电动机驱动装置的控制装置的制作方法

文档序号:7328401阅读:105来源:国知局
专利名称:电动机驱动装置的控制装置的制作方法
技术领域
本发明涉及根据矢量控制法对具备将直流电压变换为交流电压并供给至交流电动机的直流交流变换部的电动机驱动装置进行控制的控制装置。
背景技术
一般地,在电动机驱动装置中使用作为直流交流变换部的逆变器将来自直流电源的直流电压变换为交流电压来驱动交流电动机。在这样的电动机驱动装置中,为了向交流电动机的各相绕组供给正弦波状的交流电压来使其有效地产生转矩,往往进行矢量控制 (field oriented control :F0C)。在这样的矢量控制中,流过交流电动机的三相的每一相定子绕组的电流被坐标变换成被配置于转子中的永久磁铁所产生的磁场方向、即d轴、和与d轴正交的q轴的2个矢量分量,进行反馈控制。在专利文献1中,记载了一种电动机驱动装置的控制装置,其能够利用1个运算处理单元来共同地进行2个交流电动机的矢量控制。在专利文献1的控制装置中,首先通过电流控制部,根据驱动交流电动机的电流的指令值、即电流指令值id*、iq*和实际流过交流电动机的电流id、iq来导出电压指令值vd’ *、vq’ *。接着,通过非干扰运算,根据导出的电压指令值vd’ *、vq’ *来导出干扰项已被修正的二相电压指令值vd*、vq*。然后,通过电压控制部,根据二相电压指令值vd*、vq*和表示交流电动机的转子的旋转位置的磁极位置θ re来导出三相电压指令值vu*、w*、w*,并且根据三相电压指令值vu*、w*、w*来生成用于控制逆变器的控制信号。另外,在如上述那样对交流电动机进行驱动时,若要更加精确地控制交流电动机的输出转矩以及转速,则优选构成为,按每个极短的周期取得各自的指令值和实际值来进行反馈控制。但是,若要按每个较短周期进行较多的运算,则运算处理单元的处理负荷会相应地增大。虽然也考虑了增加运算处理单元的数量、或利用高性能的运算处理单元,但是从电动机驱动装置及其控制装置的小型化、低廉化的角度来看是不可取的。关于这一点,在专利文献1的控制装置中,将用于由电流控制部导出电压指令值 vd’*、vq’*,并根据上述电压指令值进一步导出二相电压指令值vd*、vq*的运算周期(以下有时称为电流控制周期)设定得比用于由电压控制部导出三相电压指令值vu*、VV*、VW*, 并根据上述电压指令值进一步生成用于控制逆变器的控制信号的运算周期(以下有时称为电压控制周期)(具体而言,2倍或者整数η倍)长。这样,通过剔除一部分电压指令值 vd’*、vq’*以及二相电压指令值vd*、vq*的导出,来减轻运算处理单元的处理负荷。并且, 在专利文献1的控制装置中,按每1个电流控制周期,交替地进行分别针对2个交流电动机的下一次的电压指令值vd’ *(vd*)、vq’ *(vq*)的导出,并且在考虑从每个交流电动机的磁极位置的取入时刻延迟的时间的同时,按每个电压控制周期,输出用于分别控制逆变器的控制信号。由此,能够减轻实现运算处理单元的处理负荷,且得到极高分辨率的输出。专利文献1 日本专利第3890907号公报关于电压控制部根据二相电压指令值vd*、vq*和磁极位置θ re来导出三相电压指令值vu*、VV*、VW*的手段,虽然在专利文献1中没有特别的公开,但是认为一般是根据规定的运算式来导出,或者根据预先存储设置的规定的映射来导出。在前者的情况下,由于运算式自身极其复杂,所以用于进行运算的处理负荷变得非常高。在后者的情况下,由于规定的映射是基于3个参数(vd*,vq*,θ re)的三维映射,所以用于根据该映射导出三相电压指令值vu*、vv*、vw*的处理负荷与前者相比多少有些改善,但处理负荷还是比较高。另外,在上述任意一个的情况下,由于电流控制周期设定的比电压控制周期长,所以有时即使1个电压控制周期结束,二相电压指令值vd*、vq*也不变化。在这种情况下,会利用值与上次相等的二相电压指令值vd*、vq*来再次进行三相电压指令值vu*、w*、vw*的导出以及控制信号的生成处理。即,由于在专利文献1的控制装置中进行了一部分冗余的运算处理,所以从这一点也可知,电压控制部的处理负荷不必要地被提高了。因此,对于与电压控制部的内部处理有关的运算周期的最优化,还有改善的余地。

发明内容
于是,希望实现一种控制装置来实现如下目的,使电压控制部的内部处理相关的运算周期优化,减少对交流电动机进行控制时的处理负荷。本发明涉及的、通过矢量控制法,对具备将直流电压变换成交流电压并供给至交流电动机的直流交流变换部的电动机驱动装置进行控制,其特征在于,作为根据用于驱动上述交流电动机的二相电压指令值、即电压指令值来生成用于控制上述直流交流变换部的控制信号的电压控制部,具备第一电压控制部,其根据上述电压指令值和被供给至上述直流交流变换部的实际的直流电压,导出表示上述电压指令值的有效值相对于直流电压的比率的调制率和上述电压指令值所表示的电压矢量的相位角、即电压指令相位;和第二电压控制部,其根据上述调制率、上述电压指令相位和表示上述交流电动机的转子的旋转角度的磁极位置来生成上述控制信号,上述第一电压控制部的运算周期被设定为比上述第二电压控制部的运算周期长。根据上述的特征构成,在现有技术中被在1个运算周期内进行的、到根据电压指令值和磁极位置来生成用于控制直流交流变换部的控制信号为止的一系列运算处理被分成用于根据电压指令值和实际的直流电压导出调制率和电压指令相位的运算处理(以下有时称为第一电压控制处理)、和根据调制率、电压指令相位和磁极位置生成用于控制直流交流变换部的控制信号的运算处理(以下有时称为第二电压控制处理)。对于第二电压控制部的第二电压控制处理,优选根据交流电动机的实际的磁极位置来尽可能以较高的分辨率进行运算处理,从该观点来看,优选被构成为以极短运算周期来进行第二电压控制处理。 另一方面,对于第一电压控制部的第一电压控制处理,由于无需设定为比电压指令值被导出的运算周期短,所以考虑到电压指令值被导出的运算周期经常被设定为比用于生成控制信号的运算周期长的情况,将该运算周期设定为比第二电压控制处理的运算周期长。因此, 在电压指令值与上次的指令值相比没有变化的情况下易于避免进行不必要的运算处理,实现处理负荷的降低。