半导体装置的制作方法

文档序号:15533707发布日期:2018-09-28 17:57阅读:127来源:国知局

本发明涉及一种半导体装置,特别地,涉及一种电力设备所使用的半导体装置。



背景技术:

关于电力设备所使用的现有的半导体装置,已知下述情况,即,由于向电力用半导体元件通电时的发热作为热应力而施加于该电力用半导体元件,因此应力施加于在其下表面设置的焊料部,发生焊料裂纹。

如果焊料裂纹加深,则电力用半导体元件的热阻值增大,可能超过耐热极限而使电力用半导体元件破坏。

在专利文献1中公开了下述内容,即,通过运算而求出对电力用半导体元件进行通断控制的情况下的电力用半导体元件的热阻值,基于所得到的热阻值,对电力用半导体元件的产品寿命进行判定,根据需要而进行限制集电极电流值的控制。

专利文献1:日本特开2003-9541号公报



技术实现要素:

在以上说明的专利文献1中,由于通过进行电力用半导体元件的寿命判定,对集电极电流值进行限制,从而防止电力用半导体元件变得不能使用,因此存在作为半导体装置的能力被限制的问题。

本发明就是为了解决上述问题而提出的,其目的在于提供一种半导体装置,该半导体装置即使在电力用半导体元件的下表面的焊料层发生了焊料裂纹的情况下,也能够继续使用,而不限制作为半导体装置的能力。

本发明所涉及的半导体装置具有:基座板;绝缘基板,其搭载于基座板之上;以及电力用开关元件,其通过焊料层而接合于绝缘基板之上,由基座板、绝缘基板以及电力用开关元件构成模块,在模块之上具有控制基板,在半导体装置中,控制基板具有可变栅极电压电路,该可变栅极电压电路对电力用开关元件的集电极-发射极间电压进行测定,对栅极电压进行变更,以将由集电极-发射极间电压和集电极电流之积所规定的任意的目标电力供给至电力用开关元件。

发明的效果

根据上述半导体装置,由于在控制基板具有可变栅极电压电路,因此通过对栅极电压进行变更,从而能够对施加于电力用开关元件的电力量进行变更,对电力用开关元件的发热量进行控制,对电力用开关元件的温度进行控制,因此,例如在电力用开关元件下的焊料层发生了裂纹的情况下,能够使电力用开关元件发热,使焊料层熔融而对裂纹进行自修复。

附图说明

图1是表示本发明所涉及的实施方式1的半导体装置的结构的剖视图。

图2是表示电力用半导体元件的静态特性的图。

图3是对焊料裂纹的自修复动作进行说明的剖视图。

图4是对焊料裂纹的自修复动作进行说明的剖视图。

图5是对实施方式1的可变栅极电压电路的结构进行说明的图。

图6是对实施方式1的焊料熔融处理进行说明的流程图。

图7是表示本发明所涉及的实施方式2的半导体装置的结构的剖视图。

图8是对实施方式2的可变栅极电压电路的结构进行说明的图。

图9是表示集电极-发射极间电压相对于温度变化的特性的图。

图10是表示对栅极电压进行调整的时序图的图。

图11是表示集电极-发射极间电压和电力用半导体元件的温度之间的关系的图。

图12是对实施方式2的熔融处理进行说明的流程图。

图13是表示栅极-发射极间电压相对于温度变化的特性的图。

图14是表示对栅极电压进行调整的时序图的图。

图15是表示栅极-发射极间电压和电力用半导体元件的温度之间的关系的图。

图16是表示在电力用半导体元件的上表面的四角设置了温度检测二极管的结构的图。

图17是对实施方式3的可变栅极电压电路的结构进行说明的图。

图18是表示本发明所涉及的实施方式4的半导体装置的结构的剖视图。

图19是表示本发明所涉及的实施方式4的半导体装置的结构的俯视图。

图20是表示本发明所涉及的实施方式5的半导体装置的结构的剖视图。

图21是表示本发明所涉及的实施方式5的半导体装置的结构的俯视图。

图22是表示本发明所涉及的实施方式6的半导体装置的结构的剖视图。

具体实施方式

<实施方式1>

<装置结构>

使用图1~图6,对本发明所涉及的半导体装置的实施方式1进行说明。图1是表示本发明所涉及的实施方式1的半导体装置100的结构的剖视图。在图1中,在由铜(Cu)材料、铝(Al)材料或者以Cu为主要成分的合金材料构成的基座板16的主面之上接合有绝缘基板29。

关于绝缘基板29,作为绝缘基材26而使用氮化铝(AlN)或者氮化硅(SiN),在绝缘基材26的下主面、即与基座板16相对的主面,配置有由例如Cu构成的导电板27。

