦合到其控制栅极的辅助线圈408施加正电压而使正向整流器370导通。正向整流器370的在节点501的栅极电容通过二极管52和辅助线圈408从次级地被充电,使整流器370导通。当续流同步整流器380截止时,次级线圈6通过由导通正向整流器370和电感器320提供的导电通路将能量转移给输出端532、534。
当PWM信号在节点343变低时(无效),功率开关34和36关断。结果是,辅助次级线圈408将极性相反并且负电压将耦合到正向整流器370的栅极。正向整流器370上的栅极电荷通过二极管402和电感器320向输出节点放电,使正向整流器370截止。二极管404将正向整流器370固定在零以下的二极管压降的电压,以便防止在它截止时栅极变为负。当辅助次级线圈408极性相反时,节点511变为正极性,通过二极管54和电阻器56向其控制栅极施加信号而使续流同步整流器380导通。
在转换器500中,参见图4所示,控制电路550用以在PWM信号关断或由于故障条件而具有错误周期时快速关断续流同步整流器380。结果是,控制电路550防止大负电流在从输出端返回到转换器的反方向通过续流同步整流器380流动。控制电路550提供这种控制的方式只取决于PWM控制器340的在节点351的栅极驱动输出。控制电路550产生栅极驱动信号以控制同步整流器580的栅极。以下将进一步详细介绍控制电路550的操作。
在转换器500中,由信号源(未示出)提供时钟信号44,并且当施加输入电压Vin时优选该时钟信号是有效的。时钟信号44优选是三角斜形时钟信号,但是也可以使用任何合适的方波时钟信号来实施本发明。时钟信号在高电压和低电压之间变化并具有等于或大于PWM信号的频率。优选地,时钟信号从1V到3V变化并具有是PWM信号两倍的频率。
在PWM控制器340导通之前,在节点343的PWM信号在零V左右。PWM信号通过二极管342在节点311耦合到比较器344的反相输入端并耦合到RC网络358,该RC网络358由电阻器346和电容器354形成。在节点311的PWM参考信号是PWM信号和RC网络358的时间常数的函数。
当PWM参考信号在零伏左右时,比较器344的输出将处于“高”状态,因为在其非反相“+”输入管脚的时钟信号44将比比较器344的反相“-”输入的在节点311的PWM参考信号高。在比较器344的输出端的高状态使OR门356的输出端也处于高状态。在OR门356的在节点351的输出端的高状态使同步整流器580导通,并使续流同步整流器380关断。
图8和9是表示转换器500的操作的典型时序图,特别是表示当PWM信号关断的条件下控制电路550的操作。轨迹A表示作为时间函数的在节点311PWM参考信号的电压。轨迹B表示作为时间函数的时钟信号44的电压。轨迹C表示作为时间函数的在比较器344的输出端的电压。轨迹D表示作为时间函数的用于连接到同步整流器580的栅极的OR门356的输出的电压。轨迹E表示作为时间函数的在节点343的PWM信号的电压。轨迹F表示在续流同步整流器380的控制栅极的电压。
下面将参照图8和9进一步详细介绍在PWM控制器340导通之前的时间,特别是参考在时间轴上的大约80μs到大约92μs的范围。在这个时间期间,由于PWM控制器关断,PWM信号处于低电平。因而,PWM参考信号将处于零伏左右。如图所示,优选地,在轨迹B中,时钟信号从大约1V变化到3V,并具有是PWM信号两倍的频率。结果是,比较器344的输出(如轨迹C所示)将处于“高”状态,因为在其非反相“+”输入管脚的时钟信号44(如轨迹B所示)将比在节点311和在比较器344的反相“-”输入的PWM参考信号(如轨迹A所示)高。在比较器344的输出端的高状态使OR门356(如轨迹D所示)的输出也处于高状态。在节点351的在OR门356的输出的高状态使同步整流器580导通,这使续流同步整流器380关断。参见轨迹F所示,在这个时间期间续流同步整流器380的栅极处于低状态。此时,通过PWM控制器关断,续流同步整流器380由于同步整流器580导通而保持关断,并且转换器500关断。优选提供电阻器58,用于在不再提供控制栅极信号之后使续流同步整流器380的栅极放电。