其结果,易于在整体上降低到根据电压指令值和磁极位置来生成用于控制直流交流变换部的控制信号为止的一系列运算处理的处理负荷。另外,根据上述的特征构成,第二电压控制部的第二电压控制处理根据调制率、电压指令相位和磁极位置而被进行。这里,电压指令相位和磁极位置是与用于生成控制信号的基准波形的相位有关的同维的参数,因此在被构成为根据规定的运算式来进行第二电压控制处理的情况下,能够相对地简化该运算式。另外,在被构成为根据规定的映射来进行第二电压控制处理的情况下,能够将该映射设成基于2个参数(调制率和相位)的二维映射。 因此,无论在哪种情况下,都能够降低第二电压控制处理涉及的处理负荷。另外,在第一电压控制部的第一电压控制处理中,也可以根据电压指令值和直流电压,基于规定的运算式和映射来容易地导出调制率和电压指令相位。因此,可以降低第一电压控制处理涉及的处理负荷。其结果,根据该点来看也能够在整体上降低到生成控制信号为止的一系列运算处理的处理负荷。因此,根据上述的特征构成,能够将与电压控制部的内部处理有关的运算周期最优化,由此,能够提供一种实现了控制交流电动机时的处理负荷的减轻的控制装置。这里,优选构成为,具备电流控制部,该电流控制部根据驱动上述交流电动机的二相电流指令值、即电流指令值、流过上述交流电动机的实际电流和上述转子的转速来导出上述电压指令值,上述第一电压控制部的运算周期被设定为与上述电流控制部的运算周期相等。在用于由第一电压控制部导出调制率和电压指令相位的运算周期比用于由电流控制部导出电压指令值的运算周期短的情况下,即使在电压指令值自上一次开始没有变化的情况下用于导出调制率和电压指令相位的不必要的运算处理也会被进行。另一方面,在用于由第一电压控制部导出调制率和电压指令相位的运算周期比用于由电流控制部导出电压指令值的运算周期长的情况下,有可能无法适当地追踪电压指令值的变化来精确地导出调制率和电压指令相位。根据上述的构成,能够与电压指令值被导出的运算周期相对应地,以最佳的运算周期来适当地导出调制率和电压指令相位。另外,优选构成为,上述电流控制部和上述第一电压控制部的运算周期被设定成上述第二电压控制部的运算周期的N倍(N是2以上的整数)。根据该构成,易于将电流控制部、第一电压控制部和第二电压控制部的各自的控制周期维持为适当的关系来同时兼顾控制交流电动机时的处理负荷的减轻和控制响应性。另外,优选构成为,还具备模式决定部,该模式决定部根据规定的模式决定用输入变量,从为了控制上述电动机驱动装置而预先设定的多个控制模式中决定出1个控制模式,上述第二电压控制部生成与由上述模式决定部决定的控制模式相对应的上述控制信号,上述模式决定用输入变量的更新周期被设定为比上述第一电压控制部的运算周期长, 上述模式决定部的运算周期被设定为与上述模式决定用输入变量的更新周期相等。用于进行控制模式的决定的运算与生成用于控制直流交流变换部的控制信号的第二电压控制处理和导出成为用于进行第二电压控制处理的原信息的调制率以及电压指令相位的第一电压控制处理相比,紧急性较低。因此,即使将用于决定控制模式的处理的优先度设定为低于第一电压控制处理和第二电压控制处理也基本不会有问题。于是,如上述的构成那样,通过将是紧急性较低的运算处理的、用于决定控制模式的运算周期与模式决定用输入变量的更新周期相应地设定为长于第一电压控制处理和第二电压控制处理中的、运算周期较长的处理、即第一电压控制处理,能够适当地减少用于决定控制模式的处理被进行的次数,来减轻控制交流电动机时的处理负荷。另外,优选构成为,上述模式决定用输入变量至少包含上述交流电动机的目标转矩和上述转子的转速。根据该构成,能够利用与电压指令值的导出直接相关的、目标转矩和转子的转速的信息,来简单且适当地决定控制模式。另外,优选构成为,还具备载波频率决定部,该载波频率决定部根据规定的载波频率决定用输入变量,决定上述直流交流变换部的载波频率,上述载波频率决定用输入变量的更新周期被设定为比上述第一电压控制部的运算周期长,上述载波频率决定部的运算周期被设定为与上述载波频率决定用输入变量的更新周期相等。用于进行载波频率的决定的运算与生成用于控制直流交流变换部的控制信号的第二电压控制处理、和导出成为用于进行第二电压控制处理的原信息的调制率以及电压指令相位的第一电压控制处理相比,紧急性较低。因此,即使将用于决定载波频率的处理的优选度设定为低于第一电压控制处理和第二电压控制处理也基本不会有问题。于是,如上述的构成那样,通过将是紧急性较低的运算处理的、用于决定载波频率的运算周期与载波频率决定用输入变量的更新周期相应地设定为长于第一电压控制处理和第二电压控制处理中的、运算周期较长的处理、即第一电压控制处理,能够适当地减少用于决定载波频率的处理被进行的次数,来减轻控制交流电动机时的处理负荷。另外,优选构成为,上述载波频率决定用输入变量至少包含上述调制率和上述转子的转速。根据该构成,能够利用与电压指令值的导出直接或者间接相关的调制率和转子的转速的信息,来简单且适当地决定载波频率。在以上说明的电动机驱动装置的控制装置中,优选构成为,上述第一电压控制部的运算周期被设定成上述第二电压控制部的运算周期的N倍(N是2以上的整数),并且利用单一的运算处理单元来控制将N个上述交流电动机作为控制对象的上述电动机驱动装置,按被设定成规定时间的每个基准运算周期,上述第二电压控制部分别完成用于生成与各交流电动机对应的上述控制信号的生成处理,每N个上述基准运算周期,上述第一电压控制部完成1次针对N个上述交流电动机中的1个导出上述调制率和上述电压指令相位的导出处理,并且在不执行针对该1个交流电动机的上述导出处理的期间内,完成针对其他的交流电动机的上述导出处理。根据该构成,由于按照每个基准运算周期来生成与各交流电动机对应的控制信号,所以能够平滑地驱动多个交流电动机的每一个。另外,由于在多个基准运算周期内,针对多个交流电动机的每一个依次导出1次调制率和电压指令相位,所以能够在减轻处理负荷的同时,适当地进行针对各交流电动机的导出处理。因此,能够利用单一的运算处理单元,以最佳的运算周期适当地控制多个交流电动机。


图1是示意性地表示包含第一实施方式涉及的控制装置的车辆的系统构成的一例的框图。图2是第一实施方式涉及的控制装置的功能框图。图3是表示决定控制模式时参照的映射的一例的图。图4是表示第一控制模式下的交流电压指令值的一例的图。图5是表示第三控制模式下的交流电压指令值的一例的图。图6是表示第一实施方式涉及的电动机控制处理的处理流程的流程图。
