电荷泵电路及包括其的音频设备的制作方法与工艺

文档序号:11808150阅读:175来源:国知局
电荷泵电路及包括其的音频设备的制作方法与工艺
电荷泵电路及包括其的音频设备本申请是申请日为2007年12月21日、名称为“电荷泵电路及其运行方法”的第200780051653.0号发明专利申请的分案申请。技术领域本发明涉及电荷泵电路,且具体而言,涉及提供双轨(dualrail)输出的电荷泵电路。

背景技术:
电荷泵电路在本领域为已知。这些电路是一种DC-DC转换器,其使用电容器作为储能器件,且能够以比从输入源获得的电压更高或更低的电压提供电源。电荷泵电路能够具有高效率,有些时候高达90%-95%。电荷泵使用某种形式的开关设备以控制电容器到电压源和电容器彼此的连接,通常以获得不同于输入电压值的电压。该电荷泵包括通常被称为“飞跨电容(flyingcapacitor)”的电容器,其用于将电荷传输到一个或多个将被称为“存储电容(reservoircapacitor)”的输出电容器。这样的电荷泵可用来从单轨输入电压VDD生成双轨也即双极性的源电压(supplyvoltage)。已知的双轨电荷泵的一个缺点是,它们可能例如产生具有两倍于输入电压(VDD)大小的输出电压,也即,相对于公共端子(commonterminal),一轨处于电压VDD,另一轨处于电压-VDD。如果使用这样的电荷泵例如为下述这样的电路供电将会是非常低效率的:所述电路放大最大振幅远小于放大器电路的电源+/-VDD的信号。在这种情况下,大多数输出功率(且因此,输入功率)被浪费在产生热上,而不是用于驱动信号。然而,当然,能够在需要时选择这个全输出范围有时是有利的。

技术实现要素:
本发明的一个目标是解决上面提到的缺点。在本发明的第一方面,提供了一种从跨越输入端子和公共端子接收到的单个输入源生成分轨(split-rail)电压源(voltagesupply)的方法,所述分轨源在第一和第二输出端子处被输出,所述第一和第二输出端子经由相应的第一和第二负载并且还经由相应的第一和第二存储电容连接到所述公共端子,该方法包括以一个状态序列在所述端子中的不同端子之间连接飞跨电容,以直接或经由所述飞跨电容反复 地将电荷包从所述输入源传输到所述存储电容,从而生成具有正输出电压和负输出电压的所述分轨源,所述正输出电压和负输出电压或者一同跨过(span)一个近似等于所述输入电压的电压并且以公共端子处的电压为中心,或者所述正输出电压和负输出电压各基本达到所述输入源,取决于所选择的运行模式。还公开了一种从跨越输入端子和公共端子接收到的单个输入源电压生成分轨电压源的方法,所述分轨源在第一和第二输出端子处被输出,所述第一和第二输出端子经由相应的第一和第二负载并且还经由相应的第一和第二存储电容连接到所述公共端子,该方法使用单个飞跨电容来生成具有正输出电压和负输出电压的所述分轨源,所述正输出电压和负输出电压或者一同跨过一个近似等于所述输入电压的电压并且以公共端子处的电压为中心,或者所述正输出电压和负输出电压各基本达到所述输入源,取决于所选择的运行模式。所述方法可包括,当以第一模式运行时,交替重复至少第一和第二状态,所述第一状态用于在相串联的飞跨电容和第一存储电容之间对所述输入电压进行分压,所述第二状态用于将所述飞跨电容所分得的所述被分压电压的那部分跨越第二存储电容而施加。所述第一状态可通过将所述飞跨电容跨接在所述输入端子和所述第一输出端子之间来获得,所述第二状态可通过将所述飞跨电容跨接在所述公共端子和所述第二输出端子之间来获得。所述第一模式下的所述序列可包括第三状态的重复,所述第三状态用于将所述飞跨电容所分得的所述被分压电压的那部分跨越所述第一存储电容而施加。所述第三状态可通过将所述飞跨电容跨接在所述第一输出端子和所述公共端子之间来获得。所述方法可包括,当以第一模式运行时,交替重复至少第四和第五状态,所述第四状态用于将所述飞跨电容充电至所述输入电压,所述第五状态用于在相串联的第一存储电容和第二存储电容之间对所述飞跨电容上的电压进行分压。所述第四状态可通过将所述飞跨电容跨接在所述输入端子和所述公共端子之间来获得,所述第五状态可通过将所述飞跨电容跨接在所述第一输出端子和所述第二输出端子之间来获得。所述方法可包括,当以第二模式运行时,对至少第二和第六状态 进行交替重复,所述第六状态用于将所述飞跨电容和所述第一存储电容充电至基本为所述输入电压,所述第二状态用于将所述电压从所述飞跨电容传输到所述第二存储电容。所述第二状态可通过将所述飞跨电容跨接在所述公共端子和所述第二输出端子之间来获得,所述第六状态可通过将所述输入端子连接到所述第一输出端子并将所述飞跨电容跨接在此节点和所述公共端子之间来获得。所述第二模式下的所述序列可包括对第七状态的重复,所述第七状态用于独立于任一存储电容而对所述飞跨电容进行充电。所述第七状态可通过将所述飞跨电容跨接在所述输入端子和所述公共端子之间来获得,所述输入端子与所述第一输出端子隔离。当以第二模式的特定实现方式(implementation)运行时,可独立于所述飞跨电容而在所述输入端子和所述第一输出端子之间维持连接,从而确保了当以此特定实现方式运行时,所述第一存储电容总是连接在所述输入端子和所述公共端子之间。可使用选择信号以以在此处公开的任何变体实现第二运行模式。根据状态,所述飞跨电容之一可被独立地连接到所述输入端子、所述第一输出端子或所述公共端子之一。