一旦PWM控制器340导通,在节点343的PWM信号变为高状态。结果是,由于二极管342而使比较器的反相管脚在节点311将快速升高,如轨迹A所示,在时间轴上在大约92.5μs开始。选择用于RC网络358的分量值,以便在节点311的PWM参考信号以预定速度缓慢放电,从而在预定时间周期内保持比时钟信号的峰值电压高的电压电平,如轨迹A所示。结果是,如轨迹C所示,在由比较器特性确定延迟之后,比较器344的输出变为低状态。因此,在这个阶段,优选为一种快速器件如74HCT32的OR门356的输出将跟随在节点343的PWM信号的状态。在这个阶段,在时间轴上大约92.5μs的时间段,转换器500的操作是正常的,没有任何故障条件。对于图8和9,这个操作继续执行,直到大约97μs点,在该时间点,该时序图向左围绕,所示的正常操作从大约68μs继续进行。本领域普通技术人员都知道,在这个阶段,根据RC网络358的值,比较器344的输出可能是窄脉冲,不会影响操作,只要该脉冲接近PWM信号的上升沿并小于PWM信号的最小工作循环即可。
在转换器500的操作期间,可能产生故障条件,其中PWM信号是错误循环或关断。典型故障条件示于图8和9中,在时间轴上大约76μs。在PWM信号的第一循环弄错时,时钟信号44(如轨迹B所示)仍然从1V向3V摆动,但是PWM参考信号的后沿(如轨迹A所示)在节点311和在比较器344的反相输入将以预定速度向RC网络358放电。RC网络358使PWM信号的后沿在节点343以预定速度进行电压下降,从而如果没有产生PWM信号(轨迹E)的下一脉冲,则PWM参考信号(如轨迹A所示)在节点311下降到时钟信号44的低电压以下并保持在以下。结果是,在下一时钟信号期间比较器344的输出将变为“高”状态,如轨迹C所示,这使OR门356的输出变为高,如轨迹D所示,这进而使同步整流器580导通,由此使续流同步整流器380关断。如从轨迹F可看到的,续流同步整流器380的栅极被控制,以便优选在时钟信号44的一个循环内关断续流同步整流器380。
这样,当在节点311的PWM参考信号低于时钟信号44的低电压时,比较器344的输出信号导通。控制电路550使得当比较器344的输出信号导通时关断续流同步整流器380和当比较器344的输出信号关断时启动在节点343的PWM信号,从而控制续流同步整流器380。当PWM参考信号在节点311低于时钟信号44的低电压时,比较器344的输出信号是导通状态。
在PWM信号的第一错误循环开始时,如轨迹D所示,OR门356的输出将立即变为“低”状态,续流同步整流器380的栅极将处于高状态,如轨迹F所示,这是因为同步整流器580处于关断状态,这保持续流同步整流器380的控制栅极处于非放电状态。续流同步整流器380将完成电感器320的能量释放。一旦电感器320的能量完全释放,则电感器320的相位改变从而使电流从输出端流到续流同步整流器380。这样,如果续流同步整流器38没有被足够快地关断,可能有一个巨大的负电流将流过续流同步整流器380。
通过在PWM信号停止之后的大约一个循环内关断续流同步整流器(参见图8和9中的典型波形,在72μs到77μs范围内),根据本发明的电路和相应方法实施例防止任何巨大负电流流过续流同步整流器以及否则由其对电路部件可能造成的损坏。
图5是根据本发明第三实施例的具有控制电路并提供混合同步整流驱动控制的正向变换器的示意图。对于正向变换器400,正向整流器406的控制栅极的驱动如图4中的优选实施例所示。图5中所示的实施例和图4中所示的优选实施例之间的主要差别在于控制电路,具体而言是与续流同步整流器380的栅极的连接。在转换器400中,控制电路350包括在OR门356的输出和续流同步整流器380的栅极之间耦合的反相器364和缓冲器366的串联组合。