图7是进行了第一实施方式涉及的电动机控制处理的情况下的时序图。图8是表示第二实施方式涉及的电动机控制处理的处理流程的流程图。图9是进行了第二实施方式涉及的电动机控制处理的情况下的时序图。
具体实施例方式1.第一实施方式参照附图对本发明涉及的电动机驱动装置1的控制装置2的第一实施方式进行说明。如图1所示那样,在本实施方式中,以电动机驱动装置1被构成为对作为利用三相交流进行动作的交流电动机的嵌入磁铁构造的2个同步电动机MG1、MG2 (IPMSM,以下有时将它们统称为“电动机MG”。)进行驱动控制的装置的情况为例进行说明。上述的电动机MG根据需要还被构成为作为发电机进行动作。上述的电动机MG例如被用作电动车辆或混合动力车辆等的驱动力源。电动机驱动装置1被构成为具有将直流电压Vdc变换成交流电压供给至电动机MG的逆变器6。并且,在本实施方式中,如图2所示那样,控制装置2利用矢量控制法来进行电动机驱动装置1的控制。在这样的构成中,本实施方式涉及的控制装置2具有如下特征,S卩、作为根据用于驱动电动机MG的电压指令值Vd、Vq来生成用于控制逆变器6的开关控制信号Pu、Nu, Pv, Nv.Pw.Nw的电压控制部21,具备根据电压指令值VcUVq和直流电压Vdc来导出调制率M和电压指令相位θν的第一电压控制部22、以及根据调制率M、电压指令相位θν和磁极位置 θ来生成开关控制信号Pu、Nu、Pv、Nv、PW、NW的第二电压控制部23,第一电压控制部22的运算周期(第二运算周期!^)设定为比第二电压控制部23的运算周期(第一运算周期Tl) (参照图7)长。由此,使电压控制部21的内部处理有关的运算周期最优化,实现了降低对电动机MG进行控制时的处理负荷的控制装置2。下面对本实施方式涉及的电动机驱动装置 1及其控制装置2进行详细说明。1-1.电动机驱动装置以及控制装置的硬件构成首先,根据图1对本实施方式涉及的电动机驱动装置1以及控制装置2的硬件构成进行说明。如图1所示那样,在本实施方式中,2个三相同步电动机MG1、MG2作为控制对象。电动机MG1、MG2可以是性能相同的电动机,也可以是性能不同的电动机。电动机MG1、 MG2分别经由逆变器6a、6b (以下有时将它们统称为“逆变器6”。),与产生直流电压Vdc的直流电源3连接。作为直流电源3,例如使用镍氢二次电池或锂离子二次电池等各种二次电池、电容器或者它们的组合等。作为直流电源3的电压的直流电压Vdc,由未图示的电压传感器进行检测并被输出到控制装置2。另外,在直流电源3和逆变器6之间,可以构成为介入设置有对来自直流电源3的直流电压Vdc进行平滑化处理的平滑电容器、或对来自直流电源3的直流电压Vdc进行升压处理的变换器等。逆变器6将来自直流电源3的直流电压Vdc变换成三相交流电压供给至电动机 MG。利用这样被供给的三相交流电压,驱动电动机MG。即,逆变器6作为“直流交流变换部”而发挥作用。逆变器6被构成为具有多个开关元件(未图示)。开关元件例如优选使用 IGBT(insulated gate bipolar transistor)或 MOSFET(metal oxide semiconductor field effect transistor)等。下面以利用IGBT作为开关元件的情况为例进行说明。逆变器6(6a,6b)由三相电桥电路构成。在逆变器6的输入正极侧和输入负极侧之间串联连接有2个IGBT,并联连接了 3条该串联电路而形成。也就是说,构成了如下电桥电路一组串联电路与电动机MG(MGl,MG2)的u相、ν相、w相对应的定子绕组Mu (Mul, Mu2)、Mv(Mv 1, Mv2)、Mw(Mwl,Mw2)的每一个对应。各相的上段侧的IGBT的集电极与逆变器6的输入正极侧连接,发射极与各相的下段侧的IGBT的集电极连接。另外,各相的下段侧的IGBT的发射极与逆变器6的输入负极侧(例如接地)连接。成对儿的各相的IGBT的串联电路的中间点、即IGBT的连接点与电动机MG的定子绕组Mu、Mv、Mw分别连接。另外,IGBT分别并联连接有续流二极管(再生二极管)。续流二极管以阴极端子与IGBT的集电极端子连接、阳极端子与IGBT的发射极端子连接的方式相对于IGBT并联连接。各IGBT的栅极经由驱动电路76与控制装置2连接,分别独立地被进行开关控制。控制装置2对电动机驱动装置1所具备的多个(这里是2个)的逆变器6(6a, 6b)进行控制。控制装置2被构成为以微机等逻辑电路为核心构成的E⑶(electronic control unit)。在本实施方式中,控制装置2被构成为具有作为单任务微机的CPU (central processing unit)61、接口电路70和其他外围电路等。CPU61是执行后述的电动机控制处理的计算机。接口电路70由EMI (electro-magnetic interference)对策部件、缓冲电路等构成。被输入作为对高电压进行开关控制的开关元件的IGBT、M0SFET等的栅极的驱动信号、即开关控制信号需要比微机等一般的电子电路的驱动电压高的电压,因此经由驱动电路76升压后被输入逆变器6。CPU61被构成为至少具有CPU核62、程序存储器63、参数存储器64、工作存储器 65、定时器66、A/D变换器67、通信控制部68和端口 69。CPU核62是CPU61的核心,被构成为具有命令寄存器、命令解码器、成为各种运算的执行主体的ALU (arithmetic logic unit), 标识寄存器、通用寄存器、中断控制器等。在本实施方式中,CPU61具备单一的CPU核62,该单一的CPU核62相当于本发明的单一的运算处理单元。该CPU核62担任顺序执行程序的单任务的计算机的核心。程序存储器63是保存电动机控制程序的非易失性存储器。参数存储器64是保存执行程序时参照的各种参数的非易失性存储器。参数存储器64可以与程序存储器63没有区别地构筑。程序存储器63、参数存储器64例如优选由闪存存储器等构成。工作存储器 65是临时存储程序执行中的临时数据的存储器。工作存储器65是易失性存储器也没有问题,由能够高速读写数据的DRAM (dynamic RAM)或SRAM(static RAM)构成。