根据状态,另一飞跨电容端子可被独立地连接到所述第一输出端子、所述公共端子或所述第二输出端子之一。任何状态序列均可根据负载条件而改变。状态序列的所述改变可包括:当负载不对称时,降低所述第二状态被包括的频率。所述第一存储电容可仅当所述第一输出端子处的电压落到第一门限值以下时才充电,所述第二存储电容可仅当所述第二输出端子处的电压落到第二门限值以下时才充电。所述方法还可以包括选择运行模式的初始步骤。所述方法还可包括:使用所生成的所述分轨电压源来为放大器电路供电,该放大器电路具有用于连接到负载的信号输出,其中,响应于输出电平要求信号(outputleveldemandsignal),在信号输出处生成的信号的范围可以通过以第一运行模式或第二运行模式运行而改变。当所述放大器电路驱动耳机时,可使用所述第一模式,且当所述 放大器电路可能正驱动线路输入(lineinput)时,可使用所述第二模式。所述方法还可包括:当以所述第二模式运行时,限制所述信号输出处的电流。所述输出电平要求信号可以参考所述放大器的音量设置输入得到,当所述音量可以处于最大时,选择所述第一模式。在本发明的另一方面,提供了一种用于提供多个输出电压的电荷泵电路,所述电路包括:-输入端子和公共端子,用于连接到输入电压,-第一和第二输出端子,用于输出所述多个输出电压,所述第一和第二输出端子在使用中经由相应的第一和第二负载并且还经由相应的第一和第二存储电容连接到所述公共端子,-第一和第二飞跨电容端子,用于连接到一个飞跨电容,-开关网络,其可以多个不同状态运行,以互连所述端子,以及-控制器,用于以所述不同状态的一序列操作所述开关网络,其中所述控制器可以第一模式和第二模式运行,且其中,在所述第一模式下,所述序列适于根据状态经由所述飞跨电容反复地将电荷包从所述输入端子传输到所述存储电容,从而生成正输出电压和负输出电压,所述正输出电压和负输出电压一同跨过一个近似等于所述输入电压的电压,并且以公共端子处的电压为中心。应注意,术语“一同跨过一个近似等于所述输入电压的电压,并且基本以公共端子处的电压为中心”,应被理解为例如涵盖了电路有轻负载的情况,其中输出电压电平实际上将是:+/-(输入电压的一半减去Iload·Rload),其中Iload等于负载电流,Rload等于负载电阻。在本发明的又一方面,提供了一种用于提供多个输出电压的电荷泵电路,所述电路包括:-输入端子和公共端子,用于连接到输入电压,-第一和第二输出端子,用于输出所述多个输出电压,所述第一和第二输出端子在使用中经由相应的第一和第二负载并且还经由相应的第一和第二存储电容连接到所述公共端子,-多个第一和第二飞跨电容端子,用于连接到多个飞跨电容,-开关网络,其可以多个不同状态运行,以互连所述端子,以及-控制器,用于以所述不同状态的一序列操作所述开关网络,其中所述控制器可以第一模式和第二模式运行,且其中,在所述模式中的第一模式下,所述序列适于根据状态经由所述飞跨电容反复地将电荷包从所述输入端子传输到所述存储电容,从而生成正输出电压和负输出电压,所述正输出电压和负输出电压中每个的大小基本达到所述输入电压的一个分数(fraction),所述输入电压的所述分数基本等于1/(n+1),其中n是表示飞跨电容数量的整数。在此方面,所述电路可以能够生成大小处于所述输入电压的不同分数的输出电压,所述不同分数可包括2和(n+1)之间各整数中一些或全部的倒数。此处描述或要求保护的任何音频设备均可为便携形式的,或包括通信设备、车内音频设备或(可能是立体声的)耳机设备的一部分。在本发明的另一方面,提供了一种用于从一个输入电压提供多个源电压的电荷泵电路,所述电荷泵电路具有:第一和第二输出端子以及公共端子,其用于连接到第一和第二存储电容;一对飞跨电容端子,其用于连接到飞跨电容,所述电路可以两个模式运行,其中,在所述第一模式下,所述电路可运行以使用所述飞跨电容生成正输出电压和负输出电压,所述正输出电压和所述负输出电压一同跨过一个近似等于所述输入电压的电压,并且以公共端子处的电压为中心。在所述模式中的第二模式下,所述电路可被布置为生成各基本达到所述输入电压的正输出电压和负输出电压。还公开了一种音频设备,该音频设备包括如此处公开的任何电荷泵电路,所述电荷泵具有飞跨电容,该飞跨电容连接到所述第一和第二飞跨电容端子,所述电荷泵还具有第一和第二存储电容,该第一和第二存储电容分别连接在所述第一输出端子和所述公共端子之间以及所述第二输出端子和所述公共端子之间,所述音频设备还包括音频输出电路,该音频输出电路被连接以由所述转换器的所述第一和第二输出电压供电。所述音频设备可以是便携的。所述音频设备可被包含在通信设备中。所述音频设备可以是车内音频设备。所述音频设备可被包含在耳机设备或立体声耳机设备中。所述音频设备可包括音频输出换能器(transducer),该音频输出换能器被连接作为连接到所述音频输出电路的输出端子的负载。本发明的更多可选特征如在所附权利要求中公开的。