系统和用于运行系统的方法与流程

文档序号:17900047发布日期:2019-06-13 16:19阅读:119来源:国知局
系统和用于运行系统的方法与流程

本发明涉及一种系统和用于运行系统的方法。



背景技术:

一般已知的是,交流电机的转速能借助于为其馈电的逆变器改变。

由文献us2007/0137945a1已知一种电梯控制器。

由文献jph06-225458a1已知一种功率控制方法。

由文献wo01/74699a1已知一种用于降低电梯设备的电网连接功率的方法。

由文献de102013006964a1已知一种用于运行设备的装置。



技术实现要素:

因此本发明旨在解决如下技术问题:改进驱动系统以使之能以简单的方式成本有利地制造。

按照本发明,所述技术问题利用根据权利要求1或4的系统或根据权利要求11的方法得以解决。

就系统而言,本发明的重要特征在于,系统包括能由交流电压供电网供电的整流器、给电机馈电的逆变器以及与蓄能器连接的直流/直流转换器,

逆变器的直流电压侧连接端与整流器的直流电压侧连接端连接,

特别是其中,电机由逆变器的交流电压侧连接端供电,

直流/直流转换器的第一直流电压侧连接端与整流器的直流电压侧连接端连接,

特别是其中,逆变器的直流电压侧连接端和直流/直流转换器的第一直流电压侧连接端并联,

直流/直流转换器具有壳体,在该壳体中设有电流检测装置,该电流检测装置

-检测在整流器的交流电压侧连接端处流入整流器的电流、特别是电网相电流、

-或检测在整流器的直流电压侧连接端处从整流器流出的电流,

所检测的值被输入设置在直流/直流转换器的壳体中的信号电子装置,该信号电子装置产生用于直流/直流转换器的半导体开关的驱动信号。

其优点是,附加的电流检测装置在转换器的壳体中得到形成壳体的包围和保护。由此可以非常简单地实现,将传感器信号输入转换器的信号电子装置。由此驱动系统是可简单制造的。在此干扰可通过简单的方式避免,因为壳体可由金属构成且由此干扰辐射能被屏蔽的。

在一个有利的设计方案中,逆变器特别是连同整流器设置在第二、特别是另外的壳体中,特别是其中第二壳体与第一壳体间隔开,

其中交流电压供电网的电网相线通向设置在第一壳体上或设置在第一壳体中的电连接装置、特别是插接连接件,

其中电流检测装置与电连接装置电连接。其优点是,在整流器上输入电流的检测位置接近于直流/直流转换器的信号电子装置地实现,因此检测装置可以简单地与直流/直流转换器的信号电子装置连接。附加地,转换器可简单地制造,其方法是例如可以在壳体壁中制造可接纳插接连接件的缺口。因此,可以借助于插接而以简单的方式建立接入和导出。但逆变器的直流电压侧必须通入直流/直流转换器的壳体并且从中导出。这是因为,在电网侧在设置于转换器壳体中的整流器处进行电流检测。

在一个替代的有利设计方案中,逆变器特别是连同整流器设置在第二、特别是另外的壳体中,特别是其中,第二壳体与第一壳体间隔开,

其中电流检测装置设置在第一壳体中、亦即设置在直流/直流转换器的壳体中且与另一电连接装置、特别是插接连接件连接,其中所述另一电连接装置与逆变器的直流电压侧连接端电连接。

其优点是,在整流器上输入电流的检测位置接近于直流/直流转换器的信号电子装置,因此,检测装置可以简单地与直流/直流转换器的信号电子装置连接。附加地,转换器可简单地制造,其方法是例如可以在壳体壁中制造可接纳插接连接件的缺口。因此,可以借助于插接而以简单的方式建立接入和导出。因为整流器设置在转换器的壳体中,所以电网供电也必须引导到那里。在整流器上的直流电压侧便设置有输入电流检测装置。逆变器的直流电压侧则必须通至转换器的壳体。

在根据权利要求3的系统中的重要特征在于,

该系统包括能由交流电压供电网供电的整流器、给电机馈电的逆变器以及与蓄能器连接的直流/直流转换器,

逆变器的直流电压侧连接端与整流器的直流电压侧连接端连接,

特别是其中,电机由逆变器的交流电压侧连接端供电,

直流/直流转换器的第一直流电压侧连接端与整流器的直流电压侧连接端连接,

特别是其中,逆变器的直流电压侧连接端和直流/直流转换器的第一直流电压侧连接端并联,

直流/直流转换器的信号电子装置包括调节单元,该调节单元通过如下方式将来自交流电压供电网的、特别是经由整流器接收的功率向预期值调节:

直流/直流转换器的信号电子装置包括调节单元,该调节单元通过如下方式将来自交流电压供电网的、特别是经由整流器接收的功率向预期值调节:

由调节器、特别是pi调节器,基于由整流器从交流电压供电网接收的功率(p_netz)与预期值(p_netz_soll)之间的差的曲线,来确定用于充电电流的预期值(i_cp_soll)作为调节变量信号,

通过如下方式将蓄能器的被检测的充电电流被再调节到用于充电电流的预期值(i_cp_soll):以相应的脉冲模式产生用于直流/直流转换器4的半导体开关的驱动信号

特别是其中,在调节器上设有预控制路径,特别是干扰变量接通路径从而由电机经由逆变器输出或接收的功率作为预控制信号、特别是干扰变量而起作用。其优点是,可设定简单的调节以便减少从电网获取的功率。

符号为负的充电电流是放电电流。

在一个有利的设计方案中,通过从检测的电网相电流确定的、从交流电压供电网接收的电流与所检测的或确定的电压的乘积,确定由整流器从交流电压供电网接收的功率(p_netz)。其优点是,可降低从电网接收的功率。

在一个有利的设计方案中,通过所检测的、在整流器的直流电压侧连接端流出的电流与在整流器的直流电压侧连接端上的电压的乘积,确定由整流器从交流电压供电网接收的功率(p_netz)。其优点是,可降低从电网接收的功率。

在一个有利的设计方案中,直流/直流转换器的信号电子装置包括调节单元,

该调节单元通过如下方式将来自交流电压供电网、特别是经由整流器接收的电流(i_zk_n)向预期值(i_zk_n_soll)调节:

基于在从交流电压供电网、特别是经由整流器接收的电流(i_zk_n)与预期值(i_zk_n_soll)之间的差的曲线,由调节器、特别是pi调节器确定用于充电电流的预期值(i_cp_soll)作为调节变量信号,

通过如下方式将所检测的、蓄能器的充电电流向用于充电电流的预期值(i_cp_soll)调节:以相应的脉冲模式产生用于直流/直流转换器4的半导体开关的驱动信号,

特别是其中,在调节器上设有预控制路径,特别是干扰变量接通路径,从而由电机经由逆变器输出或接收的功率作为预控制信号、特别是干扰变量而起作用。其优点是,可有效使用简单的调节结构。

在一个有利的设计方案中,将相应于损耗功率的信号添加给调节变量。其优点是,在调节结构中尽可能好地考虑真实的条件。

在一个有利的设计方案中,根据蓄能器的荷电状态限制充电电流。其优点是,保护蓄能器免于过充。

在一个有利的设计方案中,流/直流转换器构造成双重构成的、级联的增压-降压转换器,

直流/直流转换器具有两个并联连接的部分。其优点是,特别是通过各部分的错开的脉冲,可实现较小的波动性。

在一个有利的设计方案中,第一部分在输入侧和输出侧各具有半桥,这些半桥的节点通过第一电感l1连接,

第二部分在输入侧和输出侧各具有半桥,这些半桥的节点通过第二电感l2连接,

设有用于检测电感的总电流的装置,特别是用于检测流经两个电感(l1、l2)的电流的和的装置,

特别是其中,每个半桥由两个半导体开关的串联电路形成,

将所检测的总电流i作为充电电流i_cp供给调节单元,从而通过如下方式向作为预期值的调节变量值i_cp_soll、特别是或者与之成比例的值进行再调节:调节器确定半桥的半导体开关的驱动信号的脉冲模式。其优点是,检测的总电流等于充电电流。

在一个替代的有利设计方案中,第一部分在输入侧和输出侧各具有半桥,这些半桥的节点通过第一电感l1连接,

第二部分在输入侧和输出侧各具有半桥,这些半桥的节点通过第二电感l2连接,

设有用于检测电感的总电流的装置,特别是用于检测流经两个电感(l1、l2)的电流的和的装置,

特别是其中,每个半桥由两个半导体开关的串联电路形成,

以如下方式利用未示出的调节器来调节所检测的总电流,调节器确定半桥的半导体开关的驱动信号的脉冲模式。其优点是,所检测的总电流等于充电电流i_cp或与之成比例。如果所产生的用于半桥的脉冲模式使得半桥31、32或者半桥33、34执行pwm,那么总电流等于i_cp,如果电容器c2上的电压小于在电容器c1上的电压,那么半桥31、32实施pwm且其近似于以电容器c2上的电压与电容器c1上的电压间的比例与i_cp成正比,如果电容器c2上的电压大于在电容器c1上的电压,那么半桥33和34实施pwm。

