一种基于二极管钳位型三电平的模块化固态变压器的制作方法

文档序号:17124618发布日期:2019-03-16 00:13阅读:663来源:国知局
一种基于二极管钳位型三电平的模块化固态变压器的制作方法

本发明涉及电力系统中智能配电网技术、电力电子技术等领域,具体地,涉及一种采用二极管钳位型三电平子模块的新型模块化固态变压器拓扑,可应用于实现多电压等级多交直流形态的配电网互联。



背景技术:

可再生能源往往以分布式电源的形式接入配电网,转化为电能供给终端用户。然而,传统配电网的运行模式基本是以供方主导、单向辐射状供电为主,其配电一次控制设备(有载调压器、联络开关等)调控能力欠缺,难以满足可再生能源和负荷频繁波动时配电网的高精度实时运行优化需求,且在配网的规划设计阶段和运行管理中,均未考虑分布式电源的接入。随着分布式电源接入量的不断增加,更有电动汽车的快速普及,储能和可控负荷的持续增多,现有配电网架构已很难满足新能源消纳、灵活调控及用户对环境保护、供电可靠性、电能质量和优质服务的要求。

因此,随着电力电子技术的发展,未来配电系统将通过电力电子变压器形成网状的多电压等级交直流混合配电架构。电力电子变压器位于多类型配电网络的中心节点处,将取代传统的配电变压器,需要满足多端口、高变比、多电压形态、故障隔离、高效电能传输等基本需求,并实现多向功率可控、提供多种即插即用接口等高级功能。

经检索,“面向中高压智能配电网的电力电子变压器研究”,电网技术,2013。提出了一种基于模块化多电平换流器(mmc)和双有源桥(dab)的电力电子变压器拓扑结构,实现多种交直流配电网的互联。但该拓扑的中压网络和低压网络间需通过中压直流母线实现功率传递,导致mmc开关器件的电流应力较大。此外,中压直流母线上需额外串联电容以实现mmc和dab,增加了装置成本。该拓扑存在较大的优化空间。



技术实现要素:

针对现有技术中的缺陷,本发明的目的是提出一种基于二极管钳位型三电平的模块化固态变压器,该模块化固态变压器采用mmc的子模块单元和dab单元互联以实现中低压配电网间的功率传递,并提供中压直流,中压交流,低压直流,低压交流四类端口,以适用于多电压等级多形态交直流混合配电网互联。

为实现上述目的,本发明采用以下技术方案:

一种基于二极管钳位型三电平的模块化固态变压器,包括模块化多电平换流器(mmc),多个隔离型双有源桥变换器(dab),以及三相全桥逆变器,其中,

所述模块化多电平换流器(mmc)的子模块采用半桥级联三电平结构,所述隔离型双有源桥变换器(dab)的输入端采用二极管钳位型三电平结构,以在输入端匹配所述模块化多电平换流器(mmc)的子模块电压,实现所述模块化多电平换流器(mmc)的子模块和所述隔离型双有源桥变换器(dab)的互联;

所述隔离型双有源桥变换器(dab)的输出端采用全桥结构,多个所述隔离型双有源桥变换器(dab)输出端并联形成低压直流母线;

所述三相全桥逆变器接在所述低压直流母线上,并形成低压交流端口。

较佳的,所述模块化多电平换流器(mmc)的子模块采用两个半桥级联的方式,实现三电平结构,以减少模块数量以及后级隔离型双有源桥变换器(dab)数量;

较佳的,所述模块化多电平换流器(mmc)的交流端口与中压交流配电网相连,中压直流端口与中压直流配电网相连;

较佳的,所述隔离型双有源桥变换器(dab)的输入级采用二极管钳位型三电平结构,以匹配所述模块化多电平换流器(mmc)的多电平子模块电压等级,中间级为中频隔离变压器,以实现故障隔离和变压功能,输出级采用全桥结构,且输出端口为多个所述隔离型双有源桥变换器(dab)并联形成的低压直流端口,可与低压直流配电网相连。

较佳的,所述低压直流母线可通过所述三相全桥逆变器,使所述模块化固态变压器提供低压交流端口,该端口可与低压交流配电网相连。

与现有拓扑相比,本发明具有以下有益效果:

1、现有的基于mmc的电力电子变压器拓扑通过中压直流母线进行中低压网络间的功率传递,而本发明通过子模块直流侧进行中低压网络间的功率传递,mmc的桥臂电流直流分量显著下降,降低了mmc开关器件的电流应力。

2、现有拓扑为实现mmc和dab单元的互联,需在中压直流侧额外增加多个串联电容,而本发明则直接采用mmc子模块电容实现mmc和dab单元互联,减少了装置成本。

3、本发明的mmc子模块采用级联半桥三电平结构,而dab单元的输入级采用二极管钳位三电平结构,相比于现有的mmc半桥子模块和dab全桥单元,提高了模块的电压等级,从而减少了子模块数量与中频隔离变压器数量。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1a为本发明一实施例的基本配置示意图;

图1b为本发明一实施例的模块化多电平换流器子模块和隔离型双有源桥变换器连接示意图;

图1c为本发明一实施例的三相全桥逆变器示意图;

图2为本发明一实施例中中压交流电源有功功率输出曲线;

图3为本发明一实施例中mmc子模块电容电压曲线;