另外,在绝缘基材26的上主面、即与下主面相反侧的主面,配置有由例如Cu构成的导电板28。此外,导电板27及28与绝缘基材26接合。

绝缘基板29经由绝缘基板下焊料层30而接合于在基座板16之上配置的导体图案M42之上。更具体地说,通过使导体图案M42和配置于导电板27的下主面的导体图案M41通过绝缘基板下焊料层30而接合,从而使绝缘基板29固定于基座板16之上。

电力用半导体元件21及22分别经由半导体元件下焊料层31及41而接合于导电板28之上。更具体地说,使配置于导电板28的上主面的导体图案M2和配置于电力用半导体元件21的下主面的导体图案M1通过半导体元件下焊料层31而接合,使配置于导电板28的上主面的导体图案M12和配置于电力用半导体元件22的下主面的导体图案M11通过半导体元件下焊料层41而接合。

另外,与绝缘基板29独立地设置的绝缘基板53接合于基座板16的主面之上。

关于绝缘基板53,作为陶瓷基材52而使用AlN或者SiN,在陶瓷基材52的下主面、即与基座板16相对的主面,配置有由例如Cu构成的导电板51。

另外,在陶瓷基材52的上主面、即与下主面相反侧的主面,配置有控制端子33。在这里,导电板51及控制端子33与陶瓷基材52接合。

绝缘基板53经由绝缘基板下焊料层50而接合于在基座板16之上配置的导体图案M32之上。更具体地说,通过使导体图案M32和配置于导电板51的下主面的导体图案M31通过绝缘基板下焊料层50而接合,从而使绝缘基板53固定于基座板16之上。

基座板16的周围被树脂壳体42包围,构成将基座板16设为底面、与该底面相反侧成为开口部的封装壳体20。

在树脂壳体42的壁面内部埋入了主电极端子24,其一个端部在树脂壳体42的内壁面露出,该一个端部和电力用半导体元件22的主电极通过内部金属配线WR而电连接。此外,主电极端子24的另一个端部从树脂壳体42的壁面的上端面露出至外部。

另外,在与埋入了主电极端子24(N侧主电极端子)的壁面相反侧的壁面内部埋入了主电极端子25(P侧主电极端子),其一个端部在树脂壳体42的内壁面露出,该一个端部和导电板28通过内部金属配线WR而电连接。此外,主电极端子25的另一个端部从树脂壳体42的壁面的上端面露出至外部。

另外,电力用半导体元件22的主电极和电力用半导体元件21的主电极通过内部金属配线WR而电连接。

另外,电力用半导体元件21的栅极电极和控制端子33通过内部金属配线WR而电连接。此外,控制端子33与基座板16的主面垂直地延伸,贯穿噪声屏蔽板23,该噪声屏蔽板23设置为将封装壳体20的开口部闭塞。

噪声屏蔽板23由Al、Cu等金属板形成,在由封装壳体20和噪声屏蔽板23所包围的空间内,将电力用半导体元件21及22等封装而模块化。

另外,在导电板28的主面设置有集电极―发射极间电压输出端子34,该集电极―发射极间电压输出端子34与该主面垂直地延伸,贯穿噪声屏蔽板23。

控制端子33及集电极―发射极间电压输出端子34还将配置于噪声屏蔽板23的上方的控制基板CS贯穿,与搭载于控制基板CS之上的控制电路(未图示)的规定部分分别电连接。

此外,在陶瓷基材52之上不仅配置控制端子33,还配置多个信号端子,该多个信号端子与控制端子33同样地,与基座板16的主面垂直地延伸,贯穿噪声屏蔽板23及控制基板CS而与控制电路的规定部分分别电连接,但省略图示。

下面,将半导体装置100设为应用于逆变器的半导体装置、将电力用半导体元件21设为IGBT(绝缘栅型双极晶体管)等开关元件、将电力用半导体元件22设为作为续流二极管起作用的二极管元件而进行说明。

图2是表示电力用半导体元件21的静态特性的图,横轴表示集电极-发射极间电压VCE,纵轴表示集电极电流IC。

施加于电力用半导体元件21的电力量由具有图2所示的静态特性且将栅极电压VGE作为参数的集电极电流IC和集电极-发射极间电压VCE之积决定。

在半导体装置100中,由于在搭载于控制基板CS之上的控制电路具有可变栅极电压电路,因此通过对栅极电压VGE进行变更,从而能够对施加于电力用半导体元件21的电力量任意地进行变更,能够对电力用半导体元件21的发热量进行控制,对电力用半导体元件21的温度进行控制。

通过该控制,即使在如图3所示半导体元件下焊料层31发生了裂纹CR的情况下,通过将由可变栅极电压电路所控制的栅极电压施加于电力用半导体元件21,从而如图4所示,由电力用半导体元件21产生比通常动作时高的热量,利用该热量而使半导体元件下焊料层31熔融,然后使该半导体元件下焊料层31凝固,由此对焊料裂纹进行自修复。由此,能够延长半导体装置100的产品寿命。