附图说明

另外的优点由从属权利要求得出。本发明不限于权利要求的特征组合。对于本领域的技术人员来说,权利要求和/或各个权利要求特征的另外的有意义的组合可能和/或说明书和/或附图的特征特别是基于技术问题提出和/或通过与现有技术比较提出的技术问题产生。本发明现在根据附图进一步阐明:

图1示意地示出按照本发明的系统,该系统具有经由直流/直流转换器4连接到中间电路的蓄能器5;

图2示出用于运行系统的调节器,其将由交流电压供电网接收的电流向预期值调节;

图3示出直流/直流转换器4的有利实施方案;

图4示出用于对由交流电压供电网接收的功率进行调节的一种替代调节方法。

具体实施方式

如图1所示,整流器2在其交流电压侧连接端处由三相交流电压供电网1供电。为此存在三根电网相线,其中在三根相线中的至少两根中设有电流检测装置(i_r,i_t)。

在相线之间存在的相应电压称为u_rs、u_st或u_tr。

在整流器2的直流侧连接端上存在电压u_zk、亦即中间电路电压。电流i_zk_n从整流器2的直流侧连接端流出。

代替电网侧的电流检测也可应用对电流i_zk_n的检测。

直流/直流转换器4的直流侧连接端与给电机6馈电的逆变器3的直流侧连接端并联、且能由整流器2的直流侧连接端供电,特别是其中整流器2的直流侧连接端同样并联连接。

电机6优选构成为交流电机且连接到逆变器3的交流电压侧连接端上。

直流/直流转换器的壳体包括用于从整流器2的直流侧连接端流出的电流i_zk_n的电流检测装置。

替代地,用于流入电网相(i_r,i_t)的电流的电流检测装置设置在直流/直流转换器4的壳体内。

优选地,整流器和逆变器由另一壳体包围。该另一壳体优选与直流/直流转换器的壳体间隔开。

在直流/直流转换器4的另一直流电压侧连接端上连接有蓄能器5,蓄能器5特别是具有至少一个蓄电池单元、电池单元、电容器和/或超级电容单元。

在直流/直流转换器4的该另一直流电压侧连接端上流出的、蓄能器5的充电电流i_cp在另一实施例中利用电流检测装置检测,且所检测的值被输入信号电子装置,信号电子装置具有调节器,该调节器将该值调节到预期值i_cp_soll,其方法是将直流/直流转换器用作调节元件。

如在图1和图3中清晰可见,直流/直流转换器构成为双重构成的且由此具有两个并联的部分的级联的增压/降压转换器,以如下方式将在直流/直流转换器4中居中检测到的总电流i调节到预期值、特别是预期值i_cp_soll或与之成比例的预期值:相应地产生直流/直流转换器4的开关的驱动信号,特别是亦即相应地提供脉冲模式,特别是脉宽调制比例。

在此,双重构成的变换器4的每个部分具有输入侧的半桥(31或32)和输出侧的半桥(33或34),其节点借助于相应的电感(l1、l2)连接。总电流i——亦即流经第一部分的电感l1的电流与流经第二部分的电感l2的电流之和——借助于电流测量装置检测。优选地,该电流测量装置通过环形铁芯实现,环绕该环形铁芯缠绕有相应电感l1或l2的相应的馈入线,以及环绕该环形铁芯构成用于检测感生电压的附加的绕组。

半桥(31、32、33、34)中的每个具有两个可控的半导体开关,其串联连接,亦即在节点连接。

转换器4的双重级联的实施方案使电流波动性小。该电流波动性特别是可通过转换器4的两个部分的错开的脉冲降低,特别是利用彼此错开180°的驱动信号。

为了将总电流i调节到预期值i_cp_soll或与之成比例的预期值而设有在附图中未示出的调节器,其由直流/直流转换器4的信号电子装置包括。在此如上所述地提出转换器4的半导体开关的驱动信号的脉冲模式。

预期值i_cp_soll作为调节变量,由在图2中示出的同样由信号电子装置包括的调节装置以如下方式确定:将借助于在转换器4中设置的用于电流i_zk_n的检测装置检测到的电流值i_zk_n用作实际值,且确定与可预定的特别是作为参数可预定的预期值i_zk_n_soll的差。该差随后被输入线性调节器,亦即比例部分k_p和积分部分k_i,其输出信号、即调节变量被用作预期值l_cp_soll。