图4为本发明一实施例中mmc桥臂电流曲线;

图5为本发明一实施例中中压直流侧电压曲线;

图6为本发明一实施例中中压直流侧电流曲线;

图7为本发明一实施例中低压直流侧电流平均值曲线;

图8为本发明一实施例中三相逆变器交流输出相电压曲线。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

如图1a所示,本发明基于二极管钳位型三电平的模块化固态变压器一实施例,拓扑由模块化多电平换流器(mmc),多个隔离型双有源桥变换器(dab),以及三相全桥逆变器构成,其中,mmc的子模块单元采用半桥级联三电平结构,基于半桥级联型三电平的模块拓扑如图1b中的细节图所示,半桥级联型三电平结构通过mmc的半桥子模块级联组合而成,其交流端口可输出三电平交流电压,而直流端口则可以输出两倍电容电压,以减少模块数量,而dab的输入端变换器采用二极管钳位型三电平结构,以在输入端匹配mmc子模块单元电压,实现mmc子模块和dab的互联,而dab的输出端采用全桥结构,多个dab输出端并联形成低压直流母线。

本发明上述实施例的拓扑,首先通过mmc实现中压交流配电网和中压直流配电网的互联,其次通过mmc的子模块的电容侧和dab单元连接,实现中压网络和低压直流配电网的互联,最后通过三相全桥逆变器,实现低压直流配电网和低压交流配电网的互联。通过本发明拓扑的应用,可实现多电压等级及多种交直流形态的配电网互联,为未来智能配电网的构建打下装备基础。

在本发明上述实施例中,mmc的子模块采用两个半桥级联的方式,实现三电平结构,以减少模块数量以及后级dab数量。

在本发明上述实施例中,mmc的交流端口与中压交流配电网相连,中压直流端口与中压直流配电网相连;

在本发明上述实施例中,dab单元的输入级采用二极管钳位型三电平结构,以匹配mmc的多电平子模块电压等级,中间级为中频隔离变压器,以实现故障隔离和变压功能,输出级采用全桥结构,且输出端口为多个dab单元并联形成的低压直流端口,可与低压直流配电网相连。

在本发明上述实施例中,低压直流母线可通过三相全桥逆变器,使装置提供低压交流端口,该端口可与低压交流配电网相连。

如图1c中的细节图所示,为本发明一实施例中的三相全桥逆变器拓扑。

结合上述实施例所述模块化固态变压器,采用matlab/simulink软件针对该拓扑进行开环仿真验证,在中压直流端口接入中压直流电源,其余端口接负载,仿真参数如下表所示。

在仿真实例中,所述模块化固态变压器由中压侧mmc,中间级多个dab以及低压侧三相全桥逆变器等三个变换器构成。不同变换器需采用不同的调制方式实现其稳态运行。对于中压侧mmc,采用的是载波移相调制方式;对于中间级dab,采用的是方波移相调制方式;对于低压侧三相全桥逆变器,采用的是正弦脉宽调制方式。

在该仿真参数下,理论结果为:

中压交流侧输出功率:400kva有功功率输出。

mmc子模块电容电压平均值:1.67kv平均电容电压。

mmc桥臂电流有效值:不含直流分量的有效值为12a的交流电流

中压侧直流电压:20kv直流电压;

中压侧直流电流:0a直流电流;

低压侧直流电流平均:500a平均直流电流;

低压侧三相全桥逆变器输出相电压:三相220v相电压。附图的仿真结果与理论计算结果一致,因此通过以上调制方式,可实现多个交直流配电端口间的稳态功率传输与变压功能。

如图2所示,为一实施例中中压交流电源有功功率输出曲线,其中:稳态时该输出有功功率曲线稳定在400kw左右。

如图3所示,为一实施例中mmc子模块电容电压曲线,其中:稳态时mmc子模块电容电压在平均值1.67kv处波动。

图4为本发明一实施例中mmc六个桥臂的桥臂电流,其中:各桥臂中不含有直流分量,验证了本发明的固态变压器在从中压交流向低压侧传递能量时,桥臂电流仅存在交流分量,降低了mmc开关的电流应力。本实施例中,该桥臂电流的有效值为12a。

图5为本发明一实施例中中压侧直流母线电压曲线,其中:稳态时,该中压直流电压稳定在20kv。

图6为本发明一实施例中中压侧直流母线电流曲线,其中:稳态时,直流母线电流为0a,即该实施例中,中压交流侧的有功功率不传递给中压直流侧。

图7为本发明一实施例中低压侧直流母线电流平均值曲线,其中:稳态时,低压直流母线电流在500a左右,即该实施例中,中压交流侧的有功功率输出将传递给低压直流侧。

图8为本发明一实施例中三相逆变器交流输出相电压曲线,其中:稳态时,低压交流输出相电压有效值为220v。

由上述实施例可见,本发明通过子模块直流侧进行中低压网络间的功率传递,mmc的桥臂电流直流分量显著下降,降低了mmc开关器件的电流应力;本发明则直接采用mmc子模块电容实现mmc和dab单元互联,减少了装置成本;本发明的mmc子模块采用级联半桥三电平结构,而dab单元的输入级采用二极管钳位三电平结构,提高了模块的电压等级,从而减少了子模块数量与中频隔离变压器数量。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1