此外,为了利用上述方法而使半导体元件下焊料层31熔融,由熔点200~300℃左右的无铅焊料形成半导体元件下焊料层31,并与其相应地对电力用半导体元件21的温度进行设定。

下面,使用图5,对搭载于控制基板CS之上的可变栅极电压电路90的结构进行说明。

可变栅极电压电路90是如下电路,即,为了将任意的目标电力供给至电力用半导体元件21,而对集电极-发射极间电压进行测定,变更栅极电压以变更集电极电流值,由此达到目标电力。

如图5所示,作为电力用半导体元件21的IGBT连接于电力线P和接地线N之间,作为电力用半导体元件22的续流二极管与该IGBT反向并联连接,可变栅极电压电路90是对向IGBT的栅极施加的电力进行变更的电路。

如图5所示,可变栅极电压电路90具有:栅极电阻GR,其与电力用半导体元件21的栅极连接;集电极―发射极间电压检测电路3;电流检测电阻4;缓冲放大器5;可变基准电压电路6;栅极电压调整比较器7;以及检测动作切换电路8。

集电极―发射极间电压检测电路3具有在电力用半导体元件21的集电极和发射极之间串联连接的电阻R11及R12,二者的连接节点与缓冲放大器5的反转输入(-)连接。

缓冲放大器5的输出与自身的非反转输入(+)连接,并且还被赋予至可变基准电压电路6的微型计算机61。

可变基准电压电路6具有微型计算机61、DC/DC转换器62以及直流电源63。

微型计算机61接受缓冲放大器5的输出,基于集电极-发射极间电压而对DC/DC转换器62进行控制,对DC/DC转换器62的输出进行调整。另外,微型计算机61还基于集电极-发射极间电压而进行检测动作切换电路8的接通、断开控制。

DC/DC转换器62从直流电源63接受电力供给,基于来自微型计算机61的PWM(脉冲宽度调制)信号而生成直流的基准电压,赋予至栅极电压调整比较器7的非反转输入(+)。

栅极电压调整比较器7将由连接于电力用半导体元件21的电流检测发射极和接地线N之间的电流检测电阻4检测的发射极电流(是作为电压值而赋予的)接受至反转输入(-),进行发射极电流和可变基准电压电路6的输出之间的比较,对栅极电压进行调整以使集电极电流成为目标值。

此外,在图1中未图示将电流检测发射极和电流检测电阻4连接的配线,但如先前说明所述,将该配线与设置于陶瓷基材52之上的多个信号端子中的任意端子连接,提供至控制基板CS侧。

另外,检测动作切换电路8具有:MOSFET 81,其选择将由电流检测电阻4检测的发射极电流赋予至在电力用半导体元件21的通常动作时所使用的过电流检测电路OC、或者赋予至栅极电压调整比较器7;以及MOSFET 82,其选择是否将由集电极―发射极间电压检测电路3检测的集电极电压赋予至在电力用半导体元件21的通常动作时所使用的过电压检测电路VC,从可变基准电压电路6向MOSFET 81及82的栅极赋予控制信号。

在这里,图1所示的集电极―发射极间电压输出端子34是将电力用半导体元件21的集电极和集电极―发射极间电压检测电路3连接的端子。

另外,栅极电阻GR与栅极驱动电路GD连接,在电力用半导体元件21的通常动作时,将栅极信号从该栅极驱动电路GD赋予至电力用半导体元件21的栅极,但是在可变栅极电压电路90的动作时,从栅极电压调整比较器7赋予栅极信号。

<装置动作>

参照图1及图5并使用图6所示的流程图,对具有以上说明的可变栅极电压电路90的半导体装置100的焊料裂纹自修复动作(焊料熔融处理)进行说明。

如果半导体装置100启动,则首先将检测动作切换电路8的MOSFET 81及82设为截止状态(步骤S1),使过电流检测电路OC及过电压检测电路VC各自的检测动作不会得以执行,并且使栅极电压调整比较器7的比较动作能够得以执行。

在焊料熔融处理中,首先,通过可变栅极电压电路90的集电极―发射极间电压检测电路3,对电力用半导体元件21的集电极-发射极间电压进行测定(步骤S2)。

然后,将所得到的集电极-发射极间电压经由缓冲放大器5而输入至可变基准电压电路6的微型计算机61(步骤S3)。

在微型计算机61中,对电力用半导体元件21的半导体元件下焊料层31的焊料熔融所需的集电极电流值进行计算,将用于生成基准电压的PWM信号输出至DC/DC转换器62,该基准电压使栅极电压调整比较器7能够输出得到该集电极电流值的栅极电压(步骤S4)。

在DC/DC转换器62中,基于从微型计算机61赋予的PWM信号生成基准电压,该基准电压使栅极电压调整比较器7能够输出得到焊料熔融所需的集电极电流值的栅极电压(步骤S5)。

