一种能实现在线自监测和自维护的智能电机的制作方法

文档序号:17707400发布日期:2019-05-21 20:57阅读:191来源:国知局
一种能实现在线自监测和自维护的智能电机的制作方法

本实用新型是涉及一种能实现在线自监测和自维护的智能电机,属于电机维护技术领域。



背景技术:

随着电力电子技术、自动化控制技术的不断发展,电机在工业生产中已得到广泛的应用。因轴承在电机中起着承载负荷和传递负荷的作用,它的运行状态是否正常,直接影响到整个电机的性能,轴承故障会造成电机绕组和轴的损坏,导致设备的烧坏和损毁,同时会引起电机性能劣化或意外停机,而意外停机可能会对工业生产造成不可估量的损失或导致安全事故的发生,因此,能实现对轴承运行状态的在线实时监测将具有重要意义。

而现有研究表明,出现轴承故障的原因至少80%的可能性是由于轴承润滑不良,是因为轴承持续高速旋转,导致润滑油/液体润滑剂/脂的损耗,从而造成轴承温度过高、因摩擦力增大而产生异常振动;目前对出现上述故障的处理方式就是通过更换或添加润滑油/液体润滑剂/脂,及时修复和改善轴承的润滑效果。

虽然现有技术中,已有关于轴承温度或振动状态的在线监测技术,如申请号为CN201220323453.4的中国实用新型专利中提出了轴承温度的在线监测和预警系统,申请号为CN201420414749.X的中国实用新型专利中提出了电机振动的在线监测及预警系统,但单凭温度或振动信息容易导致故障判断失误的问题,会给企业维护工作造成不必要的负担。

另外,为了避免轴承故障引发电机损毁和意外停产等严重后果,行业标准要求需要定期(标准规定是在每隔运行1500-2000小时)对轴承进行润滑维护,通过人工或自动注油器对轴承定期更换或添加润滑油/液体润滑剂/脂,由于人工维护需要停机操作,不仅会对企业生产造成不利影响,而且人工保养方式随意性强,很难做到定期维护;尤其是,在一些易燃易爆的石油化工场所进行润滑油/液体润滑剂现场加注操作,还容易发生安全事故;虽然现有的自动注油器可解决人工维护所存在的缺陷问题,可以做到定期维护,但不能在电机出现故障征兆(如:温升过高、振动异常)的第一时间实现及时注油维护和故障排除处理,仍然需要人工进行相应处理,以致仍然存在电机损毁和意外停产等风险。

关键是,无论现有的监测系统还是自动注油器,均需要配置额外的供电电源,要么是外接电源,要么是电池,为了简化布线的麻烦和提高电机使用的便捷性,通常是采用蓄电池供电,以致也需要经常停机人工更换电池,仍然给企业的安全生产造成潜在风险。

总之,现有技术中还没有一种能为电机运行状态监测系统和注油装置进行自供电、能实现电机运行状态监测系统和注油装置与电机同步工作、能实现在线自监测和自维护、能在电机出现故障征兆(如:温升过高、振动异常)的第一时间实现及时注油维护和故障排除处理的智能电机,以致现有技术还不能很好的满足智能制造和智能工厂的需求。



技术实现要素:

针对现有技术存在的上述问题,本实用新型的目的是提供一种能实现在线自监测和自维护的智能电机,实现为电机运行状态监测系统和注油装置进行自供电、使电机运行状态监测系统和注油装置与电机同步工作,并在监测到电机出现故障征兆(如:温升过高、振动异常)的第一时间实现及时注油维护和故障排除处理,使电机能符合智能制造和智能工厂的需求。

为实现上述目的,本实用新型采用如下技术方案:

一种能实现在线自监测和自维护的智能电机,包括电机本体,所述电机本体包括转轴、轴承、轴承外端盖、轴承内端盖和电机端盖,所述轴承套设在转轴上,所述电机端盖套设在轴承上、并与位于轴承外端侧的轴承外端盖及位于轴承内端侧的轴承内端盖分别固定连接;其特征在于:所述智能电机还包括自监测系统、自动注油装置和自供电机构,所述自监测系统包括温度传感器和振动传感器,所述自动注油装置包括注油电机,所述自供电机构包括磁铁固定盘和线圈绕组;所述磁铁固定盘过盈连接在轴承与轴承外端盖之间的转轴上,其中磁铁固定盘的磁铁面与轴承外端盖的内侧面之间为滑动连接,磁铁固定盘的背面与轴承外端面之间为间隙连接;在所述磁铁固定盘上以中心对称均布有n组N极磁铁和n组S极磁铁,且N极磁铁与S极磁铁间隔排布,以及在与磁铁固定盘的磁铁面相向的轴承外端盖的内侧面上以中心对称均布有n组线圈绕组,所述的n为自然数;并且,在轴承外端盖上设有电气腔体,自监测系统中的温度传感器和振动传感器固设在所述电气腔体内,在所述电气腔体内还设有主控单片机、电路模块和用于线圈绕组输出线的引出孔,线圈绕组输出端与电路模块的输入端电连接,所述电路模块的输出端分别与温度传感器、振动传感器、主控单片机和注油电机电连接,且所述温度传感器和振动传感器的信号输出端均与主控单片机的信号输入端通信连接,以及所述主控单片机的信号输出端与注油电机的驱动电路相连接;所述主控单片机至少包括时钟电路,所述电路模块至少包括整流稳压电路。

一种优选方案,在所述电气腔体的顶部设有立杆,在所述立杆的顶部连接有变送器,所述立杆的内腔设有引线通道,所述电路模块通过电线与变送器电连接,且主控单片机的信号输出端通过信号线与变送器通信连接。

一种优选方案,所述变送器设有显示屏、发射天线和无线通讯模块。

进一步优选方案,所述变送器与远程终端无线通讯连接,所述远程终端包括电机后台监控器、电机维护人员的手机或电脑。

一种优选方案,所述电气腔体设置在轴承外端盖的外侧面上,所述自动注油装置设置在轴承外端盖的顶部,在轴承外端盖的内侧面上设有注油孔,所述注油孔与自动注油装置的出油口相连通。

一种实施方案,在轴承外端盖的内侧面上以中心对称均匀设置有n组线圈绕组固定孔和n组过线槽,且线圈绕组固定孔与过线槽间隔排布,在线圈绕组固定孔与过线槽的连接面上开设有过线通道。

进一步实施方案,所述引出孔与顶部的过线槽相连通。

一种实施方案,N极磁铁和S极磁铁均是通过螺钉内嵌固定在磁铁固定盘上。

一种实施方案,在位于轴承外端盖侧的磁铁固定盘的固定部上设有用于与转轴紧固连接的螺钉孔。

一种实施方案,所述自动注油装置还包括储油容器、储油容器固定座、上罩壳、底座、走油通道、活塞缸、活塞组件和传动齿轮组,所述储油容器可拆卸式固定连接在储油容器固定座上,所述储油容器固定座固定在上罩壳的顶部,所述走油通道设置在由上罩壳与底座形成的腔体内,活塞缸固定连接在底座的底部,走油通道的进油口与储油容器固定座的出油孔相连通,走油通道的出油口与活塞缸的进油口相连通;构成活塞组件的活塞杆头部穿过底座位于由上罩壳与底座形成的腔体内,所述传动齿轮组由主动齿轮和从动齿轮构成,其中主动齿轮固定在注油电机的输出轴上,与主动齿轮相啮合连接的从动齿轮与活塞杆传动连接。