定时器66将CPTOl的时钟周期作为最小分辨能力来计测时间。例如,定时器66 对程序的执行周期进行监视,并对CPU核62的中断控制器进行通知。A/D变换器67将模拟电信号变换为数字数据。在本实施方式中,A/D变换器67从电流传感器7(7a,7b)获取流过电动机MG的各定子绕组Mu、Mv、Mw的电流的检测值、即电流检测值Iur (Iurl,Iur2)、 Ivr(Ivrl, Ivr2)、Iwr (Iwrl,Iwr2),将其变换成数字值。另外,u相、ν相、w相的三相处于平衡状态,其瞬时值为零,因此可以仅对二相的电流进行检测,剩余的一相在CPTOl中通过运算求出。在本实施方式中,对三相全部被检测的情况进行了例示。另外,如果仅对二相的电流进行检测,而剩余的一相在CPTOl中通过运算求出,则A/D变换器67具有4个模拟输入即可。通信控制部68对与车辆内的其他系统的通信进行控制。在本实施方式中,经由未图示的车辆内的CAMcontroller area network)来控制与行驶控制系统、传感器等之间的通信。例如,CPU61经由通信控制部68,从行驶控制系统获取包含电动机MG的目标转矩TM 的电机控制指令,并据此来控制电动机MG。在本实施方式中,CPU61分别获取第一电动机 MGl的目标转矩TMl以及第二电动机MG2的目标转矩TM2(以下有时将它们统称为“目标转矩TM”。)。另外,CPU61可以构成为经由通信控制部68与制动系统、动力转向系统等连接, 并对它们进行控制。端口 69是经由CPU61的端子将逆变器6的开关控制信号等输出,或者获取被输入 CPU61的、来自旋转传感器8(8a,8b)的旋转检测信号的端子控制部。在图1中从接口电路 70输入驱动电路76的信号的符号P*表示逆变器6的上段侧的IGBT的控制信号,符号N* 表示下段侧的IGBT的控制信号。另外,符号*u、*v、表示逆变器6的u相、ν相、w相各自的IGBT的控制信号。另外,符号*1、拉分别表示作为第一电动机MGl的逆变器6a、第二电动机MG2的逆变器6b的开关控制信号的IGBT控制信号。旋转传感器8是设置于电动机 MG的附近,对表示作为电动机MG的转子的转子的旋转角度的磁极位置θ进行检测的传感器,例如利用旋转变压器等构成。这里,磁极位置θ将转子的旋转角度表示为电角度。这样,本实施方式涉及的电动机驱动装置1将2个电动机MG1、MG2作为控制对象, 并且具备分别与2个电动机MG1、MG2对应的2个逆变器6a、6b,控制装置2被构成为通过对上述2个逆变器6a、6b进行控制来控制2个电动机MGl、MG2。此时,控制装置2被构成为,利用作为单一的运算处理单元的CPU核62来对2个逆变器6a、6b进行控制。1-2.控制装置的软件构成接着,对控制装置2的软件构成进行说明。另外,在本实施方式中电动机驱动装置 1将2个电动机MG1、MG2作为驱动控制的对象,并且具备与各电动机MGl、MG2对应的2个逆变器6a、6b,与此对应,控制装置2具备分别与2个逆变器6a、6b以及2个电动机MGl、MG2 对应的各功能部,由于它们是相同的构成,所以下面仅对控制一方的逆变器6以及电动机 MG的功能部进行说明。如图2所示那样,控制装置2通过利用了矢量控制法的电流反馈控制,对具备电动机MG和逆变器6的电动机驱动装置1进行控制。在矢量控制中,将流过交流电动机MG的三相的各自的定子绕组的绕组电流坐标变换成被配置于转子中的永久磁铁所产生的磁场方向、即d轴、和与d轴正交的q轴的2相的矢量分量来进行电流反馈控制。在进行矢量控制中的坐标变换时,需要经常检测电动机MG的旋转状态。因此,如图1所示那样,在电动机MG的附近设置旋转变压器等旋转传感器8。作为其检测结果的磁极位置θ被输入到控制装置2。如上述那样,磁极位置θ是电角度。在控制装置2中,还被输入了目标转矩ΤΜ。并且,控制装置2对应于根据上述的目标转矩ΤΜ、磁极位置θ以及磁极位置θ导出的电动机MG的转速ω,生成并输出用于驱动电动机MG的开关控制信号 Pu、Nu、Pv、Nv、Pw、Nw,从而对逆变器6进行驱动控制。开关控制信号Pu、Nu、Pv、Nv、Pw、Nw 是用于使逆变器6的各开关元件进行遵循于后述的多个控制模式中的任意一个的开关动作的控制信号,具体而言,是驱动各开关元件的栅极的栅极驱动信号。在d轴电流指令值导出部11中,被输入了目标转矩TM。d轴电流指令值导出部11 根据被输入的目标转矩TM来导出基本d轴电流指令值Idb。这里,基本d轴电流指令值Idb 相当于进行最大转矩控制的情况下的d轴电流的指令值。另外,所谓最大转矩控制,指的是对电流相位进行调节,以使得针对同一电流电动机MG的输出转矩成为最大的控制。在本实施方式中,d轴电流指令值导出部11被构成为,利用规定了目标转矩TM的值和基本d轴电流指令值之间的关系的表,来导出与目标转矩TM的值对应的基本d轴电流指令值Idb。被导出的基本d轴电流指令值Idb被输入至减法器14。在减法器14中,还被输入了由后述的电流调整指令值导出部16导出的d轴电流调整指令值Aid。减法器14如下述的式(1) 所示那样,从基本d轴电流指令值Idb减去d轴电流调整指令值△ Id,从而导出最终的d轴电流指令值Id。Id = Idb-Δ Id · · · (1)在q轴电流指令值导出部12中,被输入了目标转矩TM和d轴电流调整指令值 Aid。q轴电流指令值导出部12根据被输入的目标转矩TM和d轴电流调整指令值Aid, 导出q轴电流指令值Iq。在本实施方式中,q轴电流指令值导出部12利用至少规定了目标转矩TM的值和d轴电流调整指令值Δ Id之间的关系的表,导出与目标转矩TM和d轴电流调整指令值AId对应的q轴电流指令值Iq。这样导出的d轴电流指令值Id和q轴电流指令值Iq是对电动机MG进行驱动的、具有相互正交的矢量分量的二相电流指令值。因此,在本实施方式中,d轴电流指令值Id和q轴电流指令值Iq相当于本发明的“电流指令值”。在电流控制部13中,被输入了 d轴电流指令值Id和q轴电流指令值Iq。并且,在电流控制部13中,被从三相二相变换部36输入了 d轴电流检测值Idr和q轴电流检测值 Iqr,被从转速导出部31输入了电动机MG的转速ω。