此外,图4中所示的辅助线圈408用于驱动正向整流器370的续流同步整流器380的栅极。结果是,可使用正向整流器370的充电能量用于输出(Vo)能量的一部分或给续流同步整流器380的栅极充电,由此导致更高的效率。在图5中,通过对比,使用辅助线圈408只驱动正向整流器370的栅极。在图5中的实施例中包括二极管410,从而当辅助线圈408极性相反时阻挡充电能量流到次级侧地,以便使该能量用尽于输出(Vo),由此产生更高的效率。
图6是根据本发明第四实施例的具有控制电路350并提供用于续流同步整流器和正向整流器的正向变换器300的示意图。图6中所示实施例和图5中所示实施例之间的差别涉及正向整流器的栅极的驱动。特别是,转换器300不需要图5的辅助次级线圈408。参见图6所示,来自控制电路350的PWM信号通过缓冲器366耦合到正向整流器370的控制栅极。
图7是根据本发明第五实施例的降压(buck)转换器的示意图。参见图7所示,降压变换器600包括控制电路350,控制电路350具有在节点343耦合到开关670的控制输入的PWM信号。开关670优选是具有栅极、源极和漏极的正向同步整流器MOSFET。开关670连接在耦合输入电压Vin的输入端和电感器620之间。电感器620在输出端632和开关670的源极之间与电阻器630串联连接。
参见图7,在转换器600中,续流同步整流器380的源极连接到地,漏极连接到电感器620和开关670的源极的结点。二极管628具有连接到地的阳极和连接到续流同步整流器380的漏极的阴极。转换器600包括分压器与电容器622,该分压器由耦合到转换器600输出电压V。并响应它的电阻器624和626形成。由电阻器624和626形成的分压器在节点635在续流同步整流器380的漏极和地之间与电感器620串联连接。优选由电阻器624和626形成的分压器产生的反馈信号耦合到PWM控制器340的“Vfb”输入端。电阻器630在节点635和输出端632之间串联连接,其中相对于地的输出电压V。耦合到输出端632。电容器622跨接降压变换器600的输出端。
参见图7所示,转换器600包括电流检测电路660,该电流检测电路660具有跨接电阻器630的两个输入端N1和N2。电流检测电路660具有连接到PWM控制器340的检测管脚的输出。给具有并联连接的转换器的实施例提供并联控制电路360。并联控制电路360具有连接到电流检测电路660的输出的第一输入端N2。并联控制电路660的第二输入端N1连接到“并联管脚”,用于检测在一点的共享电流,对于并联转换器实施例,并联转换器在该点互连。并联控制电路360具有连接到电流检测电路660的输出的另一输入端N2和连接到PWM控制器340的“Comp”管脚的输出端。
在操作中,当转换器600的开关670被PWM信号切换为导通时,电容器622经过开关670、电感器620和电阻器632由输入电压Vin充电,从而产生输出电压V。,因而输出电压V。低于峰值输入电压Vin。当开关670打开时,通过电感器620的电流经过续流同步整流器380保持不变。同步整流器380允许双向电流流动。结果是,来自电感器620的电感器电流通过续流同步整流器380从输出端反相流动。控制电路350的在节点351的OR门356的输出经反相器364和缓冲器366的串联组合耦合到续流同步整流器370的控制栅极。
在转换器600工作期间,如果产生故障条件,其中PWM信号是错误循环或关断,则在下一时钟信号期间比较器344的输出将变为高,如上所述,这使OR门356的输出变为高,进而导致续流同步整流器380关断。这样,可以防止大负电流流过续流同步整流器380。
本领域普通技术人员都能理解,前面关于根据本发明的上述实施例的控制电路所示的部件很容易集成到集成电路中,例如,PWM ASIC设计。
因而,本发明的实施例具有提供续流同步整流器的控制以防止任何大负电流流过的优点,并且所示采用的方式取决于PWM控制器的输出,而与定时、电流检测信号、电压检测信号、电流共享系统和正向同步整流器的操作无关。