一种优选方案,所述活塞缸的下部设有定量注油腔,所述定量注油腔为圆柱形,其内径与活塞外径相适配并大于位于其上方的活塞缸内径。

一种优选方案,所述走油通道为设有空腔的螺柱。

进一步优选方案,所述上罩壳与底座之间采用隔爆接合面相连接,走油通道的上部与上罩壳隔爆连接,走油通道的下部与底座隔爆连接;并且,在活塞杆上以隔爆螺纹连接有轴套,从动齿轮套接在轴套上。

进一步优选方案,所述轴套外滑动连接有上铜套和下铜套,所述上铜套固定在注油电机固定座上,所述下铜套固定在底座上,且下铜套与底座的连接面为隔爆接合面。

一种实施方案,所述储油容器固定座的中心设有用于与储油容器螺纹连接的螺纹口,在所述储油容器固定座的底部设有出油孔。

一种优选方案,在所述储油容器固定座的底部中心设有圆锥头,所述储油容器固定座的底部以所述圆锥头为中心对称开设有多个扇形出油孔。

一种优选方案,在螺纹口的上方还设有用于加固储油容器的紧固组件。

一种优选方案,在所述储油容器固定座上设有空气呼吸器,所述空气呼吸器与走油通道的进油口相连通。

一种优选方案,在上罩壳的顶部设有导油槽,所述导油槽的底面与走油通道的进油口相连通。

一种优选方案,所述活塞缸的出油端设有过滤网和过滤网压紧盖。

相较于现有技术,本实用新型具有如下有益技术效果:

本实用新型所提供的智能电机,通过巧妙构造电磁发电结构,实现了利用智能电机转轴自身径向旋转动力发电,实现为自监测系统和自动注油装置进行自供电,使得自监测系统能实时持续在线监测电机的运行状态,以及自动注油装置能按预先设定的维护周期自动添加润滑油/液体润滑剂实现定期自维护;尤其是,当主控单片机监测到电机出现故障征兆(如:温升过高或/和振动异常),可第一时间自启动自动注油装置,通过添加润滑油/液体润滑剂以实时排除故障;若通过注油仍然不能排除温升过高和振动异常,可通过向远程终端发送报警信息,以及时通知后台进行该故障电机的关闭和备用电机的启动切换,以及维护人员到现场进行该故障电机的检测和维修,从而最大程度降低因电机故障引发的严重后果;并且,本实用新型还能显著节约能耗和延长电机的使用寿命,维护成本低,可为企业的安全生产提供有效保障,能为实现智能制造和智能工厂提供最有力的支持;因此,本实用新型相对于现有技术,具有显著进步性和工业实用价值。

附图说明

图1是本实用新型实施例1提供的一种能实现在线自监测和自维护的智能电机的结构示意图;

图2是体现实施例1所述的自监测系统、自动注油装置与轴承外端盖及轴承之间的装配结构图;

图3是体现实施例1所述的自监测系统、自动注油装置与轴承外端盖之间的装配结构图;

图4是实施例1所述智能电机的端部剖视图;

图5是实施例1所述自供电机构的剖视图;

图6是实施例1所述自供电机构的电路框图;

图7是实施例1所述主控单片机的工作原理框图;

图8是实施例1中所述轴承外端盖的后视结构示意图;

图9是实施例1中所述轴承外端盖的立体图;

图10是实施例1中所述磁铁固定盘的前视结构示意图;

图11是实施例1中所述磁铁固定盘的前侧视立体图;

图12是本实用新型实施例1提供的自动注油装置的结构示意图;

图13是本实用新型实施例1中所述的储油容器固定座的结构示意图;

图14是本实用新型实施例1提供的自动注油装置的剖视图;

图15是本实用新型实施例1提供的自动注油装置的注油原理图;

图16是本实用新型实施例2提供的具有防爆功能的自动注油装置的剖视图。

图中标号示意如下:

1、电机本体;11、转轴;12、轴承;121、轴承外端面;13、轴承外端盖;131、轴承外端盖的内侧面;132、电气腔体;1321、主控单片机;1322、电路模块;1323、引出孔;133、轴承外端盖的外侧面;134、轴承外端盖的顶部;135、注油孔;136、线圈绕组固定孔;137、过线槽;138、过线通道;14、轴承内端盖;15电机端盖;

2、自监测系统;21、温度传感器;22、振动传感器;23、立杆;24、变送器;241、显示屏;242;发射天线;243、无线通讯模块;25、远程终端;

3、自动注油装置;31、注油电机;311、注油电机的输出轴;312、注油电机固定座;32、储油容器;33、储油容器固定座;331、出油孔;332、螺纹口;333、圆锥头;334、紧固组件;3341、弧形固定条;3342、固定耳;3343、紧固螺钉;335、空气呼吸器;34、上罩壳;341、导油槽;35、底座;351、线缆接头;352、螺纹孔;36、走油通道;361、走油通道的进油口;362、走油通道的出油口;37、活塞缸;371、活塞缸的进油口;372、定量注油腔;373、过滤网;374、过滤网压紧盖;38、活塞组件;381、活塞杆;3811、轴套;3812、上铜套;3813、下铜套;382、活塞;39、传动齿轮组;391、主动齿轮;392、从动齿轮;

4、自供电机构;41、磁铁固定盘;411、磁铁固定盘的磁铁面;412、磁铁固定盘的背面;413、N极磁铁;414、S极磁铁;415、螺钉;416、螺钉孔;42、线圈绕组;421、线圈绕组输出端;

5、间隙;6、润滑油/液体润滑剂;M1~M3、隔爆接合面;W1~W2、隔爆螺纹。

具体实施方式

以下结合附图和实施例对本实用新型的技术方案做进一步详细描述。

实施例1

请结合图1至图5所示:本实施例提供的一种能实现在线自监测和自维护的智能电机,包括电机本体1、自监测系统2、自动注油装置3和自供电机构4,所述电机本体1包括转轴11、轴承12、轴承外端盖13、轴承内端盖14和电机端盖15,所述轴承12套设在转轴11上,所述电机端盖15套设在轴承12上、并与位于轴承12外端侧的轴承外端盖13及位于轴承12内端侧的轴承内端盖14分别固定连接;所述自监测系统2包括温度传感器21和振动传感器22,所述自动注油装置3包括注油电机31(图1-5中未示出),所述自供电机构4包括磁铁固定盘41和线圈绕组42;所述磁铁固定盘41过盈连接在轴承12与轴承外端盖13之间的转轴11上,其中磁铁固定盘的磁铁面411与轴承外端盖的内侧面131之间为滑动连接(即:磁铁固定盘41在轴承外端盖13的内腔内能进行旋转运动),磁铁固定盘的背面412与轴承外端面121之间为间隙连接(所述间隙5需能满足轴承12热胀空间需要);在轴承外端盖13上设有电气腔体132,自监测系统2中的温度传感器21和振动传感器22固设在所述电气腔体132内(本实施例是将温度传感器21与振动传感器22集成为一体,当然也可以独立设置),在所述电气腔体132内还设有主控单片机1321(图1-5中未示出)、电路模块1322(图1-5中未示出)和用于线圈绕组输出线的引出孔1323,在所述电气腔体132的顶部设有立杆23,在所述立杆23的顶部连接有变送器24,所述立杆23的内腔设有引线通道(图1-5中未示出)。所述电气腔体132设置在轴承外端盖的外侧面133上,所述自动注油装置3设置在轴承外端盖的顶部134,在轴承外端盖的内侧面131上设有注油孔135,所述注油孔135与自动注油装置3的出油口相连通。所述主控单片机1321至少包括时钟电路,所述电路模块1322至少包括整流稳压电路。