d轴电流检测值Idr和q轴电流检测值Iqr是根据实际流过电动机MG的定子绕组(Mu,Mv,Mw)的电流的由电流传感器7 (参照图1)检测出的电流检测值(三相的电流检测值u相电流检测值Iur、ν相电流检测值Ivr 以及w相电流检测值Iwr)和由旋转传感器8(参照图1)检测到的磁极位置θ,通过三相二相变换部36进行三相二相变换而导出的。另外,电动机MG的转速ω是由转速导出部31 根据由旋转传感器8 (参照图1)检测到的磁极位置θ而导出的。电流控制部13进行如下的电流控制运算,S卩、根据作为二相电流指令值的d轴电流指令值Id以及q轴电流指令值Iq、对电流检测值Iur、Ivr, Iwr进行三相二相变换而得到的二相电流检测值(d轴电流检测值Idr以及q轴电流检测值Iqr)和电动机MG的转子的转速ω来导出电压指令值Vd、Vq。此时,电流控制部13根据偏差,至少进行比例控制以及积分控制来决定二相电压指令值Vd、Vq。具体而言,电流控制部13导出d轴电流指令值 Id和d轴电流检测值Idr之间的偏差、即d轴电流偏差δ Id、以及q轴电流指令值Iq和q 轴电流检测值Iqr之间的偏差、即q轴电流偏差δ Iq。并且,电流控制部13根据d轴电流偏差δ Id来进行比例积分控制运算(PI控制运算),从而导出作为电压降的d轴分量、即d 轴电压降Vzd,并且根据q轴电流偏差δ Iq来进行比例积分控制运算,从而导出作为电压降的q轴分量、即q轴电压降Vzq。并且,电流控制部13如下述的式(2)所示那样,从d轴电压降Vzd减去q轴电枢反作用Eq来导出d轴电压指令值Vd。Vd = Vzd-Eq= Vzd-ω · Lq · Iqr · · · (2)如该式⑵所示那样,q轴电枢反作用Eq是根据电动机MG的转速《、q轴电流检测值Iqr以及q轴电感Lq而导出的。并且,电流控制部13如下述的式(3)所示那样,对q轴电压降Vzq加上d轴电枢反作用Ed以及永久磁铁的电枢磁链引起的感应电压Em来导出q轴电压指令值Vq。
10
Vq = Vzq+Ed+Em= Vzq+ω · Ld · Idr+ω · MIf · · · (3)如该式(3)所示那样,d轴电枢反作用Ed是根据电动机MG的转速《、d轴电流检测值Idr以及d轴电感Ld而导出的。另外,感应电压Em是根据由永久磁铁的电枢磁链的有效值决定的感应电压常数MIf以及电动机MG的转速ω而导出的。这样导出的d轴电压指令值Vd和q轴电压指令值Vq是对电动机MG进行驱动的、 具有相互正交的矢量分量的二相电压指令值。因此,在本实施方式中,d轴电压指令值Vd和 q轴电压指令值Vq相当于本发明的“电压指令值”。并且,控制装置2具备第一电压控制部 22和第二电压控制部23这两个功能部,作为根据d轴电压指令值Vd和q轴电压指令值Vq 来生成用于控制逆变器6的开关控制信号Pu、Nu、Pv、Nv、Pw、Nw的电压控制部21。在第一电压控制部22中,被输入了 d轴电压指令值Vd和q轴电压指令值Vq。并且,在第一电压控制部22中,被输入了由未图示的电压传感器检测的直流电压Vdc。第一电压控制部22进行如下的第一电压控制运算,S卩、根据被输入的d轴电压指令值Vd、q轴电压指令值Vq和直流电压Vdc,导出调制率M和电压指令相位θ ν。这里,调制率M表示针对直流电压Vdc的逆变器6的输出电压波形的基波分量的有效值的比率,在本例中,是针对直流电压Vdc的二相电压指令值Vd、Vq的有效值的比率。具体而言,调制率M按照以下的式 (4)进行计算。M = Vr (Vd2 +Vq2) /Vdc- ■ ■ (4)电压指令相位Θ V是二相电压指令值Vd、Vq所表示的电压矢量的相位角,相当于将d轴电压指令值Vd涉及的d轴电压矢量和q轴电压指令值Vq涉及的q轴电压矢量进行合成而生成的合成电压矢量与d轴电压指令值Vd涉及的d轴电压矢量之间形成的角。在本例中,电压指令相位θ ν按照以下的式( 进行计算。θ ν = tarT1 (Vq/Vd) · · · (5)该电压指令相位θ ν相当于将磁极位置θ的原点(Θ =0° )作为基准的u相电压指令值Vu的原点的相位。另外,对于电动机MG来说,随着转速ω升高,感应电压升高,用于驱动电动机MG 所需的交流电压(以下称为“必要电压”。)也升高。并且,当该必要电压超过了能够对此时的直流电压Vdc进行变换而从逆变器6输出的最大的交流电压(以下称为“最大输出电压”。)时,定子绕组中无法流过所需的电流,无法适当地控制电动机MG。因此,控制装置2 被构成为进行所谓的弱励磁控制,即对电流相位进行调节,以使得由定子绕组产生减弱电动机MG的励磁磁通的方向的磁通(比最大转矩控制超前)。于是,在本实施方式中,被构成为,根据由第一电压控制部22导出的调制率M来导出d轴电流调整指令值Aid,并根据被导出的d轴电流调整指令值Δ Id来调整基本d轴电流指令值Idb和q轴电流指令值Iq。更具体而言,在减法器17中,被输入了调制率M以及该调制率M的理论上的最大值、S卩“ 0.78”的值。减法器17如下述的式(6)所示那样,导出从调制率M减去了“0.78” 的调制率偏差ΔΜ。ΔΜ = M-0. 78 · · · (6)在电流调整指令值导出部16中,被输入了导出的调制率偏差ΔΜ。电流调整指令值导出部16利用规定的增益对该调制率偏差ΔΜ进行积分,导出该积分值作为d轴电流调整指令值Aid。如上述的式(1)所示那样,该d轴电流调整指令值Δ Id被从基本d轴电流指令值Idb减去,从而导出了最终的d轴电流指令值Id。即,该d轴电流调整指令值AId 成为用于减弱电动机MG的励磁磁通的弱励磁指令值。本实施方式涉及的控制装置2,还具备决定用于控制电动机驱动装置的控制模式的模式决定部51、用于决定逆变器6的载波频率的载波频率决定部52。在模式决定部51 中,作为输入变量至少被输入了目标转矩TM和转速ω。模式决定部51根据被输入的目标转矩TM和转速ω,从为了控制电动机驱动装置1而预先设定的多个控制模式中决定出1个控制模式。控制装置2将控制模式决定用的映射存储设置在参数存储器64等中。在本实施方式中,如图3所示那样,在该映射中,作为电动机MG的可工作区域,设定有第一区域Al、 第二区域Α2以及第三区域A3这3个区域。并且,相应地,设定有模式决定部51可选择的3 个控制模式。