附图说明现在将参考附图仅以举例方式描述本发明的实施方案,在附图中:图1示出了现有技术的反相电荷泵电路;图2a示出了和图1相同的电路,其中示出了开关阵列的细节;图2b和2c示出了图2a电路在运行中所使用的两个状态下的等效电路;图3示出了图1的电路的变体,其在闭环结构下运行;图4a示出了根据本发明的一个实施方案的双模式电荷泵电路;图4b示出了与图4a相同的电路,其具有电荷泵开关阵列和控制模块的内部细节;图5a和5b分别示出了具有处于第一状态的开关阵列的电路以及此状态的等效电路;图6a和6b分别示出了具有处于第二状态的开关阵列的电路以及此状态的等效电路;图7a和7b分别示出了具有处于第三状态的开关阵列的电路以及此状态的等效电路;图8是示出了用于以第一主要模式(模式1)运行的图1和2电路的三个开关控制信号的时序图;图9a和9b分别示出了具有处于第六状态的开关阵列的电路以及此状态的等效电路;图10a和10b分别示出了具有再次处于第二状态的开关阵列的电路以及此状态的等效电路;图11是示出了在第二主要运行模式的第一变体(模式2(a))下的控制信号的时序图;图12a和12b分别示出了具有处于第七状态的开关阵列的电路以及此状态的等效电路;图13、14和15是示出了在第二主要运行模式的第二、第三和第四变体(分别为模式2(b)、2(c)、2(d))下的开关控制信号的时序图;图16示出了图4电路的变体,其可在闭环结构下运行;图17示出了本发明的又一实施方案,其中多个不同的输入电压值之一可被选作此处公开的任何双模式电荷泵的输入电压;图18a和18b以方框示意图形式示出了两个放大器电路,其中可使用任何体现本发明的双模式电荷泵;以及图19a至19c示出了不同运行模式下的便携音频设备。具体实施方式图1示出了现有技术的反相电荷泵(ICP)电路100,其从正输入电压(+VDD)生成负输出电压(Vout-)。在理想条件下,Vout-将基本等于-VDD,从而导致跨越节点N1-N2的总电压等于2×VDD。电路100包括三个电容器——一个飞跨电容Cf和两个存储电容CR1和CR2——以及一个开关阵列110。电路100由控制器120控制,控制器120控制开关阵列110,从而导致电路100在两个主状态之间切换,如下所述。图2a示出了与ICP电路100相关联的开关阵列110。图2b和2c示出了两个主要的充电/放电运行状态的等效电路。开关SA1和SA2以及开关SB1和SB2被如所示地布置,且分别由公共控制信号(CSA和CSB)操作。为了产生电压Vout-,控制器操作所述开关阵列110以重复下列四个步骤:1.起初,所有开关均打开;然后2.开关SA1和SA2被闭合(SB1和SB2保持打开),导致ICP电路100以第一状态运行。飞跨电容Cf被连接在输入电压节点N1和公共参考电压节点N3之间(如图2b所示)。所以,飞跨电容Cf充电至电压+VDD;然后3.开关SA1和SA2被打开(SB1和SB2保持打开);然后4.开关SB1和SB2被闭合(SA1和SA2保持打开),导致ICP电路100以第二状态运行。现在飞跨电容Cf和负存储电容CR2并联,也即,飞跨电容Cf被跨接在公共参考电压节点N3和输出电压节点N2之间(如图2c所示)。假设电容CR2在这第一个循环中起初被充电至0伏,那么电容CR2将和电容Cf分享电荷,以在每个电容的两端提供相等的电压。由于电容Cf和CR2的正极板(positiveplate)被连接到 公共参考电压节点N3(地),故相对于节点N3,节点N2处的电压比-VDD多少更正一些,取决于Cf与CR2各自的尺寸。该过程重复其自身,始自步骤1当所有开关均打开时。在每个四步循环中,电容CR2将被进一步充电,在多个四步循环之后最终达到稳态。这时,电容CR2已经基本被充电至-VDD(因此Vout-基本等于-VDD),从而Cf所携电荷不再有任何进一步显著增加。所述开关阵列110可以如上所述在开环结构下运行,其中这些开关的开关频率是基本固定的。可以使实际的开关频率依赖于正使用该电路的应用,且该实际的开关频率可具有例如KHz到MHz的大小。如果有负载被施加到Vout-,那么该负载将使电容CR2持续放电。然后该电荷在状态2期间被来自电容Cf的电荷取代,导致Vout-比-VDD多少更正一些。平均差值(averagedifference)和电压脉动(voltageripple)将取决于Cf的值、CR2的值、开关频率和负载特性。图3示出了替代性的现有技术ICP电路300,其中开关阵列110在闭环结构下运行。替代性的现有技术ICP电路300不同于图1所示的电路之处在于,它的开关阵列控制逻辑310依赖于输出电压Vout-。所述ICP电路300包括分压器R1、R2和比较器320,以及如前所述的开关阵列110和电容器Cf、CR1、CR2。对节点N2上的输出电压Vout-的调节是这样实现的:通过内部电阻分压器R1、R2来检测输出电压Vout-,并当跨越电容CR2的电压Vout-比比较器320的参考输入Vref更正时,使能开关阵列110。当开关阵列110被使能时,2-相非重叠(non-overlapping)时钟信号K1、K2控制所述开关(未示出)。一个时钟信号(K1)控制开关SA1和SA2——它们使得飞跨电容Cf能被充电至输入电压+VDD(见图2b),而另一个时钟信号(K2)控制开关SB1和SB2——它们使得输出存储电容CR2能被充电至电压Vout-(见图2c)。应注意到,输出电压Vout-可被调节,以使其等于近似地电势和-VDD之间的任一电压,然而当输出电压Vout-等于-VDD时电荷泵自身是最有效率的。在实践中,目标电压将可能被设置为略高于-VDD,以减少脉动。与这些现有技术ICP电路(100,300)相关联的问题是,它们只能生成轨到轨大小大于输入电压的输出电压。