前面为了表示和说明的目的已经对本发明进行了详细的说明。尽管这里参照附图已经详细介绍了本发明的典型实施例,但是应该理解本发明不限于这里公开的具体实施例,而是鉴于上述教导可以对本发明进行各种改变和修改。
权利要求
1.一种正向变换器,包括变压器,具有初级线圈和次级线圈;功率开关,与所述变压器串联连接并耦合到输入电源,所述功率开关能在导通周期和关断周期之间、随着包括由PWM电路产生的脉冲的PWM信号的变化而交替地转换,并且使得对此进行响应而在所述次级线圈两端产生AC电压;输出滤波器,用于给输出负载提供基本上恒定的DC电压;正向整流器,它具有控制输入,并用于在所述导通周期期间在所述次级线圈和所述输出滤波器之间提供正向导电通路;续流同步整流器,它具有控制输入,并用于在所述关断周期期间给所述输出滤波器提供用于保持电流的第二导电通路;和控制电路,它耦合到所述续流同步整流器的所述控制输入,用于控制其状态,所述控制电路接收在高电压和低电压之间变化的时钟信号,所述时钟信号具有等于或大于所述PWM信号的频率,包括参考电路,用于通过使所述PWM信号的后沿以预定速度减小电压、而产生PWM参考信号,如果没有产生所述PWM信号的下一个脉冲,使得所述PWM参考信号下降低于所述低电压并保持在所述低电压以下;比较器电路,用于比较所述PWM参考信号与所述时钟信号,和用于随着其变化而产生输出信号,从而在所述PWM参考信号低于所述低电压时,所述输出信号处于导通状态;和驱动器电路,它响应所述输出信号和所述PWM信号,以便在所述输出信号导通时使所述续流同步整流器关断,并且在所述输出信号截止时使所述PWM信号能控制续流同步整流器。
2.根据权利要求1的正向变换器,其中所述参考电路是用于通过使所述PWM信号的后沿以预定速度减小电压、而产生PWM参考信号,使得如果没有产生所述PWM信号的下一脉冲的前沿,则所述PWM参考信号下降到所述低电压以下并保持在其以下。
3.根据权利要求1的正向变换器,其中如果所述PWM参考信号下降到所述时钟信号的所述低电压以下并保持在其以下,则在所述PWM参考信号下降到所述低电压以下之后、在所述时钟信号的一个循环内所述驱动电路关断所述续流同步整流器。
4.根据权利要求1的正向变换器,其中所述参考电路是用于通过使所述PWM信号的后沿以预定速度减小电压、而产生PWM参考信号,使得如果没有产生所述PWM信号的下一脉冲,则所述PWM参考信号下降到所述时钟信号的幅度以下并保持在其以下。
5.根据权利要求4的正向变换器,其中如果所述PWM参考信号下降到所述时钟信号的幅度以下并保持在其以下,则在所述PWM参考信号下降到所述时钟信号的幅度以下之后、在所述时钟信号的一个循环内所述驱动电路关断所述续流同步整流器。
6.根据权利要求1的正向变换器,其中所述时钟信号从1伏变化到3伏。
7.根据权利要求1的正向变换器,其中所述时钟信号具有大约为所述PWM信号的两倍的频率。
8.根据权利要求1的正向变换器,其中所述续流同步整流器是MOSFET。
9.根据权利要求1的正向变换器,其中所述参考电路包括耦合在所述PWM电路的输出和第一节点之间的第一二极管,和RC电路,用于根据预定的RC时间常数以预定速度使所述PWM信号的后沿延迟,使得如果没有产生所述PWM信号的下一脉冲,则所述PWM参考信号下降到所述低电压以下并保持在其以下,所述RC电路包括在所述第一节点和地之间与第一电容器并联连接的第一电阻器。
10.根据权利要求1的正向变换器,其中所述比较器电路包括具有正输入和负输入的比较器,所述PWM参考信号耦合到所述负输入,所述时钟信号耦合到所述正输入。
11.根据权利要求1的正向变换器,还包括耦合在所述转换器的输出上的分压器,用于响应所述转换器的输出而产生反馈信号,所述反馈信号耦合到所述PWM电路。
12.根据权利要求1的正向变换器,其中所述驱动电路包括OR门,它具有第一和第二输入和一输出,所述第一输入耦合到所述PWM控制器的输出,所述第二输入耦合到所述比较器电路的输出。