然后,可变基准电压电路6的输出即基准电压、和由电流检测电阻4所检测出的发射极电流(是作为电压值而赋予的,以下将它称为集电极电流)输入至栅极电压调整比较器7(步骤S6)。

栅极电压调整比较器7对集电极电流值和基准电压进行比较,在集电极电流值未达到焊料熔融所需的目标值的情况下,通过提高输出、即栅极电压,从而提高集电极电流值,增加被赋予至电力用半导体元件21的电力。另一方面,在集电极电流值达到了焊料熔融所需的目标值的情况下,以维持栅极电压的方式进行调整(步骤S7)。

如果集电极电流值达到目标值,则视作达到了用于使焊料熔融的目标电力、焊料熔融已开始,开始时间测量(步骤S8)。

然后,在经过预定的一定时间后使栅极电压下降至通常动作状态的电压、或者暂时停止,从而结束焊料熔融处理(步骤S9)。

然后,在步骤S10中,将检测动作切换电路8的MOSFET 81及82设为导通状态,使过电流检测电路OC及过电压检测电路VC各自的检测动作得以执行,并且使栅极电压调整比较器7的比较动作不会得以执行。然后,直至半导体装置100停止为止,维持通常动作(步骤S11)。

如以上说明所述,在本发明所涉及的实施方式1的半导体装置100中,由于在搭载于控制基板CS之上的控制电路具有可变栅极电压电路,因此通过对栅极电压进行变更,从而能够对施加于电力用半导体元件21的电力量进行变更,能够对电力用半导体元件21的发热量进行控制,对电力用半导体元件21的温度进行控制。

通过该控制,即使在半导体元件下焊料层31发生了裂纹的情况下,通过将由可变栅极电压电路所控制的栅极电压施加于电力用半导体元件21,从而由电力用半导体元件21产生比通常动作时高的热量,利用该热量而使半导体元件下焊料层31熔融,然后,使该半导体元件下焊料层31凝固,由此能够将焊料裂纹去除。由此,能够延长半导体装置100的产品寿命。

此外,关于在半导体元件下焊料层31是否发生了裂纹,不能从外部直接知晓,但在根据电力用半导体元件21的电流、电压波形所估计的电力损耗急剧地增加的情况下,怀疑是发生了裂纹,因此执行焊料熔融处理是有效的。

<实施方式2>

使用图7~图11,对本发明所涉及的半导体装置的实施方式2进行说明。

<装置结构>

图7是表示本发明所涉及的实施方式2的半导体装置200的结构的剖视图。此外,在图7中,对与使用图1所说明的半导体装置100相同的结构标注相同的标号,省略重复的说明。

如图7所示,在半导体装置200中,在电力用半导体元件21的上表面之上配置有温度检测二极管TD1(第1温度检测元件),并且在封装壳体20内的基座板16的主面之上配置有由例如热敏电阻构成的温度检测器TD2(第2温度检测元件)。

温度检测二极管TD1及温度检测器TD2的输出分别经由内部金属配线WR而分别与陶瓷基材52之上的未图示的多个信号端子连接。

下面,使用图8,对搭载于控制基板CS之上的可变栅极电压电路90A的结构进行说明。此外,在图8中,对与使用图5所说明的可变栅极电压电路90相同的结构标注相同的标号,省略重复的说明。

可变栅极电压电路90A还具有如下功能,即,为了将目标电力供给至电力用半导体元件21,对集电极-发射极间电压进行测定,变更栅极电压以变更集电极电流值,从而达到目标电力,并且基于温度检测二极管TD1及温度检测器TD2的输出而对电力用半导体元件21下部的热阻值进行计算,基于该热阻值而对是否需要焊料熔融处理进行判断。

如图8所示,可变栅极电压电路90A在图5所示的可变栅极电压电路90的结构的基础上,具有与温度检测二极管TD1连接的恒定电流电路CC以及与温度检测器TD2连接的恒定电压电路CV。

对于温度检测用二极管TD1,由于电阻值与温度相应地变化,因此由恒定电流电路CC供给恒定电流,所输出的电压值成为与所检测出的温度相对应的电压值。由于温度检测用二极管TD1配置于电力用半导体元件21之上,因此能够检测与电力用半导体元件21的温度极为接近的值。

此外,在温度检测用二极管TD1的阳极侧设置输出节点,来自该输出节点的输出被输入至可变基准电压电路6的微型计算机61。

另外,温度检测器TD2由恒定电压电路CV供给恒定电压,温度检测器TD2经由电阻R10而串联地连接于恒定电压电路CV和接地电位之间。

此外,电阻R10是为了使输出电压特性直线化而设置的,电阻R10和温度检测器TD2之间的连接节点成为输出节点,来自该输出节点的输出被输入至可变基准电压电路6的微型计算机61。