在某些应用中这会是不利的,因为这可能不允许被供电电路有效率地运行,例如当这样的ICP电路(100,300)被用于为这样的电路供电时:所述电路放大最大振幅远小于放大器电路的电源+/-VDD的信号。图4a示出了新颖的双模式电荷泵(DMCP)电路400,其包括三个电容器——一个飞跨电容Cf和两个存储电容CR1、CR2——以及一个开关阵列410。电路400由控制器420控制,控制器420控制开关阵列410,从而使电路400在不同状态之间切换,以实现不同的运行模式,如下所述。向控制器提供时钟信号(未示出),该时钟信号可在DMCP400内生成,或是被与集成电路片上的其他电路共享。在运行中电路400使用飞跨电容Cf以高频将电荷包从输入源传输到存储电容,以以这样的方式从正输入电压(+VDD)生成正和负输出电压(Vout+&Vout-)。这些输出电压的值取决于所选择的模式。为帮助解释,对各电路节点加标记,包括:节点N10,其被连接以接收输入源电压VDD;节点11,其是公共(地)节点;以及节点N12和N13,它们分别构成了Vout+和Vout-的输出端子。负载450连接到输出Vout+、Vout-以及N11(0V)。实际上,该负载450可以完全地或部分地与电源位于同一集成电路片上,或者替代地其可以位于片外(off-chip)。正如其名称所暗示的,DMCP400可以两个主要模式运行。所有这些模式都将在下文中更详细说明。自然地,该双模式电路的原理可被扩展到多模式。在第一主要模式——以下称为模式1——下,DMCP400运行以使得,对于输入电压+VDD,DMCP400生成这样的输出,每个所述输出的大小均为输入电压VDD的一半。换句话说,在此第一模式下生成的输出电压的标称大小为+VDD/2和-VDD/2。当有轻负载时,这些电平实际上将等于+/-(VDD/2-Iload·Rload),其中Iload等于负载电流,Rload等于负载电阻。应注意到,在此情况下,节点N12和N13之间的输出电压的大小(VDD)与节点N10和N11之间的输入电压(VDD)的大小是相同的, 或是基本相同的,但有所移动。因此,此模式可被称为“电平移动(levelshifting)”模式。在第二主要模式(模式2)下,DMCP400产生双轨输出+/-VDD。这种特定形式的电荷泵与已知电路相比具有显著的优势,具体而言是因为能够仅仅使用单个飞跨电容生成降低的双极性的源。用于生成降低的输出电压的现有技术电路需要另外的飞跨电容。飞跨电容和存储电容通常具有使它们需要被置于片外的尺寸,因此消除一个电容和两个IC管脚是非常有益的。然而,本发明不应被理解为其应用限于此处示出的特定形式的DMCP,且是潜在地可应用于其它多模式电荷泵电路——无论它们是已知的还是至今尚未知的。图4b示出了DMCP100的更多内部细节。此处可见,开关阵列410包括6个主要开关S1-S6,每个开关由来自开关控制模块420的相应控制信号CS1-CS6控制。所述开关被布置,以使得第一开关S1被连接在飞跨电容Cf的正极板和输入电压源之间,第二开关S2在飞跨电容的正极板和第一输出节点N12之间,第三开关S3在飞跨电容的正极板和公共端子N11之间,第四开关S4在飞跨电容的负极板和第一输出节点N12之间,第五开关S5在飞跨电容的负极板和公共端子N11之间,第六开关S6在飞跨电容的负极板和第二输出节点N13之间。可选地,可以提供第七开关S7(以点线示出),其被连接在输入电压源(节点N10)和第一输出节点N12之间。这些开关是适合于待描述的模式的开关。当然,并不排除提供另外的使得能实现其他运行模式的开关。应注意到,开关可以以多种不同方式实现(例如,MOS晶体管开关或MOS传输门开关),取决于,例如,集成电路加工技术或输入和输出电压要求。选择合适的实现方式完全在有技术的读者的能力之内。还更详细地示出了控制模块420,其至少概念上(notionally)包括模式选择电路430,用于决定使用两个控制功能420a、420b中的哪个,从而确定DMCP以哪个模式运行。模式选择电路430和控制器420a等是概念(notional)块,因为它们在DMCP400的不同运行模式的实现中表示控制模块的不同行为。它们可以通过单独的电路来实现,如刚刚所述。实际上,它们同样很可能通过具有硬线逻辑和/或序列器(sequencer)码——其确定在给定时间实现什么行为——的单个 电路块或序列器来实现。也如下所述,在给定模式可以以一系列变体实现的情况下,设计者可选择这样的变体:当所有不同模式一起被考虑时,所述变体简化控制信号的生成。DMCP运行——模式1在模式1的主要运行实施方案中,有三个基本运行状态,它们以具有三个阶段(phase)的高频循环重复,这三个阶段可被称为P1、P2和P3。当DMCP400以模式1运行时,开关S7若存在则总是打开的,因此当描述此模式时不将其示出。图5a和5b示出了以第一状态——“状态1”——运行的开关阵列410。参见图5a,开关S1和S4被闭合,以使得电容Cf和CR1彼此串联,且与输入电压+VDD并联。因此,电容Cf和CR1分享跨越它们而施加的输入电压+VDD。图5b示出了状态1运行的等效电路,其中电压+VDD被有效地施加在节点N10和N11之间。对于需要对称但相反的极性的输出电压的应用,优选的是,Cf和CR1的值相等,以使得电容Cf、CR1当跨越电压源而串联时以相等的增量改变电压。如果两个电容起初被放电,或者确实预先被充电至任何相等的电压,则它们每一个的电压终将等于所施加的电压源的一半,在此情况下是输入电压VDD的一半。