即,模式决定部51在目标转矩TM和转速ω的关系处于第一区域Al内的情况下选择第一控制模式,在处于第二区域Α2内的情况下选择第二控制模式,在处于第三区域A3内的情况下选择第三控制模式。另外,在用于控制电动机驱动装置1的控制模式所涉及的控制方法中,针对从逆变器6向电动机MG供给的交流电压的波形,有PWM控制和矩形波控制这两个,针对从逆变器6向电动机MG供给的交流电流的相位,有最大转矩控制和弱励磁控制这两个。并且在本实施方式中,在PWM控制中包含正弦波PWM控制和过调制PWM控制这两个控制方式。模式决定部51可选择的3个模式是由它们组合而构成的。第一控制模式是在逆变器6中进行直流-交流变换时,由逆变器6使正弦波PWM 控制与最大转矩控制一起进行的模式。在正弦波PWM控制中,根据正弦波状的交流电压指令值Vu、Vv、Vw和载波(输送波)的比较来控制逆变器6的各开关元件的接通断开。正弦波状的交流电压指令值Vu、Vv、Vw是由後述的第二电压控制部23的三相指令值导出部导出的。第二控制模式是在逆变器6中进行直流-交流变换时,由逆变器6使过调制PWM 控制与最大转矩控制一起进行的模式。在过调制PWM控制中,使逆变器6的输出电压波形的基波分量的波形变形,使其振幅与正弦波PWM控制中的正弦波状的交流电压指令值Vu、 Vv.Vw相比变大。在这种状态下,与正弦波PWM控制同样,根据变形的正弦波状的交流电压指令值Vu、Vv、Vw和载波的比较来控制逆变器6的各开关元件的接通断开。由此,进行在交流电压指令值Vu、Vv, Vw超过输送波的振幅的部分连续地成为高电平或者低电平的PWM控制。变形的正弦波状的交流电压指令值Vu、Vv、Vw是由后述的第二电压控制部23的三相指令值导出部35导出的。第三控制模式是在逆变器6中进行直流-交流变换时,由逆变器6使弱励磁控制与矩形波控制一起进行的模式。在矩形波控制中,被控制为按电角度每1周(磁极位置θ 的360° )进行一次逆变器6的各开关元件的接通断开。此时,各相的交流电压指令值Vu、 Vv, Vw成为按每1周期高电平期间和低电平期间交替地出现1次的矩形波。因此,在本实施方式中,在第三控制模式下,各相的交流电压指令值Vu、Vv、Vw单纯地成为表示对逆变器 6的各开关元件的接通或者断开进行切换的时刻的磁极位置θ的相位、即接通断开切换相位的指令值。另外,在进行矩形波控制的第三控制模式下,进行同步控制,以使作为磁极位置θ而被检测的电动机MG的电角度的周期和逆变器6的开关元件的接通断开时刻的周期同步。 另一方面,在进行正弦波PWM控制的第一控制模式和进行过调制PWM控制的第二控制模式下,进行使交流电压指令值Vu、Vv, Vw的周期和开关控制信号Pu、Nu、Pv, Nv, Pw, Nw的载波的周期不同步的非同步控制。即,在本实施方式中,第三控制模式被包含在“同步控制模式” 中,第一控制模式和第二控制模式被包含在“非同步控制模式”中。模式决定部51具有从这样的同步控制模式和非同步控制模式中选择任意一个的功能。并且,如后述那样,被构成为,对应于模式决定部51从同步控制模式和非同步控制模式中选择的哪一个,第二电压控制部23内的控制块由电压控制切换部46切换,生成交流电压指令值Vu、Vv、Vw以及开关控制信号Pu、Nu、Pv, Nv, Pw, Nw的方式被切换。详细内容会在后面进行说明。在本实施方式中,在模式决定部51中,还被输入了由电流调整指令值导出部16 导出的d轴电流调整指令值Aid。并且,模式决定部51根据被输入的d轴电流调整指令值Δ Id,判断可否选择第三控制模式。更具体而言,模式决定部51在d轴电流调整指令值 Δ Id在规定的第三控制模式转变允许阈值以上的情况下,允许选择第三控制模式,另一方面,在d轴电流调整指令值AId小于第三控制模式转变允许阈值的情况下,禁止选择第三控制模式。因此,本实施方式涉及的模式决定部51被构成为,以根据输入的目标转矩TM和转速ω来决定控制模式为前提,根据进一步被输入的d轴电流调整指令值AId来对控制模式的选择附加一定的限制。更具体而言,模式决定部51在d轴电流调整指令值AId在第三控制模式转变允许阈值以上的情况下,根据目标转矩TM和转速ω,从第一控制模式、 第二控制模式以及第三控制模式中决定出控制模式,在d轴电流调整指令值△ Id小于第三控制模式转变允许阈值的情况下,根据目标转矩TM和转速ω,从第一控制模式和第二控制模式中决定出控制模式。另外,在本实施方式中,目标转矩TM和转速ω以及d轴电流调整指令值△ Id相当于本发明中的“模式决定用输入变量”。在载波频率决定部52中,作为输入变量至少被输入了转速ω和由第一电压控制部22导出的调制率Μ。载波频率决定部52根据被输入的调制率M和转速ω,决定逆变器 6的开关控制信号Pu、Nu、PV、NV、PW、漸的载波(输送波)的频率、即载波频率Fe。在本实施方式中,控制装置2将载波频率决定用的映射存储设置于参数存储器64等。载波频率决定部52根据调制率M和转速ω等,决定用于减少逆变器6中的损失、电动机MG中的损失的最佳载波频率Fe。此时,载波频率决定部52例如根据上述映射,从预先设定的多个可选择的载波频率中,选择并决定最佳的载波频率。另外,在本实施方式中,调制率M和转速ω 相当于本发明中的“载波频率决定用输入变量”。在第二电压控制部23中,被输入了由第一电压控制部22导出的调制率M和电压指令相位θ ν。并且,在第二电压控制部23中,被输入了由旋转传感器8(参照图1)检测到的磁极位置θ和由载波频率决定部52决定的载波频率Fe。第二电压控制部23进行如下的第二电压控制运算,即、根据被输入的调制率Μ、电压指令相位θ ν、磁极位置θ和载波频率Fe,决定交流电压指令值Vu、Vv, Vw,并生成逆变器6的开关控制信号Pu、Nu、Pv, Nv, Pw 和Nw。在本实施方式中,第二电压控制部23具备三相指令值导出部35以及非同步控制信号生成部41、和接通断开切换相位导出部43以及同步控制信号生成部42。另外,在第一电压控制部22和第二电压控制部23之间,设置有电压控制切换部 46。电压控制切换部46根据由模式决定部51选择的控制模式,对第二电压控制部23内的控制块进行切换。