<装置动作>

下面,使用图9~图11,对电力用半导体元件21下部的热阻值的计算方法进行说明,其中,该计算方法用于进行是否需要焊料熔融处理的判断。此外,在以下的说明中,使用ΔVCE(sat)法对电力用半导体元件21下部的热阻值进行计算。

所谓ΔVCE(sat)法,是指如下方法,即,在向半导体元件通电时,根据将恒定的集电极电流供给规定时间前后的集电极-发射极间电压的差值而对半导体元件的下表面的热阻值进行计算。

首先,预先一边以使恒定的集电极电流(关于该值,选择通常动作时的集电极电流值即可)流过电力用半导体元件21的方式对栅极电压进行调整,一边利用温度检测用二极管TD1对元件温度的变化进行测定,将与温度变化相对的集电极-发射极间电压记录于可变基准电压电路6的微型计算机61。此外,微型计算机61具有存储器等存储装置。

在图9中示出以上述方式得到的温度特性的一个例子。在图9中,横轴表示温度Tj(K),纵轴表示集电极-发射极间电压VCE(V)。在图9中,随着温度上升,集电极-发射极间电压VCE下降。

然后,求出将恒定的集电极电流供给规定时间前后的集电极-发射极间电压的差值。在图10中示出如下情况下的时序图,即,将从时刻t0起至t6为止的期间分割为从时刻t0起至t1、从时刻t1起至t2、从时刻t2起至t3、从时刻t3起至t4、从时刻t4起至t5、从时刻t5起至t6的期间,在从时刻t3起至t4的期间,以流过恒定的集电极电流I(该值既可以是为了得到图9的特性而流过的集电极电流值,也可以是更高、或者更低的电流值)的方式对栅极电压进行调整,与此相对,在从时刻t1起至t2以及从时刻t5起至t6的期间,以流过I/m(m为整数)的电流的方式对栅极电压进行调整。

将按照上述时序图而流过I/m的集电极电流的情况下的、从时刻t1起至t2以及从时刻t5起至t6的期间的各个集电极-发射极间电压VCE1、VCE2记录于微型计算机61。

然后,根据图9所示的温度特性,求出与所得到的集电极-发射极间电压VCE1及VCE2分别相对应的电力用半导体元件21的温度Tj1及Tj2,对由于流过集电极电流I而发生的温度差Tj2-Tj1进行计算。在图11中示出以上述方式求出的集电极-发射极间电压VCE1及VCE2与温度Tj1及Tj2之间的关系。在图11中,横轴表示集电极-发射极间电压,纵轴表示电力用半导体元件21的温度。

另外,使用在基座板16的主面之上配置的温度检测器TD2,对封装壳体20的温度进行测定,获取时刻t2的壳体温度TC1及时刻t6的壳体温度TC2,并记录于微型计算机61。

然后,基于电力用半导体元件21的温度Tj1及Tj2、封装壳体20的温度TC1及TC2、集电极电流I及流过集电极电流I的情况下的集电极-发射极间电压VCE、流过集电极电流I的期间(t4-t3)的信息,根据以下算式(1),利用微型计算机61对电力用半导体元件21下部的热阻值进行计算。

在根据上述方法求得的热阻值比预定的阈值大的情况下,开始焊料熔融处理。

此外,关于上述热阻的测定时的集电极电流的控制,与焊料熔融处理同样地,由位于可变栅极电压电路90A内的可变基准电压电路6内的微型计算机61进行调整。

如以上说明所述,由于使用ΔVCE(sat)法对电力用半导体元件21下部的热阻值进行计算,因此能够高精度地进行是否需要焊料熔融处理的判断。

下面,参照图7及图8并使用图12所示的流程图,对具有可变栅极电压电路90A的半导体装置200的焊料裂纹自修复动作进行说明。

如果半导体装置200启动,则首先将检测动作切换电路8的MOSFET 81及82设为截止状态(步骤S21),使过电流检测电路OC及过电压检测电路VC各自的检测动作不会得以执行,并且使栅极电压调整比较器7的比较动作能够得以执行。

然后,开始电力用半导体元件21下部的热阻值的测定(步骤S22)。该热阻值是电力用半导体元件21的结(沟道)和树脂壳体42之间的热阻值(Rth(j-c)),是以上述方式使用ΔVCE(sat)法,基于温度检测二极管TD1及温度检测器TD2的输出而计算的。

然后,进行所得到的Rth(j-c)和预定的阈值之间的比较(步骤S23)。而且,在判断为Rth(j-c)比阈值大的情况下执行步骤S24及其以后的焊料熔融处理,在小于或等于阈值的情况下进入步骤S34。

在这里,所谓Rth(j-c)比上述阈值大的情况,表示的是在电力用半导体元件21的半导体元件下焊料层31(图7)发生焊料裂纹、热阻值不断增大的状态,如果放任不管,则电力用半导体元件21的寿命可能变短。因此,能够将上述阈值称为电力用半导体元件21的寿命判定值。

