电动车辆配电系统的制作方法

文档序号:11334891阅读:235来源:国知局
电动车辆配电系统的制造方法与工艺

相关申请的交叉引用

本申请要求2015年2月18日提交的美国临时申请no.62/117,822的权益,通过引用将其整体并入本文中。

本公开涉及用于电动车辆的配电系统。



背景技术:

电池供电的车辆通常使用电池来供应用于为车辆提供动力的高输出电压和用于操作各种计算机、灯、电风扇和车辆车载的其他低功率系统的低输出电压二者。为了向车载系统提供低电压,电池常常包括电压转换器来将高输出电压转换成较低的电压。车辆电池的低电压功率输出常常是电池的标称功率输出的一小部分。因为电池以低电压模式操作的时间量可以是非常长的,所以期望使电压转换器高效地工作以降低存储在电池中的能量的损失。然而,电压转换器的效率随着输入电压和输出电压之间的差增大而降低。

为了改进低电压模式中的效率,用于电池供电的车辆的电力系统可包括辅助电池,其在没有转换器的情况下具有用于操作车载系统的适当电压输出。如果用于高电压推进电池的电压转换器的效率下降到低于阈值,则该辅助电池被用来向车载系统供应电力。可以用高推进电池的电压转换器来对该辅助电池充电。然而,辅助电池表示用于电动车辆的电力系统的单点故障。可向电力系统添加第二辅助电池和电压转换器以提供冗余,但该冗余为车辆添加重量。



技术实现要素:

一种电动车辆的配电系统向该电动车辆的推进系统提供高输出电压并且向该电动车辆的车载系统提供低输出电压。在一个实施例中,该配电系统包括:串联耦合的多个能量存储模块;以及多个电气隔离的功率转换器,它们中的每一个都耦合在能量存储模块中的一个或多个的两端。当被启用时,该功率转换器向配电系统的输出端(诸如电动车辆的车载系统)提供低电压输出。

一种控制系统控制配电系统的功率转换器来提供低输出电压。该控制系统选择性地启用功率转换器来使能量存储模块的功率输出平衡。在一个实施例中,该控制系统基于各能量存储模块中的每一个的充电状态来选择性地启用功率转换器。该控制系统可获得各模块中的每一个的充电状态的直接测量结果,或者可基于从各模块中的每一个收回(withdraw)的电荷或与已经启用模块相对应的功率转换器的时间量来估计充电状态。

说明书中描述的特征和优点不是无所不包的,并且特别地鉴于附图、说明书和权利要求,许多附加特征和优点对本领域普通技术人员将是显而易见的。此外,应该注意,为了易读和指导目的已经主要选择了在说明书中使用的语言,并且它们不被选择用来描写或限制本发明主题。

附图说明

图1是根据一个实施例的配电系统100的框图。

图2图示根据一个实施例的示例dc功率转换器。

图3是图示dc功率转换器的示例期望操作区的图。

图4是图示根据一个实施例的用于控制dc功率转换器的方法的流程图。

这些附图描绘了本发明的各个实施例以仅为了说明的目的。本领域技术人员将会从下面的讨论认识到,在不偏离本文中所述的发明原理的情况下可采用本文中所说明的方法和结构的替代实施例。

具体实施方式

总览

图和下面的描述仅通过说明方式涉及各种实施例。应该指出,根据下面的讨论,本文中公开的结构和方法的备选实施例将被容易地识别为可在不偏离要求保护的发明的原理的情况下采用的可行备选。

现在将详细地参考若干实施例,在附图中图示它们的示例。要指出,可在图中各处使用可行的相似或相同参考数字并且它们指示相似或相同的功能。仅为了说明目的,该图描绘了本发明的实施例。本领域技术人员将会从下面的描述容易地认识到可在不偏离本文中所述的发明原理的情况下采用本文中所说明的结构和方法的备选实施例。

图1是根据一个实施例的配电系统100的框图。该配电系统100适合于在电池供电的车辆(诸如电动车或航空器)中使用。在一个实施例中,该配电系统100包括多个能量存储模块110a-c(统称为能量存储模块110)、电池管理系统120a-c、和多个功率转换器130。该配电系统100的其他实施例可包括附加或不同的部件。

该能量存储模块110串联耦合并共同向电池供电车辆的推进系统供应高电压输出v高。每个能量存储模块110都包括一个或多个电池单元。例如,能量存储模块110的一个实施例具有12个电池单元,每一个都供应近似3v到4.2v的电压,结果产生近似36v到50v的用于能量存储模块110的电压范围。尽管图1图示了配电系统100的仅三个能量存储模块110,但是配电系统100可具有用于向推进系统供应v高的任何数目的能量存储模块110。例如,配电系统100的一个实施例包括十二个能量存储模块110。

在一个实施例中,由多个电池管理系统120来管理该能量存储模块110。该电池管理系统120监测模块110的状态。模块110的状态可包括所有模块的电池单元的电压、模块110的当前输出、模块110的温度、模块110的充电状态、以及影响模块110的整体健康的其他因素。