具体而言,在非同步控制模式所包含的第一控制模式或者第二控制模式被选择的情况下,将由第一电压控制部22导出的调制率M和电压指令相位θ ν输入到三相指令值导出部35,使三相指令值导出部35和非同步控制信号生成部41进行第二电压控制运算。另一方面,在同步控制模式所包含的第三控制模式被选择的情况下,将由第一电压控制部22导出的调制率M和电压指令相位θ ν输入到接通断开切换相位导出部43,使接通断开切换相位导出部43和同步控制信号生成部42进行第二电压控制运算。电压控制切换部46根据由模式决定部51选择的控制模式,进行上述的调制率M和电压指令相位θ ν的输入目的地的切换。由此,第二电压控制部23生成与由模式决定部51决定的控制模式对应的开关控制信号Pu、Nu、Pv、Nv、Pw、Nw。三相指令值导出部35根据被输入的调制率M和电压指令相位θ ν,生成三相正弦波状的交流电压指令值Vu、Vv、Vw。图4是表示由三相指令值导出部35生成的交流电压指令值Vu、Vv, Vw的一例的图。该图示出了交流电压指令值Vu、Vv, Vw是正弦波状的第一控制模式的电压指令值的情况下的例子。在该情况下,u相电压指令值Vu成为如下的正弦波状的电压指令值,即具有相对于磁极位置θ的原点(Θ =0° )延迟了电压指令相位θ ν 的相位,振幅与调制率M相等,1周期等于磁极位置θ的1周(电角度1周,360° )。ν相电压指令值Vv成为相位相对于u相电压指令值Vu延迟了 120°的正弦波状O电压指令值, w相电压指令值Vw成为相位相对于u相电压指令值Vu延迟了的正弦波状的电压指令值。另外,在第二控制模式被选择的情况下,交流电压指令值Vu、Vv、Vw的波形是变形的正弦波状,但是各指令值的相位和振幅与图4相同。这里,三相指令值导出部35按照每个控制模式,具备规定了交流电压指令值Vu、 Vv, Vw的波形的交流电压指令值映射,根据由模式决定部51决定出的控制模式,根据该交流电压指令值映射来生成并输出交流电压指令值Vu、Vv, Vw。交流电压指令值映射例如例在第一控制模式用的映射中,规定了原点与磁极位置θ的原点(Θ =0° ) 一致,振幅为1 的正弦波状的电压波形。三相指令值导出部35能够使该映射所规定的电压波形的原点延迟电压指令相位θ ν,并且通过将振幅设为调制率M倍来生成u相电压指令值Vu,并通过使该u相电压指令值Vu的相位延迟120° ,240°来生成ν相电压指令值Vv和w相电压指令值Vw。三相指令值导出部35按照每个控制模式,具备不同的电压波形的映射。 在非同步控制信号生成部41中,被输入了由三相指令值导出部35生成的交流电压指令值Vu、Vv、Vw以及由载波频率决定部决定出的载波频率Fe。非同步控制信号生成部 41根据该交流电压指令值Vu、Vv、Vw来生成逆变器6的开关控制信号Pu、Nu、Pv、Nv、Pw和 Nw0具体而言,非同步控制信号生成部41进行交流电压指令值Vu、Vv、Vw和载波(输送波) 的比较,生成用于分别对逆变器6的u相上段、u相下段、ν相上段、ν相下段、w相上段、w相下段的各开关元件进行PWM控制的6个开关控制信号Pu、Nu、Pv、Nv、Pw和漸。此时,载波频率Fc不是交流电压指令值Vu、Vv, Vw的频率的整数倍,因此,根据载波频率Fc求出的载波周期和交流电压指令值Vu、Vv、Vw的周期不同步。 接通断开切换相位导出部43根据被输入的调制率M和电压指令相位θ ν,生成作为交流电压指令值Vu、Vv, Vw的逆变器6的各开关元件的接通断开切换相位的指令值。该指令值是与各开关元件的接通断开控制信号对应,对表示切换各开关元件的接通或者断开的时刻的磁极位置θ的相位进行表示的指令值。图5图示了由接通断开切换相位导出部43生成的交流电压指令值Vu、Vv、Vw所表示的内容,在作为横轴的磁极位置θ上示出了各开关元件的接通或者断开被切换的相位。在该例中,u相电压指令值Vu具有相对于磁极位置θ的原点(θ = 0° )延迟了电压指令相位θ ν的相位,磁极位置θ的1周(电角度1 周,360° )成为1周期。并且,在电压指令相位θ ν处,与u相上段的开关元件对应的开关控制信号Pu接通,与u相下段的开关元件对应的开关控制信号Nu断开,在从电压指令相位 θ ν开始的磁极位置θ的半周(电角度半周,180° )处,与u相上段的开关元件对应的开关控制信号Pu断开,与u相下段的开关元件对应的开关控制信号Nu接通。ν相电压指令值Vv相对于u相电压指令值Vu相位延迟了 120°,w相电压指令值Vw相对于u相电压指令值Vu相位延迟了 240°,除此以外两者是同样的电压指令值。另外,从接通断开切换相位导出部43实际输出的交流电压指令值VU、Vv、Vw,U相,可以仅由表示对ν相、w相的各自的各开关元件的接通或者断开进行切换的时刻的磁极位置θ的相位的信息构成。因此,这样的接通断开切换相位的指令值,可以将u相、ν相、w相的指令值作为一系列信息集中输出。这里,接通断开切换相位导出部43按照每个控制模式具备规定了构成交流电压指令值Vu、Vv, Vw的各开关元件的接通断开切换相位的接通断开切换相位映射,并根据该接通断开切换相位映射来生成并输出交流电压指令值Vu、Vv, Vw。接通断开切换相位映射例如规定了如下的相位,即、原点与磁极位置θ的原点(Θ =0° ) 一致,针对u相、ν相、 w相的各相,对上段的开关元件接通而下段的开关元件断开的状态、和上段的开关元件断开而下段的开关元件接通的状态进行切换的相位。接通断开切换相位导出部43能够通过使该映射所规定的接通断开相位的原点延迟电压指令相位θ ν来生成u相电压指令值Vu,并通过使该u相电压指令值Vu的相位延迟120° ,240°来生成ν相电压指令值Vv和w相电压指令值Vw。在同步控制信号生成部42中,被输入了由接通断开切换相位导出部43生成的交流电压指令值Vu、Vv、Vw。同步控制信号生成部42根据该交流电压指令值Vu、Vv、Vw,生成逆变器6的开关控制信号Pu、Nu, Pv, Nv, Pw和漸。具体而言,同步控制信号生成部42按照逆变器6的各开关元件的接通断开切换相位的指令值,生成用于控制逆变器6的u相上段、u相下段、ν相上段、ν相下段、w相上段和w相下段的各开关元件的各自的接通或者断开的状态的6个开关控制信号Pu、Nu、Pv、Nv、PW和Nw。