图6a和图6b示出了以第二状态——“状态2”——运行的开关阵列410。参见图6a,开关S3和S6被闭合,以使得电容Cf和CR2彼此并联,且被连接在节点N11和N13之间。因此,跨越电容Cf的电压和跨越电容CR2的电压均衡。图6b示出了状态2情形的等效电路。应注意到,存储电容CR2的值不必与飞跨电容Cf的值相同。如果电容CR2远大于电容Cf,则电容CR2将需要更多的状态序列以充电至或接近于VDD/2。应该根据预计的负载条件和所需的工作频率以及输出脉动容限来选择存储电容CR2的值。经过仅在状态1和状态2之间交替的多个循环,在理想状态下,跨越电容Cf和CR2的电压将收敛于电压+/-VDD/2。然而,电荷泵的输出端子上存在的显著负载将导致Vout+、Vout-从+/-VDD有相应的电压下降。如果负载是对称的,在Vout+和Vout-上有相等的电流大小,则 系统的对称将导致这两个输出下降相同的量。然而,如果例如在Vout+上存在显著的负载,但是在Vout-上没有负载或有轻负载,则跨越电容CR1的电压将降低。这将导致在状态1的末尾,跨越电容Cf的电压较大,该电压将随后在状态2被施加到电容CR2。如果仅使用状态1和状态2,则飞跨电容Cf将随后在状态1与电容CR1串联,但跨越它的电压仍较大,即使在起初。因此,电压Vout+和Vout-均将倾向于无益地(negatively)下降,也就是说共模未被控制。为了避免此效应,引入了第三状态——状态3,且状态1至3在相继循环中按阶段1至3重复。图7a和7b示出了以此状态3运行方式运行的开关阵列410。参见图7a,在状态3,开关S2和S5被闭合以使得电容Cf和CR1彼此并联,且被连接在节点N11和N12之间。因此,不管电容Cf和CR1的先前电压有什么差异,电容Cf和CR1都将被充电至相同电压。在稳态下(在许多循环之后),电容Cf和CR1的电压均变得近似于VDD/2。图7b示出了状态3情形的等效电路。从而,该电路以均衡的电压结束状态3,在此后其回到状态1。从而理论上,所述电路将在状态1以Vout+=+VDD/2进入下一个循环的阶段1,取决于负载条件和开关序列。在状态2和3,在实践中跨越并联连接的各电容器的电压实际上可能不会在单个序列中完全均衡,尤其是当开关频率相对于DMCP的R-C时间常数为高时。更确切地说,在每个状态序列中,电荷的贡献将从电容传递到电容。在零负载或低负载条件下,这种贡献将把每个输出电压带到期望的电平。在较高负载条件下,输出存储电容CR1、CR2通常将达到较低的电压(具有一些脉动)。每个电容器的大小仅需要被设计为使得共模漂移的减小对于所有预计负载条件均处于可接受的范围内,替代地或附加地,可以采用具有较小导通电阻的较大的开关。图8示出了在模式1的主要运行实施方案的三个状态(1、2和3)期间用于控制开关(S1-S6)的非重叠控制信号(CS1-CS6)。如上所述,这只代表用于控制序列的许多可能情形中的一个实例。应该理解,不一定需要观察上述三个状态的开环顺序排列 (sequencing)。例如,状态序列可以是:1,2,3,1,2,3…(如上所述);或1,3,2,1,3,2…;或1,2,1,3,1,2,1,3。还明显的是,第三状态的使用不必像其它两个状态那样频繁,例如可以设想序列1,2,1,2,1,2,3,1。甚至可以设想完全省去第三状态——尽管仅在负载很平衡的情况下,或省去用于共模稳定化的替代性方案。也存在其他开关和顺序排列情形。例如,在一个替代性运行模式1实施方案中,状态1可被第四状态——“状态4”——替代,藉此开关S1和S5被闭合(所有其他开关均打开)。在此状态,电容Cf充电至输入电压+VDD。第五状态——“状态5”——随后将以开关S2和S6闭合(所有其他开关打开)的方式运行,以使得飞跨电容Cf与相串联的存储电容CR1和CR2(在此情形下,电容CR1和CR2的电容可以相等)并联。这个替代性的开关和顺序排列情形的特定实施例具有没有共模控制的缺点,因此将经受共模漂移。然而,通过在“正常”开关和顺序排列循环期间以适当的间隔来改变开关序列,可以“重置”此共模漂移。这些改变可被预先确定,或响应于所观察的情况而被启动。应注意到,电容Cf、CR1和CR2的大小可被选择以满足所要求的脉动容限(与尺寸/成本相对),因此,每个状态的时钟阶段持续时间不必是1:1:1的比例。虽然上文描述了模式1生成+/-VDD/2的输出的实施方案,但本领域技术人员将理解,上述教导可被用于通过增加飞跨电容Cf的数量并相应地改变开关网络来获得为VDD的任何分数的输出。在此情形下,输出和输入之间的关系是Vout+/-=+/-VDD/(n+1),其中n等于飞跨电容Cf的数量。也应理解,所述的具有多于一个飞跨电容的电路,根据其控制,将仍能够生成+/-VDD/2的输出以及介于+/-VDD/2和+/-VDD/(n+1)之间的对应每个中间整数分母的输出。例如,具有两个飞跨电容的电路可生成输出VDD/3和VDD/2,具有三个飞跨电容的电路可生成输出VDD/4、VDD/3和VDD/2等等。DMCP运行——模式2如上所述,DMCP也可以第二主要模式——模式2——运行,在模式2下,DMCP产生双轨输出+/-VDD(+VDD再次为节点N10处的输入源 电压电平)。在模式2下,开关S4总是打开的。