此外,上述步骤S21~S23的处理由搭载于控制基板CS(图7)之上的可变栅极电压电路90A执行。

在进入了焊料熔融处理的情况下,首先,利用可变栅极电压电路90A的集电极―发射极间电压检测电路3,对电力用半导体元件21的集电极-发射极间电压进行测量(步骤S24)。

然后,经由缓冲放大器5,将所得到的集电极-发射极间电压输入至可变基准电压电路6的微型计算机61(步骤S25)。

在微型计算机61中,对电力用半导体元件21的半导体元件下焊料层31的焊料熔融所需的集电极电流值进行计算,将用于生成基准电压的PWM信号输出至DC/DC转换器62,该基准电压使栅极电压调整比较器7能够输出得到该集电极电流值的栅极电压(步骤S26)。

在DC/DC转换器62中,基于从微型计算机61赋予的PWM信号生成基准电压,该基准电压使栅极电压调整比较器7能够输出得到焊料熔融所需的集电极电流值的栅极电压(步骤S27)。

然后,将可变基准电压电路6的输出即基准电压、和由电流检测电阻4所检测出的发射极电流(是作为与集电极电流大致相等的电压值而赋予的)输入至栅极电压调整比较器7(步骤S28)。

栅极电压调整比较器7对集电极电流值和基准电压进行比较,在集电极电流值未达到焊料熔融所需的目标值的情况下,通过提高输出、即栅极电压,从而提高集电极电流值,增加被赋予至电力用半导体元件21的电力。另一方面,在集电极电流值达到了焊料熔融所需的目标值的情况下,以维持栅极电压的方式进行调整(步骤S29)。

如果集电极电流值达到目标值,则视作焊料熔融已开始而开始时间测量(步骤S30)。

然后,在经过预定的一定时间后,使栅极电压下降至通常动作状态的电压、或者暂时停止,从而结束焊料熔融处理(步骤S31)。

然后,在估计焊料凝固后,利用通常动作时的栅极电压对电力用半导体元件21进行驱动,开始电力用半导体元件21下部的热阻值的测定(步骤S32)。

然后,进行所得到的Rth(j-c)和预定的阈值之间的比较(步骤S33),在判断为Rth(j-c)不比阈值大(小于或等于阈值)的情况下,在步骤S34中将检测动作切换电路8的MOSFET 81及82设为导通状态,使过电流检测电路OC及过电压检测电路VC各自的检测动作得以执行,并且使栅极电压调整比较器7的比较动作不会得以执行。然后,直至半导体装置200停止为止,维持通常动作(步骤S35)。

此外,在步骤S33中,在再次判断为Rth(j-c)比阈值大的情况下,将错误信号输出至外部(步骤S36)。此外,在半导体装置200由于错误信号而被从外部停止之前,既可以维持通常动作,也可以通过输出错误信号而强制性地将半导体装置200停止。

<变形例1>

在以上说明的实施方式2中,示出了在为了进行是否需要焊料熔融处理的判断而执行的电力用半导体元件21下部的热阻值的计算中使用ΔVCE(sat)法的例子,但也可以使用在下面说明的ΔVGE法。

所谓ΔVGE法,是指如下方法,即,在向半导体元件通电时,根据将恒定的集电极电流(关于该值,选择通常动作时的集电极电流值即可)供给规定时间前后栅极电压的差值而对半导体元件的下表面的热阻值进行计算。

首先,预先一边以使恒定的集电极电流流过电力用半导体元件21的方式对栅极电压进行调整,一边利用温度检测用二极管TD1对元件温度的变化进行测定,将栅极电压相对于温度变化的变化记录于可变基准电压电路6的微型计算机61。

在图13中示出以上述方式得到的温度特性的一个例子。在图13中,横轴表示温度Tj(K),纵轴表示栅极-发射极间电压VGE(V)。在图13中,随着温度上升,栅极-发射极间电压VGE下降。

然后,求出将恒定的集电极电流供给规定时间前后的栅极-发射极间电压的差值。在图14中示出如下情况下的时序图,即,将从时刻t0起至t6为止的期间分割为从时刻t0起至t1、从时刻t1起至t2、从时刻t2起至t3、从时刻t3起至t4、从时刻t4起至t5、从时刻t5起至t6的期间,在从时刻t3起至t4的期间,以流过恒定的集电极电流I(该值既可以是为了得到图13的特性而流过的集电极电流值,也可以是更高、或者更低的电流值)的方式对栅极电压进行调整,与此相对,在从时刻t1起至t2以及从时刻t5起至t6的期间,以流过I/m(m为整数)的电流的方式对栅极电压进行调整。

将按照上述时序图而流过I/m的集电极电流的情况下的、从时刻t1起至t2以及从时刻t5起至t6的期间的各个栅极-发射极间电压VGE1、VGE2记录于微型计算机61。