此时,包含同步控制信号生成部42 的第二电压控制部23以规定的运算周期进行电压控制运算,各开关控制信号Pu、Nu, Pv, Nv.Pw和漸按每个规定的运算周期被输出,对各开关元件的接通断开进行切换的时刻被变更。因此,虽然对各开关元件的接通断开进行切换的时刻按每个规定的运算周期被变更,但是以使各开关元件与电动机MG的转速ω同步的方式来控制逆变器6。1-3.各功能部的运算周期的关系接着,对本发明的主要部分、即控制装置2所具备的各功能部的运算周期的关系进行说明。此处尤其对电流控制部13、第一电压控制部22、第二电压控制部23、模式决定部51以及载波频率决定部52之间的运算周期的关系进行说明。上述的功能部的一系列控制处理(电动机控制处理)按由CPTOl的定时器66 (参照图1)计测的每个基准运算周期 TO (成为基准的控制周期),通过CPTOl的中断功能的执行而开始。另外,在本例中,以设定 300 μ s作为基准运算周期TO的情况为例进行说明。另外,在以下的说明中,电流控制部13、第一电压控制部22、第二电压控制部23、
15模式决定部51以及载波频率决定部52的运算处理分别被称为电流控制处理、第一电压控制处理、第二电压控制处理、模式决定处理以及载波频率决定处理。另外,将基于第二电压控制部23的第二电压控制处理的运算周期设为第一运算周期Tl,将基于第一电压控制部 22的第一电压控制处理的运算周期设为第二运算周期T2,将基于电流控制部13的电流控制处理的运算周期设为第三运算周期T3,将基于模式决定部51的模式决定处理的运算周期设为第四运算周期T4,将基于载波频率决定部52的载波频率决定处理的运算周期设为第五运算周期T5。先对各功能部的运算周期进行说明,首先,对执行电流控制处理、第一电压控制处理、第二电压控制处理、模式决定处理以及载波频率决定处理时的各种输入变量的更新周期进行说明。如上述说明的那样,在本实施方式中,在各种输入变量中,包含目标转矩TM、 磁极位置θ、电流检测值Idr、Iqr (Iur, Ivr, Iwr)、d轴电流调整指令值Δ Id、转速ω、直流电压Vdc以及调制率Μ。在本例中,这些更新周期如下述表1那样,分别被设定成规定的值。另外,它们是为了便于说明的一个例子。[表 1]
权利要求
1.一种电动机驱动装置的控制装置,通过矢量控制法,对具备将直流电压变换成交流电压并供给至交流电动机的直流交流变换部的电动机驱动装置进行控制,其中,作为根据用于驱动上述交流电动机的二相的电压指令值、即电压指令值来生成用于控制上述直流交流变换部的控制信号的电压控制部,具备第一电压控制部,其根据上述电压指令值和被供给至上述直流交流变换部的实际的直流电压,导出表示上述电压指令值的有效值相对于直流电压的比率的调制率和上述电压指令值所表示的电压矢量的相位角、即电压指令相位;和第二电压控制部,其根据上述调制率、上述电压指令相位和表示上述交流电动机转子的旋转角度的磁极位置来生成上述控制信号,上述第一电压控制部的运算周期被设定为比上述第二电压控制部的运算周期长。
2.根据权利要求1所述的电动机驱动装置的控制装置,其特征在于,具备电流控制部,该电流控制部根据驱动上述交流电动机的二相的电流指令值、即电流指令值、流过上述交流电动机的实际电流和上述转子的转速来导出上述电压指令值, 上述第一电压控制部的运算周期被设定为与上述电流控制部的运算周期相等。
3.根据权利要求2所述的电动机驱动装置的控制装置,其特征在于,上述电流控制部和上述第一电压控制部的运算周期被设定成上述第二电压控制部的运算周期的N倍,其中,N是2以上的整数。
4.根据权利要求1至3中的任意一项所述的电动机驱动装置的控制装置,其特征在于, 还具备模式决定部,该模式决定部根据规定的模式决定用输入变量,从为了控制上述电动机驱动装置而预先设定的多个控制模式中决定出1个控制模式,上述第二电压控制部生成与由上述模式决定部所决定的控制模式相对应的上述控制信号,上述模式决定用输入变量的更新周期被设定为比上述第一电压控制部的运算周期长, 上述模式决定部的运算周期被设定为与上述模式决定用输入变量的更新周期相等。
5.根据权利要求1至4中的任意一项所述的电动机驱动装置的控制装置,其特征在于, 还具备载波频率决定部,该载波频率决定部根据规定的载波频率决定用输入变量,决定上述直流交流变换部的载波频率,上述载波频率决定用输入变量的更新周期被设定为比上述第一电压控制部的运算周期长,上述载波频率决定部的运算周期被设定为与上述载波频率决定用输入变量的更新周期相等。
6.根据权利要求1至5中的任意一项所述的电动机驱动装置的控制装置,其特征在于, 该电动机驱动装置的控制装置被构成为,上述第一电压控制部的运算周期被设定成上述第二电压控制部的运算周期的N倍,并且利用单一的运算处理单元来控制将N个上述交流电动机作为控制对象的上述电动机驱动装置,其中,N是2以上的整数,上述第二电压控制部按被设定为规定时间的每个基准运算周期,分别完成用于生成与各交流电动机对应的上述控制信号的生成处理,每N个上述基准运算周期,上述第一电压控制部完成1次针对N个上述交流电动机中的1个导出上述调制率和上述电压指令相位的导出处理,并且在不执行针对该1个交流电动机的上述导出处理的期间内,完成针对其他的交流电动机的上述导出处理。
全文摘要
本发明提供了一种使与电压控制部的内部处理有关的运算周期优化,并降低控制交流电动机时的处理负荷的控制装置,其通过矢量控制法,对具备将直流电压变换成交流电压并供给至交流电动机的直流交流变换部的电动机驱动装置进行控制。作为根据用于驱动交流电动机的电压指令值来生成用于控制直流交流变换部的控制信号的电压控制部,具备根据电压指令值和被供给至直流交流变换部的实际直流电压来导出调制率和电压指令相位的第一电压控制部;和根据调制率、电压指令相位和磁极位置来生成控制信号的第二电压控制部。第一电压控制部的运算周期(第二运算周期T2)被设定为比第二电压控制部的运算周期(第一运算周期T1)长。
文档编号H02P5/74GK102474215SQ20108002860
公开日2012年5月23日 申请日期2010年8月27日 优先权日2009年9月30日
发明者中村充, 岛田有礼, 岩月健, 苏布拉塔·萨哈, 陈志谦 申请人:爱信艾达株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1