在图4示出的调节方法——该调节方法替代于在图2中示出的调节方法用于另一实施例中——中,通过确定由交流电压供电网接收的功率来确定预期值l_cp_soll。

为此,使所检测的电流——其在整流器2的直流电压侧连接端上流出——与在整流器2的直流电压侧连接端上存在的并被检测的电压相乘。将如此获得的功率值p_netz与可预定的预期值p_netz_soll之间的差输入线性调节器,特别是其也具有比例部分k_p和积分部分k_i。

为调节器的输出信号添加通过预控制路径、特别是亦即干扰变量接通路径的功率信号p_app,该功率信号通过在整流器2的直流电压侧连接端上存在的电压与在逆变器3的直流电压侧连接端上供给的电流i_zk_app的乘积确定。在此功率信号p_app通过在整流器2的直流侧连接端上存在的、被检测到的电压u_zk_与从逆变器3的直流侧连接端流出的电流的乘积确定。

增大了功率信号p_app的、调节器的输出信号被称为p_reg,其中将损耗功率信号p_v求和,该损耗功率信号p_v代表蓄能器系统的损耗功率。

如此获得的功率信号p_stell除以在蓄能器5上存在的、被检测到的电压值u_speicher,从而确定预期值i_cp_soll。

如上述实施例所述地,在附图中未示出的调节器将在直流/直流转换器4中检测的总电流i被以如下方式调节到如此确定的预期值i_cp_soll或与之成比例的预期值:相应地调节直流/直流转换器4的半导体开关的驱动信号的脉冲模式。

通过这种方式,相比于前述实施例,不是由交流电压供电网接收的电流、而是由来自交流电压供电网的功率是受限的、且被保持得尽可能小。

损耗功率信号p_v在此考虑系统的空载功率和直流/直流转换器4的损耗。

蓄能器5的过充以如下方式得到避免:最大允许的充电电流i_cp_soll在超过临界电压值时根据超过的数值、特别是根据在存在于蓄能器5上的电压与临界电压值之间的差而被限制,特别是随着该差数值的增大而被限制到更小的值,直至达到零,特别是在达到充电最终电压时。

替代地或附加地,用于从交流电压供电网接收的电流的预期值i_zk_n_soll的减小是可实现的。

在另外的按照本发明的实施例中,附加地设有上级的荷电状态调节器,其具有与由电机驱动的应用的周期时间相比优选显著更大的时间常数。在此上级的荷电状态调节器将荷电状态调节到中等荷电状态,亦即如此,使得在应用的发电机式运行期间不超过蓄能器的最大荷电状态,且在应用的电机式运行期间不超过由交流电压供电网获得的功率的预期值p_netz_soll。

在另外的按照本发明的实施例中,设有用于识别电网故障的装置,其输出信号在超过或低于阈值的情况下或者引起逆变器3的关断或者触发由蓄能器5对逆变器3的供电,从而达到usv功能,特别是亦即不间断供电的功能。

附图标记列表应当被包含在具体实施方式部分中。

附图标记列表:

1交流电压供电网

2整流器

3用于电机6的逆变器

4用于蓄能器5的直流/直流转换器

5蓄能器,特别是具有蓄电池单元、电池单元、电容器和/或超级电容单元

6电机

31第一半桥

32第二半桥

33第三半桥

34第四半桥

i_r在第一电网相中的电流检测

i_s在第二电网相中的电流检测

i_t在第三电网相中的电流检测

u_rs第一电网电压

u_st第二电网电压

u_tr第三电网电压

u_zk_ist在整流器2的直流侧连接端上的电压的预期值

i_zk_n在整流器2的直流侧连接端上流出的电流

i_zk_app在逆变器3的直流侧连接端上流出的电流

i_zk_s在直流/直流转换器4的直流侧连接端上流出的电流

u_zk在整流器2的直流侧连接端上存在的电压

i_zk_n_soll在整流器的直流侧连接端上流出的电流i_zk_n的预期值

k_p比例部分

k_i积分部分

i_s_soll第二电网相的电流部分的预期值

i_cp_soll从蓄能器5流出的电流的预期值

c1第一电容器

c2第二电容器

l1第一电感

l2第二电感

p_netz_soll由交流电压供电网接收的功率的预期值

p_netz由交流电压供电网接收的功率

p_app由特别是第二电机接收的功率

p_v损耗功率

u_speicher在蓄能器上存在的电压

p_reg理想要调节的功率

p_stell功率调节值

i检测的调整电流

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1