然后,根据图13所示的温度特性,求出与所得到的栅极-发射极间电压VGE1及VGE2分别相对应的电力用半导体元件21的温度Tj1及Tj2,对由于流过集电极电流I而发生的温度差Tj2-Tj1进行计算。在图15中示出以上述方式求出的栅极-发射极间电压VGE1及VGE2与温度Tj1及Tj2之间的关系。在图15中,横轴表示栅极-发射极间电压,纵轴表示电力用半导体元件21的温度。

另外,使用在基座板16的主面之上配置的温度检测器TD2,对封装壳体20的温度进行测定,获取时刻t2的壳体温度TC1及时刻t6的壳体温度TC2,并记录于微型计算机61。

然后,基于电力用半导体元件21的温度Tj1及Tj2、封装壳体20的温度TC1及TC2、集电极电流I及流过集电极电流I的情况下的集电极-发射极间电压VCE、流过集电极电流I的期间(t4-t3)的信息,根据先前说明的算式(1),利用微型计算机61对电力用半导体元件21下部的热阻值进行计算。

如以上说明所述,由于使用ΔVGE法对电力用半导体元件21下部的热阻值进行计算,因此能够高精度地进行是否需要焊料熔融处理的判断。

<变形例2>

在以上说明的实施方式2中,说明了为了进行是否需要焊料熔融处理的判断而对电力用半导体元件21下部的热阻值进行计算的结构,但也可以更简单地,基于由在电力用半导体元件21的上表面之上配置的温度检测二极管TD1检测的电力用半导体元件21的上表面温度而对是否需要焊料熔融处理进行判断。

由于温度检测二极管TD1配置于电力用半导体元件21的上表面之上,因此成为与电力用半导体元件21下部的温度极为接近的值,是否需要焊料熔融处理的判断具有充分的精度。

另外,在该情况下,由于不需要将温度检测器TD2配置于基座板16的主面之上,因此还具有能够将装置结构进一步简化这一优点。

另外,也可以通过设置多个而非1个温度检测二极管TD1,从而提高检测精度。

在图16中,示出在电力用半导体元件21的上表面的四角设置了温度检测二极管TD1的例子。

即,关于半导体元件下焊料层31的裂纹,在电力用半导体元件21的俯视观察时的形状是矩形的情况下,由于容易发生于其四角,因此通过对电力用半导体元件21的四角的温度进行检测,从而能够更准确地进行电力用半导体元件21的寿命的判断。

在该情况下,设为如下结构即可,即,在使规定的集电极电流流过电力用半导体元件21的状态下,将来自设置于四角的各个温度检测二极管TD1的温度信息发送至可变基准电压电路6的微型计算机61,在这些温度信息中的温度最高者比预先设定的阈值大的情况下,开始焊料熔融处理。

或者,也可以设为如下结构,即,对多个温度信息的平均值进行计算,在该值比预先设定的阈值大的情况下,开始焊料熔融处理。

另外,温度检测二极管TD1也可以不设置于四角,而设置于位于对角位置的2个角,也可以设置于位于并排位置的2个角。

<实施方式3>

在以上说明的本发明所涉及的半导体装置的实施方式1及2中,示出了由连接于电力用半导体元件21的电流检测发射极和接地线N之间的电流检测电阻4对发射极电流进行检测的例子,但是也可以构成为图17所示的可变栅极电压电路90B。此外,在图17中,对与使用图5所说明的可变栅极电压电路90相同的结构标注相同的标号,省略重复的说明。

如图17所示,成为如下结构,即,由连接于电力用半导体元件21的发射极和接地线N之间的分流电阻SR对发射极电流(与集电极电流大致相等)直接进行检测。

并且,也可以构成为,将该发射极电流的值作为集电极电流的值而赋予至栅极电压调整比较器7的反转输入(-),进行发射极电流和可变基准电压电路6的输出之间的比较,以使集电极电流成为目标值的方式对栅极电压进行调整。

关于发射极的输出,由于远大于电流检测发射极的输出,因此具有如下优点,即,不易受到噪声等的影响,能够得到准确的发射极电流。

<实施方式4>

在以上说明的实施方式1~3中,说明了通过对栅极电压进行调整而使半导体元件下焊料层31熔融,从而对半导体元件下焊料层31的裂纹进行自修复的方法,但在半导体元件下焊料层31熔融时,为了防止焊料悬垂,也可以采用图18所示的结构,其中,该焊料悬垂是指熔融后的焊料从绝缘基板29的导电板28溢出而到达至绝缘基材26。

即,也可以如图18所示的半导体装置300那样,在导电板28的主面内设置槽状的收容腔PC。在图19中示出从控制基板CS侧对绝缘基板29进行观察的情况下的俯视图,收容腔PC设置为包围电力用半导体元件21。

