原边串联副边串并联补偿非接触谐振变换器的制作方法

文档序号:7292787阅读:386来源:国知局
专利名称:原边串联副边串并联补偿非接触谐振变换器的制作方法
技术领域
本发明涉及一种适用于非接触电能传输系统的原边串联副边串并联补偿非接触谐振变换器,属于电能变换领域。
背景技术
非接触电能传输技术利用非接触变压器实现能量的无线传递,具有使用安全方便、无机械磨损、少维护、环境适应能力强等优点,已成为业界广泛关注的新型电能传输形式。非接触变压器是非接触电能传输系统的核心元件,分离的原、副边绕组及较大的气隙使其漏感较大、激磁电感较小。因而非接触变换器必须采用多元件谐振变换器,对漏感和激磁电感分别补偿,来提高电压增益和功率传输能力,同时减小环流损耗、提高变换效率。相应的,非接触谐振变换器的补偿方式一直以来就是非接触电能传输系统研究的重点之一。在电动汽车、有轨车辆等中大功率应用场合,一般采用两级电路结构进行功率变换:前级非接触变换器实现电能的无线传输、后级的DC/DC实现输出的精确控制。相应要求补偿方式除了要使输入阻抗接近阻性保证高效率外,还应能适应负载变化和非接触变压器气隙变化保证良好的控制特性。双电容补偿是目前常用的非接触谐振变换器补偿方式,包括原边串联副边串联(简称串串补偿)、原边串联副边并联(简称串并补偿)、原边并联副边串联(简称并串补偿)以及原边并联副边并联(简称并并补偿)四种补偿方式。其中串串补偿、串并补偿适用于输入电压源型逆变电路,其原边开关管电压应力较小因而应用较多。为了适应负载的变化,让谐振变换器工作在增益交点处成为众多研究人员不约而同的选择。对于串串补偿来说,其输出电压增益交点的值是固定的,与负载大小无关,也不随变压器气隙变化而改变。香港理工大学2009年发表的文章“人工心脏用非接触变换器的分析设计和控制” =Chen Q.H.,Wong
S.C., and etc.Analysis, design, and control of a transcutaneous power regulatorfor artificial hearts [J].1EEE Trans on Biomedical Circuits and Systems,2009,13(1):23-31就是分析了串/串补偿的增益交点特性,并配合非接触变压器的匝比设计使得变换器在低压满载条件下自动工作在该增益交点处获得了良好的负载动态特性。南京航空航天大学的任小永还发表了“定增益自激式非接触谐振变换器的特性和控制” 一文:Ren X.Y., Chen Q.H., and etc.Characterization and control of self-oscillatingcontactless resonant converter with fixed voltage gain[C].7th InternationalPower Electronics and Motion Control Conference, Harbin, 2012,利用自激控制方法使得非接触谐振变换器自动工作在增益交点处。但串串补偿增益交点处输入阻抗呈感性,原边环流较大、限制了系统的效率;且增益交点处输入相角对负载的变化敏感,不适合用于两级式电路。串并补偿的增益交点处输入相角为零,适合于宽负载变化和两级式控制,在中大功率场合应用较多。但是串并补偿增益交点值并不固定,对变压器气隙变化和原副边错位敏感,在气隙较大、耦合系数较小时,增益交点数值迅速增加给后级变换带来困难。如何得到一种新型的补偿方式,既能具有串串补偿增益交点数值固定的优点同时还具有串并补偿增益交点与输入零相角统一的优点成为本发明设计的重点。

发明内容