13.根据权利要求12的正向变换器,其中所述驱动器电路还包括一反相器和一缓冲器,串联连接在所述OR门的输出和所述续流同步整流器的所述控制输入之间。
14.根据权利要求12的正向变换器,其中所述输出滤波器包括与电容器串联连接的电感器,所述电容器跨接所述转换器的输出,并且所述续流同步整流器是具有源极、漏极和栅极的MOSFET,所述续流同步整流器的漏极耦合到所述电感器,所述续流同步整流器的源极耦合到地;所述驱动器电路还包括驱动器整流器,耦合在所述续流同步整流器的控制输入和地之间,并具有耦合到所述OR门的所述输出的控制输入。
15.根据权利要求14的正向变换器,其中所述驱动器电路还包括在所述续流同步整流器的控制输入和地之间串联连接的电阻器。
16.根据权利要求1的正向变换器,其中所述功率开关是第一功率开关,并且所述初级线圈具有第一端和第二端,所述正向变换器还包括第二功率开关,所述第一功率开关串联连接在所述第一端和所述输入端子之一之间,所述第二功率开关通过一电阻器串联连接在所述第二端和所述输入端子的另一个之间;第一二极管,它在所述第一端和所述输入端子的另一个之间与所述电阻器串联连接;第二二极管,它在所述第二端和所述输入端子的第一个之间串联连接,从而所述第一和第二二极管提供用于使所述变压器复位的通路。
17.根据权利要求1的正向变换器,还包括一辅助线圈,磁性耦合到所述初级线圈,从而响应所述功率开关的切换而在所述辅助线圈上产生所述AC电压,所述辅助线圈的一端通过第一二极管耦合到所述正向整流器的控制输入,所述辅助线圈的另一端耦合到地;第二二极管,耦合在所述输出滤波器和所述次级线圈的结点与所述正向整流器的控制输入之间;以及第三二极管和一电阻器,在所述正向整流器的控制输入和地之间并联连接。
18.根据权利要求1的正向变换器,其中所述续流同步整流器是具有源极、漏极和栅极的MOSFET,所述续流同步整流器的漏极耦合到所述输出滤波器,所述续流同步整流器的源极耦合到地;所述正向变换器还包括在所述续流同步整流器的控制输入和地之间串联连接的第二电阻器以及第四和第五二极管,第二电阻器在第二节点和所述续流同步整流器的控制输入之间与第四二极管串联连接,所述第五二极管具有连接到地的阳极和在所述第二节点连接到第四二极管的阳极的阴极;在所述续流同步整流器的控制输入和地之间串联连接的第三电阻器;一辅助线圈,磁性耦合到所述初级线圈,以便响应所述开关的切换而在所述辅助线圈上产生所述AC电压,所述辅助线圈的一端耦合到所述正向整流器的控制输入,所述辅助线圈的另一端耦合到所述第二节点;第六二极管,它耦合在所述电感器和所述次级线圈的结点与所述正向整流器的控制输入之间;以及第七二极管和第四电阻器,并联连接在所述正向整流器的控制输入和地之间。
19.一种降压变换器,用于将输入DC电压转换成调整输出DC电压,所述降压变换器具有耦合输入DC电压的输入端和提供输出DC电压的输出端,并包括输出滤波器,用于向输出负载提供基本上恒定的DC电压;功率开关,串联连接在所述输入端和所述输出滤波器之间,所述功率开关可以在导通周期和关断周期之间随着包括由PWM电路产生的脉冲的PWM信号的变化而交替切换;续流同步整流器,具有控制输入和用于提供第二导电通路,以便在所述关断周期期间保持到所述输出滤波器的电流;控制电路,耦合到所述续流同步整流器的所述控制输入,以便控制其状态,所述控制电路接收在高电压和低电压之间变化的时钟信号,所述时钟信号具有等于或大于所述PWM信号的频率,包括一参考电路,用于通过使所述PWM信号的后沿在电压上以预定速度下降而产生PWM参考信号,使得如果没有产生所述PWM信号的下一个脉冲,所述PWM参考信号下降到低于所述低电压并保持在所述低电压以下;比较器电路,用于比较所述PWM参考信号与所述时钟信号,和用于随着其变化而产生输出信号,使得在所述PWM参考信号低于所述低电压时,所述输出信号处于导通状态;和驱动器电路,它响应所述输出信号和所述PWM信号,以便在所述输出信号导通时使所述续流同步整流器关断,并且在所述输出信号截止时使所述PWM信号能够控制续流同步整流器。