通过设置上述收容腔PC,从而在使半导体元件下焊料层31熔融的情况下,即使焊料流动,也会流入至收容腔PC,由此停止流动,防止从导电板28溢出,防止焊料悬垂。此外,收容腔PC能够通过对导电板28进行蚀刻而形成,其深度及宽度能够考虑半导体元件下焊料层31的容积而进行设定。

<实施方式5>

在以上说明的实施方式1~3中,说明了通过对栅极电压进行调整而使半导体元件下焊料层31熔融,从而对半导体元件下焊料层31的裂纹进行自修复的方法,但在半导体元件下焊料层31熔融时,为了防止焊料悬垂,也可以采用图20所示的结构,其中,该焊料悬垂是指熔融后的焊料从绝缘基板29的导电板28溢出而到达至绝缘基材26。

即,也可以如图20所示的半导体装置400那样,在导电板28的主面之上设置壁状的凸起PP。在图21中示出从控制基板CS侧对绝缘基板29进行观察的情况下的俯视图,凸起PP设置为包围电力用半导体元件21。

通过设置上述凸起PP,从而在使半导体元件下焊料层31熔融的情况下,即使焊料流动,也会被凸起PP拦阻而停止流动,防止从导电板28溢出,防止焊料悬垂。此外,凸起PP能够通过对导电板28的除凸起PP以外的区域进行蚀刻而形成,其高度能够考虑半导体元件下焊料层31的容积而进行设定。

<实施方式6>

在以上说明的实施方式1中,说明了在导线键合模块型的半导体装置中使半导体元件下焊料层31熔融的结构,但也能够应用于图22所示的DLB(Direct Lead Bonding)型的半导体装置。

图22是表示本发明所涉及的实施方式6的半导体装置500的结构的剖视图。在图22中,电力用半导体元件21及22分别经由半导体元件下焊料层31及41而接合于由铜(Cu)材料、铝(Al)材料或者以Cu为主要成分的合金材料构成的散热器351的主面之上。更具体地说,配置于散热器351的上主面的导体图案M2和配置于电力用半导体元件21的下主面的导体图案M1通过半导体元件下焊料层31而接合,配置于散热器351的上主面的导体图案M12和配置于电力用半导体元件22的下主面的导体图案M11通过半导体元件下焊料层41而接合。

散热器351的搭载了电力用半导体元件21的元件搭载侧的端部的一部分L字型地弯折而向上方延伸,该部分作为主电极端子35(P侧主电极端子)起作用。

另外,电力用半导体元件21及22的上表面分别经由半导体元件上焊料层311及411而与主电极端子板381的下主面接合。

主电极端子板381的搭载了电力用半导体元件22的元件搭载侧的端部L字型地弯折而向上方延伸,该部分作为主电极端子38(N侧主电极端子)起作用。

另外,在散热器351的主面,设置有与该主面垂直地延伸的集电极―发射极间电压输出端子37。

散热器351搭载于由硅橡胶等绝缘材料形成的绝缘板45之上,与散热器351独立地设置的控制端子板361搭载于该绝缘板45之上,电力用半导体元件21的栅极电极和控制端子板361通过内部金属配线WR而电连接。并且,在控制端子板361的主面,相对于该主面设置有控制端子36。此外,铜箔46粘贴于绝缘板45的下主面。

从上述绝缘板45起至主电极端子板381为止的结构被树脂封装而构成箱状的树脂模块47,主电极端子35及38从树脂模块47的相对的侧面凸出,分别沿该侧面而向上方延伸。

此外,树脂模块47的上方被由Al、Cu等的金属板所形成的噪声屏蔽板39覆盖,在其之上配置有控制基板CS。

控制端子36及集电极―发射极间电压输出端子37贯穿噪声屏蔽板39及控制基板CS,分别与搭载于控制基板CS之上的控制电路(未图示)的规定部分电连接。

<半导体元件的应用例>

在以上说明的实施方式1~6中,对电力用半导体元件21的半导体的种类没有特别地限定,电力用半导体元件21并不限定于使用硅(Si)衬底作为半导体衬底的硅半导体,也可以是使用碳化硅(SiC)衬底作为半导体衬底的碳化硅半导体,还可以是其他具有宽带隙的半导体,例如使用由氮化镓类材料、金刚石所构成的衬底。

由于由上述宽带隙半导体所构成的开关元件、二极管元件耐电压性高、容许电流密度也高,因此与硅半导体相比,能够实现小型化,通过使用这些小型化后的开关元件、二极管元件,从而能够实现组装了这些元件的半导体装置模块的小型化。另外,由于耐热性也高,因此能够使用高熔点焊料。

详细地说明了本发明,但上述的说明在所有方案中均为例示,本发明不限定于此。可以理解为在不超出本发明的范围的条件下能够想到未例示的无数的变形例。

此外,本发明在该发明的范围内,能够自由地对各实施方式进行组合,或者对各实施方式适当地进行变形、省略。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1