功率转换器130被耦合在能量存储模块110中的一个或多个的两端并且将能量存储模块110的dc电压输出转换成与电池供电的车辆的车载系统兼容的期望dc低输出电压。当被启用时,每个功率转换器130都被配置成通过将与相应功率转换器130相对应的一个或多个能量存储模块110的电压逐步降低到期望的低输出电压来产生与车载系统的电压规格兼容的输出电压。当被禁用时,功率转换器130不会向车载系统提供电流。在一个实施例中,该功率转换器130被配置成共同向车载系统供应峰值低功率输出(例如当最大数目的车载系统被接通并且每一个都供应其最大电流时),而在需要较小功率的操作模式期间启用功率转换器130的子集。在另一实施例中,每个功率转换器130都被配置成将能量存储模块110的电压逐步提高到低电压输出v低。在又一实施例中,每个功率转换器130被配置成根据充电状态和能量存储模块110上的负载来将能量存储模块110的电压逐步提高或降低到低电压输出v低。

功率转换器130可以被并入电池管理系统120中(如图1中所示),或者可以在电池管理系统120外部。在一个实施例中,功率转换器130或电池管理系统120监测功率转换器130和能量存储模块110的健康。例如,电池管理系统120监测能量存储模块110的内部电阻、能量存储容量、电压、自放电、和充电/放电周期的数目以分析模块110的健康状态并监测功率转换器130的欠电压和过电压状况。如果电池管理系统120发现任何转换器130或能量存储模块110出现故障,则故障转换器或对应于故障模块110的转换器被去激活。备选地,各功率转换器130中的每一个都包括保险丝,其被配置成在故障状况期间使功率转换器130从配电系统100的低电压输出端断开。此外,因为能量存储模块110两端的电压可以是不同的并且功率转换器130被耦合至公用输出端,所以功率转换器130被电流隔离(galvanicallyisolated)。

控制器140选择性地启用功率转换器130来提供低电压输出v低。在一个实施例中,控制器140选择一个或多个模块110来提供低电压输出v低,以便高效地操作配电系统100。此外,控制器140可选择用于提供输出功率的模块110以使得配电系统100的模块110的充电状态在期望范围内保持平衡。控制器140启用耦合在所选模块两端的功率转换器130,其将所选模块的电压输出转换成v低。控制器140可选择要以各种各样不同的方式启用的模块。在一个实施例中,控制器140基于与各功率转换器130中的每一个相对应的模块110的充电状态来选择性地启用功率转换器130。在另一实施例中,控制器140选择性地启用功率转换器130以使得输出电流量与其被启用的持续时间之积在所有模块110两端都是基本上相等的。以这种方式,从每个模块收回的能量的量将是基本上相等的,并且当模块放电时它们的充电状态将保持平衡。

图2图示示例功率转换器130。以半桥拓扑来配置图2中所示的示例转换器130,尽管可根据具有电流隔离输出端的其他转换器拓扑(例如反激(flyback)拓扑或降压(buck)拓扑)来备选地配置功率转换器130。在图2中图示的实施例中,功率转换器130包括开关202a和202b以及变压器204。该开关202交替地打开或关断以在变压器204的初级线圈中生成电流。变压器204的初级线圈两端的电压在变压器204的次级线圈中生成对应电流,从而在电容器c1两端产生被输出给低电压输出端的电压。在一个实施例中,由控制器140来控制开关202的切换以便从功率转换器130生成期望的输出电压。该转换器204使功率转换器130的输出端与能量存储模块110电流隔离,并且变压器204的次级侧上的一个或多个二极管隔离配电系统100的多个功率转换器130。

控制器140接收来自安培计216的转换器130的输出电流、输出电压和与转换器130相对应的模块110两端的电压。控制器140基于输出电流和模块110的电压来控制开关202的切换以调节输出电压v低。在一个实施例中,如图2中所示,控制器140包括模块平衡器210以及一个或多个电流控制块212。

模块平衡器210从电池管理系统120的电压表214接收被输入至功率转换器130的电压的测量。例如,如果如图2中所示功率转换器130被耦合至配电系统100的一个模块110两端,则模块平衡器210从耦合在模块110两端的电压表214接收模块的电压。尽管图2图示从单个电压表214接收电压的模块平衡器210,但是模块平衡器210可接收由耦合在各模块110中的每一个或者模块110的集合的两端的电压表测得的电压。模块平衡器210还接收作为反馈的低输出电压v低。模块平衡器210基于该反馈来调节低输出电压或输出功率。在一个实施例中,模块平衡器210确定实现期望的低输出电压v低要启用的能量存储模块110的数目,并且生成输入至一个或多个电流控制块212的控制信号以启用所选数目的模块110。