20.根据权利要求19的降压变换器,还包括在所述转换器的输出上耦合的分压器,用于响应所述输出而产生反馈信号,所述反馈信号耦合到所述PWM电路。
21.根据权利要求19的降压变换器,所述驱动器电路还包括一反相器和一缓冲器,它们串联连接在所述OR门的输出和所述续流同步整流器的所述控制输入之间。
22.一种功率转换器,包括功率开关,所述功率开关可以在导通周期和关断周期之间、随着包括由PWM电路产生的脉冲的PWM信号的变化而交替转换;输出滤波器,用于给输出负载提供基本恒定的DC电压;续流同步整流器,具有控制输入和用于提供第二导电通路,第二导电通路用于在所述转换器的所述关断周期期间保持到所述输出滤波器的电流;和控制电路,耦合到所述续流同步整流器的所述控制输入,用于控制其状态,所述控制电路接收在高电压和低电压之间变化的时钟信号,所述时钟信号具有等于或大于所述PWM信号的频率,包括参考电路,用于通过使所述PWM信号的后沿在电压上以预定速度下降而产生PWM参考信号,使得如果没有产生所述PWM信号的下一个脉冲,所述PWM参考信号下降到低于所述低电压并保持在所述低电压以下;比较器电路,用于比较所述PWM参考信号与所述时钟信号,和用于随着其变化而产生输出信号,从而在所述PWM参考信号低于所述低电压时,所述输出信号处于导通状态;和驱动器电路,它响应所述输出信号和所述PWM信号,以便在所述输出信号导通时使所述续流同步整流器关断,并且在所述输出信号截止时使所述PWM信号能够控制续流同步整流器。
23.一种控制功率转换器中的同步整流器的状态的方法,所述功率转换器具有耦合到输入DC电压的输入端和提供输出DC电压的输出端,该方法包括以下步骤从PWM控制器接收PWM信号;接收在高电压和低电压之间变化的时钟信号,该时钟信号具有等于或大于所述PWM信号的频率;通过使所述PWM信号的后沿在电压上以预定速度下降而产生PWM参考信号,使得如果没有产生所述PWM信号的下一脉冲,所述PWM参考信号下降到所述低电压以下并保持在所述低电压以下;产生随着所述PWM参考信号和所述时钟信号的变化的输出信号,使得当所述PWM参考信号低于所述低电压时所述输出信号是导通状态;当所述输出信号导通时关断所述续流同步整流器;和当所述输出信号截止时,使所述PWM信号能够控制所述续流同步整流器。
24.一种功率系统,具有多个DC-DC转换器模块,每个转换器模块具有耦合到输入DC电压的输入端和提供输出DC电压的输出端,所述转换器模块通过它们的输出端并联连接,每个所述转换器模块包括降压变换器,用于将所述输入DC电压转换成调整输出DC电压,所述降压变换器具有耦合到输入DC电压的输入端和提供输出DC电压的输出端,所述降压变换器包括输出滤波器,用以给输出负载提供基本上恒定的DC电压;功率开关,在所述输入端和所述输出滤波器之间串联连接,所述功率开关可以在导通周期和关断周期之间随着包括由PWM电路产生的脉冲的PWM信号的变化而交替切换;续流同步整流器,具有控制输入和用以提供第二导电通路,以便在所述关断周期期间保持到所述输出滤波器的电流;在所述转换器的输出上耦合的分压器,用于响应该输出产生反馈信号,所述反馈信号耦合到所述PWM电路;和控制电路,耦合到所述续流同步整流器的所述控制输入,以控制其状态,所述控制电路接收在高电压和低电压之间变化的时钟信号,所述时钟信号具有等于或大于所述PWM信号的频率,所述控制电路包括参考电路,用于通过使所述PWM信号的后沿在电压上以预定速度下降而产生PWM参考信号,使得如果没有产生所述PWM信号的下一个脉冲,所述PWM参考信号下降到低于所述低电压并保持在所述低电压以下;比较器电路,用于比较所述PWM参考信号与所述时钟信号,和随着其变化而产生输出信号,使得在所述PWM参考信号低于所述低