本发明的目的是为了克服现有补偿方式增益交点处输入阻抗相角对负载变化敏感、增益交点数值对非接触变压器气隙变化及原副边错位敏感的缺点,提出一种新型的补偿方式,提供一种适用于非接触电能传输系统中的原边串联副边串并联补偿非接触谐振变换器。它具有增益交点与输入阻抗零相角统一、增益交点数值与非接触变压器气隙变化无关的优点,可用于中大功率非接触供电系统,适于两级控制,具有良好的负载适应能力和非接触变压器气隙变化适应能力。本发明的目的是通过以下方案实施的:
一种原边串联副边串并联补偿非接触谐振变换器,包括直流源(I)、电压源型逆变桥
(2)、原边第一补偿电容(3)、非接触变压器(4)、副边第二补偿电容(5)、及副边整流滤波电路(7),并依次相连,其中电压源型逆变桥的输入端正向并联在直流源的正负两端;电路中还包括副边第三补偿电容出);所述原边第一补偿电容(3)与非接触变压器(4)的原边绕组串联后并联在电压源型逆变桥(2)的输出端;所述非接触变压器(4)的副边绕组与副边第二补偿电容(5)串联后再与副边第三补偿电容(6)并联;副边整流滤波电路(7)的输入端也并联连接在副边第三补偿电容(6)的两端。其中电压源型逆变桥(2)可以采用半桥逆变电路、全桥逆变电路、推挽式逆变电路等多种电压源型逆变电路拓扑。其中非接触变压器(4)可以是一个非接触变压器或是多个非接触变压器串并联组合而成。所述非接触变压器⑷的原边磁芯、副边磁芯采用硅钢片、铁氧体、微晶、超微晶、坡莫合金、铁钴钒等多种铁磁材料,或采用空气、陶瓷、塑料等非导磁材料。所述非接触变压器(4)的原副边绕组选用实心导线、Litz线、铜皮、铜管或者PCB绕组等多种绕组形式。其中原边第一补偿电容(3)、副边第二补偿电容(5)、副边第三补偿电容(6)可以是单一电容或是多个电容串并联组合而成。其中副边整流滤波电路(7)采用桥式整流、全波整流、倍压整流、倍流整流等多种整流滤波电路。本发明相比现有技术有如下优点:
现有非接触谐振变换器补偿方式,或者增益交点与输入阻抗零相角点不统一,不利于提高系统效率和采用两级式控制;或者增益交点数值与非接触变压器耦合系数相关,对变压器气隙变化和原副边错位非常敏感。而通过本发明的原边串联副边串并联补偿非接触谐振变换器,使原边第一补偿电容(3)补偿非接触变压器原边漏感,副边第二补偿电容(5)补偿非接触变压器副边漏感、副边第三补偿电容出)补偿非接触变压器的激磁电感。使得增益交点处增益数值等于非接触变压器的物理匝比,而与变压器的气隙变化无关;增益交点处输入阻抗为阻性,输入相角为零,有利于提高系统变换效率,对负载变化、气隙变化以及后级调节不敏感,可广泛用于多种非接触供电应用场合。


附图1是本发明的原边串联副边串并联补偿非接触谐振变换器的电路结构示意 附图2是本发明的采用对称半桥逆变电路的原边串联副边串并联补偿非接触谐振变换器的电路结构示意 附图3是本发明的采用不对称半桥逆变电路的原边串联副边串并联补偿非接触谐振变换器的电路结构不意 附图4是本发明的采用全桥逆变电路的原边串联副边串并联补偿非接触谐振变换器的电路结构不意 附图5是本发明的采用推挽逆变电路的原边串联副边串并联补偿非接触谐振变换器的电路结构不意 附图6是本发明的采用对称半桥逆变电路和桥式整流滤波电路的原边串联副边串并联补偿非接触谐振变换器的电路结构示意 附图7是本发明的采用桥式逆变电路和桥式整流滤波电路的原边串联副边串并联补偿非接触谐振变换器的电路结构示意 附图8是本发明的原边串联副边串并联补偿非接触谐振变换器中的组合式非接触变压器的结构示意图,附图8分为图8-1、图8-2,其中附图8-1、附图8-2分别是单个非接触变压器示意图及组合式非接触变压器示意 附图9是本发明的原边串联副边串并联补偿非接触谐振变换器的原理图,附图9分为图9-1、图9-2,其中附图9-1、附图9-2分别是串并联补偿谐振网络的基波等效电路及完全补偿时谐振网络的基波等效电路。 附图10为应用例一在不同负载条件下的开环增益和输入阻抗相角的仿真曲线。附图10分为图10-1、图10-2,其中附图10-1为开环增益特性仿真结果,附图10-2为开环输入阻抗相角仿真结果。