模式2的多种变体是可能的,这些变体将在下文中描述,且被称为模式2(a)、2(b)、2(c)和2(d)。可选的开关S7对于模式2(c)和2(d)是必需的。在模式2(a)下,所述DMCP具有两个基本运行状态。图9a示出了以这些状态中的第一状态——“状态6”——运行的电路。在此状态下,开关S1、S2和S5被闭合(S3、S4和S6打开)。这导致电容Cf和CR1在节点N10和N11之间跨越输入电压+VDD而并联。因此,电容Cf和CR1各存储输入电压+VDD。图9b示出了状态6的等效电路。图10a示出了以这些状态中的第二状态运行的电路,该第二状态事实上与模式1中的状态2相同,藉此开关S3和S6被闭合(S1、S2、S4和S5被打开)。因此,电容Cf和CR2在公共节点N11和第二输出节点N13之间并联。因此,电容Cf和CR2共享它们的电荷,且在多个循环之后,节点N13展现出为-VDD的电压。图10b示出了该状态2的等效电路。图12a示出了另一个状态,“状态7”,其可被引入此模式2(a)序列,以创建略微不同的实现方式——该实现方式现在被称为模式2(b)。在状态7下,开关S1和S5被闭合(S2、S3、S4和S6被打开)。该状态7将飞跨电容Cf与输入电压+VDD并联。此状态之后可以是状态6,然后是状态2,然后回到状态7,等等。图12b示出了该状态7的等效电路。图13示出了非重叠控制信号(CS1-CS3&CS5-CS7),其用于控制开关(S1-S3和S5-S7)以生成上述三个状态的重复序列——7,6,2,7,6,2等…,该序列定义了模式2(b)。再一次,这仅仅表示控制序列的许多可能情形中的一个实例。将状态7包括在状态6之前是意在使CR1不受CR2影响,从而防止交叉调整(cross-regulation)。另一方面,包括状态7减少了在主要状态2和6下可用于电荷传输的时间,从而,如果状态7被直接略去(模式2(a)),则调整总体上可被改善。这些是设计选择。无论选择哪种方式,所述状态之一被使用的频繁程度可以不如其它状态(如上文关于模式1所述)。例如,若两个输出节点N12、N13 上的负载是不平衡的(永久地或根据信号条件),则状态6和状态2中的一个可比另一较不频繁地被包括,因为电容CR1可能需要比电容CR2较不频繁地被充电,或反之。模式2(c)和(d)是生成+/-VDD的进一步替代性运行模式,其在所述DMCP设有开关S7时为可能的。此开关可用于替代开关S1和S2的组合功能性,用于在高侧负载——也即连接在节点N12和N11之间的负载——不要求大量电流的应用中在节点N12处生成正输出电压。这可以是在负载具有高输入电阻的情况下,例如对于混频器而言具有“线路输出(LineOutput)”。在这样的情况下,开关S7的尺寸和驱动要求,与开关S1和S2的尺寸和驱动要求相比,可被减小和修改。事实上,在模式2(c)下的运行期间开关S7可以持续打开,这样的优点是驱动开关所需的功率较小,并且在MOS开关实现方式的情况下,开关S7由于其寄生栅-漏和栅-源电容,不会将任何电荷注入节点N10或N12。也应注意到,开关S1仍需运行,以生成负输出电压-VDD。更进一步,应注意,开关S2可不频繁地被操作,以也将飞跨电容Cf和高侧存储电容CR1并联连接。图14示出了非重叠控制信号(CS1-CS3&CS5-CS7),其用于在模式2(c)的两个交替状态期间控制开关(S1-S3和S5-S7)。因此,总结模式2(c),开关S7被永久地(或接近永久地)闭合。修改后的状态6被用来为并联的飞跨电容Cf和电容CR1充电,现在这通过仅闭合开关S1、S5和S7来实现。然后,修改后的状态2像以前一样被用来将此电荷经由开关S3、S6传输到电容CR2,但这一次,因为S7闭合,电容CR1仍然具有跨越其两端的电压VDD。图15示出了非重叠控制信号(CS1-CS3&CS5-CS7),其用于在模式2(c)的变体——其被称为模式2(d)——下的三种状态期间控制开关(S1-S3和S5-S7)。模式2(d)与模式2(c)之间的差异类似于模式2(a)与2(b)之间的差异,在于,在状态7用开关插入了一个额外阶段,其中开关S1和S5被闭合(S2、S3、S4和S6打开;S7可始终保持闭合)。注意模式2(d)遵循序列7,2,6,7,2,6...,而不是7,6,2。这些模式的效果未必有任何大差异,但改变序列的自由可以使得控制逻辑简化,如将在下文的讨论中看到的。*如果存在+模式2c和2d++模式2d表1表1示出了用于上述七个状态的开关(S1-S7)状态,“0”表示打开的开关,而“1”表示闭合的开关。注意,如果在特定实现方式中仅使用所描述的模式的一个子集,则开关网络和控制器不需要实现全部状态1到7。再次,开关网络的这四个示例序列以及七个或八个不同状态,并不是控制序列仅有的可能性。再次,根据负载,多种不同序列实现方式是可能的,且这些状态中的一些被使用的频繁程度可以不如另一些状态。图16示出了和图4所示电路相似的DMCP900电路,只是DMCP900还包括两个比较器910a、910b,用于调节上述两个输出电压。应注意到,DMCP900代表了闭环DMCP。比较器910a、910b中的每一个将其各自的电荷泵输出电压(Vout+、Vout-)和相应的门限电压(Vmin+、Vmin-)相比较,并且输出相应的电荷信号(chargesignal)CHCR1和CHCR2。这些电荷信号CHCR1、CHCR2被馈入开关控制模块1420,以对开关阵列1410进行控制,从而导致DMCP运行,以对随便哪个相关的存储电容充电。