因为归因于内部电阻中的可变性以及能量存储容量的不同量而能量存储模块110在给定时间可具有不同的充电状态,所以模块平衡器210在配电系统100的操作过程期间选择性地启用功率转换器130来使各模块110平衡。模块平衡器210通过基于各模块110的充电状态选择性地激活功率转换器130来使各模块110平衡。在一个实施例中,模块平衡器210从电池管理系统120接收各模块110的充电状态,并且启用与具有更高充电状态的模块110相对应的一个或多个功率转换器130。然而,因为电池管理系统120可能没有被配置成直接测量模块110的充电状态,所以模块平衡器210的一个实施例基于从功率转换器130输出的电流来估计充电状态。例如,模块平衡器210基于功率转换器130随着时间的电流输出来确定从对应于每个功率转换器130的模块110收回的电荷量。在另一种情况下,模块平衡器210启用功率转换器130达相等的时间段。例如,模块平衡器210监视各功率转换器130中的每一个被启用的时间量并且对功率转换器130进行轮流以便使功率转换器130启用达近似相同的时间长度。关于图4来描述用于使各模块110平衡的过程的一个实施例。

电流控制电路212接收由模块平衡器210生成的控制信号来选择性地激活各功率转换器130中的一个或多个。基于该控制信号,电流控制电路212生成控制信号来打开和关断功率转换器130的开关202。例如,如果模块平衡器210生成启用特定功率转换器130的控制信号,则该电流控制电路212响应于接收到控制信号来生成打开和关断开关202的信号。在一个实施例中,控制器140包括用于配电系统100的每个功率转换器130的电流控制电路212。电流控制电路212从安培计216接收指示由功率转换器130输出的电流的信号。电流控制电路212驱动开关202以调节从功率转换器130输出的电流。

在一个实施例中,电流控制电路212调节来自各功率转换器130的每一个的输出电流以便在期望的操作区内操作每个功率转换器130。图3是图示示例期望操作区302的图。如图3中所示,功率转换器130的效率是输出电流的函数。电流控制电路212调节电流输出以便在下限电流阈值304和上限电流阈值306之间操作。在一个实施例中,下限电流阈值304是转换器130的效率降至阈值效率308以下的电流输出。上限电流阈值306可以是用于功率转换器130的电流输出或转换器130的效率降至阈值效率以下的电流输出的上限额定值。备选地可以以许多其他方式来限定该上限和下限电流阈值。

如上文所述的,控制器140选择性地启用功率转换器130来从各能量存储模块110中的一个或多个输出低电压v低。在图4中示出被控制器140用来控制功率转换器130的方法的一个实施例。在图4中图示的实施例中,控制器140基于作为各模块110中的每一个的充电状态的估计的从各模块110收回的电荷量来选择性地启用功率转换器130。在其他实施例中,控制器140使用模块110的其他特性来选择性地启用转换器130。例如,控制器140的一个实施例从与模块110相对应的电池管理系统120接收每个模块110的充电状态并且确定启用哪些功率转换器130以及禁用哪些功率转换器130来提供期望的低输出电压v低。

参考图4,控制器140基于电池充电和平衡过程来确定410初始充电状态。控制器140然后确定402从各模块110中的每一个收回的能量的量。在一个实施例中,当控制器140驱动模块110来供应低输出电压时控制器140监测来自每个模块110的电流输出,并且通过从在上次模块110被充电的期间估计的充电状态减去从模块110收回的能量的量来确定模块的充电状态。

基于从各模块110中的每一个收回的电流量,控制器140启用404与具有较低电荷收回量的模块110相对应的一个或多个功率转换器130。例如,控制器140根据从各模块中的每一个收回的电荷量来对与模块110相对应的阵列分类,并且在具有最低电荷输出的阵列中选择各模块110中的一个或多个。备选地,如果控制器140具有模块110的充电状态估计,则控制器140启用与具有最高估计的充电状态的模块110相对应的一个或多个功率转换器130。

控制器140测量406被启用的转换器的电流输出并且将输出电流与上限和下限阈值相比较。如果电流输出大于408上限阈值,则控制器140增加410被启用转换器的数目以减少由每个被启用模块110贡献的电流。相反,如果电流输出小于上限阈值并且小于下限阈值412,则控制器140减少414被启用转换器的数目以增大由每个被启用模块110贡献的电流。如果电流输出在上限阈值和下限阈值之间,则控制器140继续监测电流输出并且在输出电流不在该阈值之间的情况下增大或减少被启用功率转换器130的数目。由此,控制器140将来自被启用功率转换器130的输出电流保持在上限阈值和下限阈值之间,所述上限阈值和下限阈值诸如限定图3中所示的期望操作范围302的上限阈值306和下限阈值304。

尽管已经在本文中说明并描述了特定实施例和应用,但是要理解实施例不限于本文中公开的精确构造和部件并且可在不偏离如在所附权利要求中限定的实施例的精神和范围的情况下在实施例的方法和装置的布置、操作和细节中作出各种修改、改变、和变化。

一经阅读本公开,本领域技术人员将认识到仍有针对系统的附加备选设计。因此,尽管已经说明和描述了本发明的特定实施例和应用,但是要理解,本发明不限于本文中公开的精确构造和部件并且可在不偏离如在接近本文中的主题的任何权利要求中限定的本发明的精神和范围的情况下在本文中公开的本发明的方法和装置的布置、操作和细节中作出对本领域技术人员来说将显而易见的各种修改、改变、和变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1