附图11为应用实例一在不同负载条件下的开环增益测试曲线。附图12为应用实例一在不同气隙条件下的闭环负载调整率测试结果。附图13为应用实例一满载时不同气隙条件下的闭环实验波形,附图13分为图13-1、图13-2,其中附图13-1为IOmm气隙下的实验波形,附图13-2为15mm气隙下的实验波形。附图14为应用实例二在不同气隙条件下的开环增益计算曲线。附图15为应用实例二采用原边恒频控制方法的负载调整率测试结果。附图16为应用实例二满载时不同气隙条件下的实验波形。附图16分为图16-1、图16-2,其中附图16-1为12cm气隙条件下的实验波形,附图16_2为20cm气隙条件下的实验波形附图17为应用实例二不同气隙条件下的变换器效率测试结果。附图f 17中的主要符号名称:1_直流源;2_电压源型逆变桥;3_原边第一补偿电容;4_非接触变压器;5_副边第二补偿电容;6_副边第三补偿电容;7_副边整流滤波电路-A-原边第一补偿电容'C2-副边第二补偿电容K3-副边第三补偿电容W1 一功率管 仏一二极管KdlId2—输入分压电容必广久4一整流二极管仏一副边整流滤波电路中的滤波电感—副边整流滤波电路的滤波电容一负载;K。一输出电压;Α、B—电压源型逆变桥输出端;—逆变桥输出方波电压的基波分量—副边整流桥臂中点电压的基波分量一副边整流桥、滤波环节及负载的等效电阻;/ 一变压器副边对原边的匝比;L1 一非接触变压器的原边漏感A2—非接触变压器的副边漏感;Z#—非接触变压器的激磁电感;^一逆变桥输出方波电压A—非接触变压器的原边电流;i2—非接触变压器的副边电流一输出电压增益;iC2—副边第二补偿电容两端电压。
具体实施例方式以上附图非限制性公开了本发明的几个具体实施实例,下面结合附图对本发明作进一步描述如下。参见附图1,附图1所示为是本发明的原边串联副边串并联补偿非接触谐振变换器的电路结构示意图,直流源I及电压源型逆变桥2组成电压源型逆变电路;原边第一补偿电路3、副边第二补偿电路5、副边第三补偿电路6构成的原边串联、副边串并联补偿电路与非接触变压器4形成非接触谐振变换器的谐振网络;副边整流滤波电路7将谐振网络输出的交流信号转换为平滑的直流信号输出。
附图2 附图5分别给出了本发明的采用对称半桥逆变电路、不对称半桥逆变电路、全桥逆变电路以及推挽逆变电路的原边串联副边串并联补偿非接触谐振变换器的电路结构示意图;其中附图5给出的推挽逆变电路的A、B输出端直接由推挽变压器的原边绕组中经抽头输出,也可采用非自耦变压器形式,则A、B端可灵活设置。逆变电路也可更换为其它电压源型逆变电路。 附图6给出了本发明的采用对称半桥逆变电路和桥式整流滤波电路的原边串联副边串并联补偿非接触谐振变换器的电路结构示意图;附图7给出了本发明的采用桥式逆变电路和桥式整流滤波电路的原边串联副边串并联补偿非接触谐振变换器的电路结构示意图。其中电压源型逆变电路2也可更换为不对称半桥逆变电路、推挽逆变电路等其它电压源型逆变电路;整流滤波电路也可更换为倍流整流电路、全波整流电路、倍压整流滤波电路等其它形式的整流滤波电路。附图8给出了本发明的原边串联副边串并联补偿非接触谐振变换器中的组合式非接触变压器的结构示意图。本发明中的非接触变压器既可以采用如附图8-1所示的单个非接触变压器,也可由附图8-2所示的mXn个非接触变压器组合而成。下面,结合附图7给出的具体电路,采用基波分析法分析C;、。 )及非接触变压器形成的谐振网络的等效电路,说明本发明中原边串联副边串并联补偿方式的优点:增益交点处增益数值固定,与非接触变 压器的气隙变化无关;增益交点与输入零相角点统一,有利于提高系统变换效率,对负载变化及后级调节不敏感。要得到本发明中原边串联副边串并联补偿网络的等效电路首先应推导得到副边整流桥、滤波环节及负载的基波等效电路。