如果随便哪个输出电压下降超过其相应门限,则启动该电荷泵;否则使电荷泵暂时地停止运行。这降低了在开 关开关的过程中消耗的功率,尤其是在轻负载的情况下。此方案允许输出电压最高达+/-VDD/2。还应该注意到,在此结构中,DMCP900可被用于生成较高的电压,但伴随着效率的降低。在此情况下,参考电压(Vmin+/min-)可被调节,以相应地调节输出电压。飞跨电容Cf被充电至+VDD(经由开关S1和S5),然后跨越存储电容CR1(通过开关S2、S5)或CR2(通过开关S3、S6)并联连接,以将它们的电压提升到由参考电压设定的电平。这样的操作增加了存储电容CR1、CR2上的脉动电压,但也降低了开关损耗。然而,通过相对于充电电容Cf调节存储电容CR1、CR2,可以降低脉动电压。图17示出了上述新颖的双模式电荷泵400、900之任一的又一个实施方案,其中多个不同输入电压值中的一个可被选作DMCP400、900的输入电压。图17示出了具有多个不同电压输入(+Vin1到+VinN)的输入选择器1000,所选择的实际输入由控制输入Ic确定。然后所选取的电压电平用作双模式电荷泵400、900的输入电压VDD。图18a表示了一个典型应用,其中双轨源电压Vout+和Vout-由如此处所述的这样的电荷泵400、900所生成,电荷泵400、900由例如单轨源电压VDD供电。替代地,电荷泵400、900可由多个源电压供电,如图17所示。在与图18a、18b相关联的描述中,标记VDD、Vout+等应被解释为指代相应的端子或该端子处的电压,根据上下文而定。参见图18a,源电压VDD被示为给处理电路20供电。输入信号S1可以是模拟信号或数字信号。在S1是模拟信号的情况下,处理电路20将是纯模拟型电路,诸如运算放大器、多路复用器、增益模块等等。在S1是数字信号而输出级是模拟的情况下,则处理电路20可以是数字和模拟电路的混合,其中信号S1被直接地或通过某些数字信号处理馈入DAC(未示出),而该DAC的输出随后被馈入上述模拟电路。处理电路20输出一个已处理的信号S2——其在此特定实施方案中是一个被传入电平移动器30的模拟信号。电平移动器30可由例如直流阻隔电容来实现。输出放大器40由双轨源电压Vout+和Vout-供电,所述双轨源电压由电荷泵400、900生成,且在特定实施方案中可以处于电平+/-VDD/2或+/-VDD,取决于电荷泵400、900的运行模式。电荷泵400、900的运行模式由控制信号Cnl确定。模式1可用于驱动 低阻抗负载诸如耳机,而模式2可用于驱动高阻抗负载诸如线路输出。模式选择可以手动地执行——例如通过音量设定水平(volumesettinglevel)或代码来执行,或替代地,通过自动地检测输出阻抗或输出电流供应来执行,甚或在便携音频设备的情况下,通过自动地检测插孔(jacksocket)对扩展坞(dockingstation)操作来执行。在使用音量控制进行“模式选择”的情况下,若音量被设置为高则将电荷泵设置到模式2,在通常情况下将导致输出源电压崩溃,因为负载的功率需求大于设计电荷泵400、900所针对的功率需求。然而,额外电路(未示出)形式的安全装置(例如,为了保护耳朵免受因危险的高音量而导致的损伤)可被放在适当的位置以监控这样的情况,以停用电荷泵400、900或该电路的其他部分。输入信号S1——如果是模拟的——以及处理电路20中的模拟信号,通常将以地电势和VDD之间的某个电压为参考,而电平移动后的信号S2'以大约地为参考,如由分轨源Vout+、Vout-运行的输出放大器所要求的。电平移动后的信号S2'被馈入输出放大器40,放大器40输出一个放大的输出信号S3,信号S3被馈入信号换能器50形式的以地为参考的(groundreferenced)负载。在输出放大器40是开关(D类或PWM)放大器或1位数字(sigma-delta)型输出级的情况下,信号S1、S2可以从输入到输出一直是数字形式的,或者可以开始是模拟形式,然后在处理电路20中被转换成数字形式。图18b示出了图18a的布置的更具体应用:为清楚起见电荷泵400、900和供电连接已被略去。此实施例中的应用是立体声放大器,其中负载是立体声耳机51。该放大器的信号处理元件是成双的,以处理左信道信号和右信道信号,如它们的参考符号中的后缀'L'和'R'所示。源电压Vout+和Vout-可被这两个信道共享,尽管如果该应用需要,用于不同信道的独立供电也是可能的。一个应用领域是便携音频设备诸如MP3播放器,例如其中分轨源允许有DC-耦合输出——其是所希望的以维持低音响应而不必使用大的去耦电容。图19a和19b示出了在两种布置中使用的便携电子设备,藉此,对于每种布置,上述DMCP实施方案中任一均可被有利地用来以适当的 水平向输出级提供功率。图19a示出了第一布置中的便携电子音频设备1,其被连接以驱动一对耳机2。图示中的设备1是MP3播放器,但相同的功能可被集成到电话、多媒体播放器、膝上电脑、PDA以及诸如此类中。耳机2经由被插入输出插孔(jack)4的引线3连接到该设备。该设备的主体还可包括一个或多个微型扬声器(未示出),所述微型扬声器可以被驱动作为替代性音频输出换能器,但是原理上等同于用于说明目的的耳机。众所周知,小尺寸和重量以及最长电池寿命,是市场上优质产品的关键品质。生产成本是整个市场上的重要因素。