电压时,所述输出信号处于导通状态;和驱动器电路,它响应所述输出信号和所述PWM信号,以便在所述输出信号导通时使所述续流同步整流器关断,并且在所述输出信号截止时使所述PWM信号能够控制所述续流同步整流器;电流检测电路,耦合到每个所述转换器模块,用于检测所述转换器模块的输出电流和用于产生随其变化的电流检测信号;并列检测电路,用于产生随着每一个所述电流检测信号的变化而在公共电流共享总线上产生电流共享信号;和并列控制电路,耦合到每个所述转换器模块的所述PWM电路,用于随着此转换器模块的电流检测信号和所述电流共享信号的变化而调整相应的转换器模块的输出功率。
25.一种功率系统,具有多个DC-DC转换器模块,每个转换器模块具有耦合到输入DC电压的输入端和提供输出DC电压的输出端,所述转换器模块通过它们的输出端并联连接,每个所述转换器模块包括用于将所述输入DC电压转换为调整输出DC电压的正向变换器,它包括具有初级线圈和次级线圈的变压器;与所述变压器串联连接并耦合到输入电源的功率开关,所述功率开关可以随着包括由PWM电路产生的脉冲的PWM信号的变化而在导通周期和关断周期之间交替转换,以便响应它而在所述次级线圈上产生AC电压;输出滤波器,用以给输出负载提供基本恒定的DC电压;正向整流器,它具有控制输入和用以在所述导通周期期间在所述次级线圈和所述输出滤波器之间提供正向导电通路;续流同步整流器,具有控制输入和用以提供第二导电通路,第二导电通路用于在所述关断周期期间保持到所述输出滤波器的电流;耦合在所述转换器的输出上的分压器,用于响应其而产生反馈信号,所述反馈信号耦合到所述PWM电路;控制电路,耦合到所述续流同步整流器的所述控制输入,用于控制其状态,所述控制电路接收在高电压和低电压之间变化的时钟信号,所述时钟信号具有等于或大于所述PWM信号的频率,所述控制电路包括参考电路,用于通过使所述PWM信号的后沿在电压上以预定速度下降而产生PWM参考信号,使得如果没有产生所述PWM信号的下一个脉冲,所述PWM参考信号下降到低于所述低电压并保持在所述低电压以下;比较器电路,用于比较所述PWM参考信号与所述时钟信号,和用于随着其变化而产生输出信号,从而在所述PWM参考信号低于所述低电压时,所述输出信号处于导通状态;和驱动器电路,它响应所述输出信号和所述PWM信号,以便在所述输出信号导通时使所述续流同步整流器关断,并且在所述输出信号截止时使所述PWM信号能够控制所述续流同步整流器;电流检测电路,耦合到每个所述转换器模块,用于随着通过所述功率开关检测的电流的变化而产生电流检测信号;并列检测电路,用于产生随着每一个所述电流检测信号的变化而在公共电流共享总线上产生电流共享信号;和并列控制电路,耦合到每个所述转换器模块的所述PWM电路,用于随着此转换器模块的电流检测信号和所述电流共享信号的变化而调整相应的转换器模块的输出功率。
全文摘要
一种控制电路和相应方法,特别用于具有并联功率转换器的系统中的功率转换器,还涉及一种控制电路和相应方法,快速有效地控制续流同步整流器,以便在故障条件期间防止可能损坏转换器的部件的任何大的负电流流过,其中在故障条件下PWM信号关断或具有错误循环。在优选实施例中,本发明的控制电路和相应方法比较PWM控制器的时钟信号和栅极驱动输出,以便识别故障条件和快速提供同步整流器的控制,从而防止否则可能导致部件损坏的大的负电流流过同步整流器。本发明的优点是提供续流同步整流器的控制以便防止任何大负电流流过,并且采用的方式取决于PWM控制器的栅极驱动输出,而与定时、电流检测信号、电压检测信号、电流共享系统和功率转换器的正向同步整流器的操作无关。
文档编号H02M1/00GK1578090SQ20041005870
公开日2005年2月9日 申请日期2004年7月28日 优先权日2003年7月28日
发明者蒋文浩 申请人:艾斯泰克国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1