当附图7中凡广久4形成的副边整流桥连续导通,其桥臂中点的电压和电流始终同相,则副边整流桥、滤波环节及负载可等效为一个线性电阻&。再将非接触变压器的T值等效电路模型代入,即可得到附图9-1所示的原边串联副边串并联补偿网络的基波等效模型,其中,分别是非接触变压器T值等效电路模型的原边漏感、副边漏感和激磁电感,为逆变桥输出方波电压的基波分量;k为副边整流桥臂中点电压的基波分量。当非接触变压器的原边漏感Z11被C1完全补偿、副边漏感Z12被G完全补偿、激磁电感4被G完全补偿,则附图9-1可简化为附图9-2。此时谐振网络的输出电压增益等于匝比/ ,增益固定,与负载大小无关,且输入阻抗相角为零。实现了本发明预期的增益交点与输入零相角点统一、增益交点值与非接触变压器的气隙变化无关的目标。应用实例一
为验证本发明的可行性,采用附图7所示的主电路和原边锁相环的控制方法,搭建了30V输入、60W输出的谐振变换器进行实验验证,具体电路参数如下所示:
权利要求
1.一种原边串联副边串并联补偿非接触谐振变换器,包括直流源(I)、电压源型逆变桥(2)、原边第一补偿电容(3)、非接触变压器(4)、副边第二补偿电容(5)、及副边整流滤波电路(7),并依次相连,其中电压源型逆变桥的输入端正向并联在直流源的正负两端;其特征在于:电路中还包括副边第三补偿电容出);所述原边第一补偿电容(3)与非接触变压器(4)的原边绕组串联后并联在电压源型逆变桥(2)的输出端;所述非接触变压器(4)的副边绕组与副边第二补偿电容(5)串联后再与副边第三补偿电容¢)并联;副边整流滤波电路(7)的输入端也并联连接在副边第三补偿电容(6)的两端。
2. 如权利要求1所述的原边串联副边串并联补偿非接触谐振变换器,其特征在于:电压源型逆变桥(2)采用半桥逆变电路、全桥逆变电路、推挽式逆变电路。
3.如权利要求1或2所述的原边串联副边串并联补偿非接触谐振变换器,其特征在于:所述非接触变压器(4)是一个非接触变压器或是多个非接触变压器串并联组合而成。
4.如权利要求1或2所述的原边串联副边串并联补偿非接触谐振变换器,其特征在于:所述非接触变压器(4)的原边磁芯、副边磁芯采用铁磁材料或非导磁材料;铁磁材料如硅钢片、铁氧体、微晶、超微晶、坡莫合金或铁钴钒;非导磁材料如空气、陶瓷或塑料。
5.如权利要求1或2所述的原边串联副边串并联补偿非接触谐振变换器,其特征在于:所述非接触变压器(4)的原副边绕组选用实心导线、Litz线、铜皮、铜管或者PCB绕组形式。
6.如权利要求1所述的原边串联副边串并联补偿非接触谐振变换器,其特征在于:所述原边第一补偿电容(3)、副边第二补偿电容(5)、副边第三补偿电容(6)是单一电容或是多个电容串并联组合而成。
7.如权利要求1所述的原边串联副边串并联补偿非接触谐振变换器,其特征在于:副边整流滤波电路(7)采用桥式整流、全波整流、倍压整流或倍流整流滤波电路。
全文摘要
本发明公开一种原边串联副边串并联补偿非接触谐振变换器,属电能变换领域。它包括直流源、电压源型逆变桥、原边第一补偿电容、非接触变压器、副边第二补偿电容、副边第三补偿电容及副边整流滤波电路,并依次相连,其中电压源型逆变桥的输入端正向并联在直流源的正负两端,副边整流滤波电路的输入端并联在副边第三补偿电容的两端;通过原边第一补偿电容与非接触变压器的原边绕组串联来补偿非接触变压器的原边漏感;副边第二补偿电容与非接触变压器的副边绕组串联后再与副边第三补偿电容并联,在补偿非接触变压器副边漏感的同时还补偿非接触变压器的激磁电感。
文档编号H02M3/338GK103166474SQ201310059240
公开日2013年6月19日 申请日期2013年2月26日 优先权日2013年2月26日
发明者陈乾宏, 侯佳, 严开沁, 陈文仙, 张强, 李明硕 申请人:南京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1