图19b示出了第二布置中的相同设备1,其中没有连接耳机。该设备改为经由单独的连接器连接到扩展坞5,扩展坞5又驱动更大的扬声器6L、6R。扩展坞5包括比便携装置自身具有更高功率的放大器,以及单独的电源——其通常是电网供电的。图19c示出了第二布置的变体中的相同设备,其中代替耳机,外部放大器7和扬声器8L、8R经由被插入耳机插孔4的线路引线(linelead)9被连接。在这些不同布置中设备1被要求驱动极不相同的负载。耳机或扬声器通常具有32欧姆或更小的阻抗。深入此负载,例如100mVRMS的输出振幅将提供对于对应于30mW功率的满标度而言中等的音量(例如-12dB)。当驱动第二布置中较大放大器的线路输入时,所述负载阻抗通常是10千欧或更大,从而2VRMS的满标度信号振幅(0dB)对于最佳品质是适当的。如果在第一布置中驱动插座(socket)的输出级能够提供2VRMS的信号,则其源电压必须大于2V。当从相同输出级驱动布置1中的耳机负载时,所述输出级功耗的大部分都以热的形式耗散,因为在输出级的晶体管中源电压会降到100mV的水平。如果,为了增加电池寿命,设计者选择对于线路输出情况不提供全2VRMS,那么结果是更差的信号。由于这些相互矛盾的需要,市场上的优质产品常规上采用提供相分开的输出级的做法,一个输出级用于驱动耳机/扬声器负载2,另一个输出级经由基座连接器(dockingconnector)4用于线路输出情况。每个输出级均可由适于所述电压范围的电源来驱动,从而在每个应用中保持电源效率和质量。无庸赘述,对相分开的输出级以及用于它们 的相分开的电源的需求,不合人意地增加了设备的尺寸和成本。所述DMCP可被纳入这样的设备1,从而免除了对相分开的输出级的需求。可改为提供单个输出级,DMCP用作其电源。在这个实施方案中,当该设备正在驱动耳机负载时,DMCP可被布置为以模式1运行;而当该设备正在通过线路输出驱动另一个放大器时,DMCP可被布置为以模式2运行。理想地,可以使所述DMCP根据设备布置自动地以适当的模式运行。在与耳机插孔4分离的基座连接器被用于第二布置(图19b)的情况下,所述DMCP的控制电路可以根据总体信号——其指示插接状态(dockedstatus)——直接决定应该使用哪种模式。当相同的插孔4像被用在第一布置中一样被用在第二布置中时,可以以几种方式确定模式选择。作为第一选项,可有用户可用的开关或菜单选项,以在声音和线路输出模式之间作出明确的选择。替代地,在将音量控制调至满标度的动作中,用户设定可以是暗含的,以在实践中耳机不会被用在最大音量下的假设为根据。替代地,有可能通过自动地检测输出阻抗或输出电流供应,甚或在便携音频装置的情况下,检测插孔对扩展坞操作,来进行。需要生成分轨源的能力的其它可能的应用领域包括:(1)用于处理模拟复合视频信号的电路的电压源,其中以地为参考的DC-耦合输出信号可以避免黑电平下降(black-leveldroop);以及(2)用于数据链路或调制解调器的线路驱动器诸如ADSL,其中以地为参考的DC-耦合输出信号可以减弱基线漂移效应(baselinewandereffect)。出于成本和尺寸的原因,能够将MP3播放器、移动电话或任意其他应用的功能集成到少量集成电路中是很重要的。因此将用于源电压生成的电路——在此情况下是电荷泵400、900——与功能电路20、30、40等集成到一起是有利的。一般而言,电荷泵400、900包括不能够实际地被集成而必须位于片外的电容器,因此对集成电路片管脚数和整体电路尺寸带来了影响。由于许多电路要求具有双极性的源(分轨源),这促进了对能够使用单个电容器——而不是对于每个所需的输出电压使用一个电容器——生成两个(或更多)输出电压源的电压生成电路的发展。控制方案、控制器形式以及甚至开关网络的细节方面的许多其他修改是可改变的。有技术的读者将理解,对这些电路的上述及其他修改和增加是可能的,而不脱离如所附权利要求所限定的、本发明的精神和范围。因此,提出上述实施方案是为了说明,而不是为了限制本发明的范围。为了解释此说明书和权利要求,读者应注意词语“包括”不排除除在权利要求中列出的元件或步骤以外的元件或步骤的存在,单数冠词“一”或“一个”不排除复数(除非上下文另有要求),并且单个元件也可实现权利要求中所述的多个元件的功能。权利要求中任何参考标记均不应被理解为对权利要求的范围进行限制。在权利要求陈述元件“被连接”或“用于连接”的情况下,这不应被解释为要求排除任何其他元件的直接连接,而应被解释为足以使那些元件能够如所述地起作用的连接。有技术的读者将理解,良好的、实用的设计可能包括许多此处未提及的执行例如启动和关闭功能、检测功能、故障保护或诸如此类的辅助部件,这些辅助部件中的一些已被提及,且这些辅助部件中没有一个有损于上述本发明的各实施方案中和权利要求中的本发明的基本功能特性。在上述整个描述中,标记Vout+、Vout-和VDD等应被解释为指代相应的端子或该端子处的电压,根据上下文而定。除了电荷泵电路自身内的变化和修改,本发明还包括所有形式的纳入了所述电荷泵的设备和系统,还有图15中所示的耳机放大器应用。此电路可被用于为所有形式的设备——包括通信设备——的输出级供电,其中输出级可驱动天线或传输线路,电-光换能器(发光器件)或机电换能器。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1