图6所示是所述自供电机构的电路框图,请参阅图6:线圈绕组输出端421与电路模块1322的输入端电连接,所述电路模块1322的输出端分别与温度传感器21、振动传感器22、主控单片机1321、注油电机31和变送器24电连接。也就是说,所述自供电机构4利用转轴11旋转的同时产生切割磁感线的运动,从而实现电磁发电,所产生的电流由线圈绕组输出端421输出给电路模块1322进行整流稳压处理,然后向温度传感器21、振动传感器22、主控单片机1321、注油电机31和变送器24分别供电,从而使自监测系统2和自动注油装置3无需电池供电,可由智能电机自供电,实现自监测系统2和自动注油装置3能实时持续在线工作。

图7所示是所述主控单片机的工作原理框图,请参阅图7:温度传感器21和振动传感器22的信号输出端均与主控单片机1321的信号输入端通信连接,所述主控单片机1321的信号输出端与注油电机31的驱动电路和变送器24分别通信连接。首先,由于主控单片机1321含有时钟电路,因而可通过时钟设置维护周期(如:1500小时),由主控单片机1321自启动注油电机31进行自动注油,实现定期自维护;另外,可根据不同电机产品的工作性能要求,在主控单片机1321中预先设置轴承的温升阀值和振动位移阀值,一旦主控单片机1321通过温度传感器21和振动传感器22监测到轴承的温升大于阀值或/和其振动位移大于阀值,就自启动注油电机31进行自动注油以实时排除故障(因为现有研究表明:出现轴承故障的原因至少80%的可能性是由于轴承润滑不良,是因为轴承持续高速旋转,导致润滑油/脂的损耗,以致轴承温升过高、且因摩擦力增大而产生异常振动;一般通过更换或添加润滑油/液体润滑剂,可消除该类故障),从而一方面可避免故障诊断失误,另一方面可在第一时间阻止故障发展;若通过添加润滑油/液体润滑剂后,轴承的温升和振动位移未回归到正常范围(即:仍然高于阀值),表明此时的故障不是由于润滑不良造成,因此,一旦出现此故障,主控单片机1321可向变送器24发送故障报警信息。当所述变送器24设有显示屏241、发射天线242和无线通讯模块243时,远程终端25(如:电机后台监控器、电机维护人员的手机或电脑)均可通过与变送器24之间的无线通讯,及时收到故障报警通知,从而执行该故障电机的关闭和备用电机的启动切换,以及维护人员到现场进行该故障电机的检测和维修,从而可最大程度降低因轴承故障而引发的电机损毁和意外停产等严重后果,具有显著工业价值。

请再结合图8和图9所示:在轴承外端盖的内侧面131上以中心对称均匀设置有n组线圈绕组固定孔136和n组过线槽137(本实施例中n为3),且线圈绕组固定孔136与过线槽137间隔排布,在线圈绕组固定孔136与过线槽137的连接面上开设有过线通道138,所述引出孔1323与顶部的过线槽相连通。

请再结合图10和图11所示:在所述磁铁固定盘41上以中心对称均布有n组N极磁铁413和n组S极磁铁414,且N极磁铁413与S极磁铁414间隔排布,以及在与磁铁固定盘的磁铁面411相向的轴承外端盖的内侧面131上以中心对称均布有n组线圈绕组42,所述的n为自然数(本实施例中的n为3,但不做此限定,具体数量根据需要输出的电压大小进行相应设置)。N极磁铁413和S极磁铁414均是通过螺钉415内嵌固定在磁铁固定盘41上,在位于轴承外端盖侧的磁铁固定盘41的固定部上设有用于与转轴11紧固连接的螺钉孔416。

因固定有N极磁铁413和S极磁铁414的磁铁固定盘41能与转轴11同步旋转,因而可起到相当于电磁发电的转子作用,同时由于固定不动的轴承外端盖13上设有线圈绕组42,因而可起到相当于电磁发电的定子作用,从而在转轴11旋转运动时,就会在转动同时产生切割磁感线的运动,实现利用转轴自身的径向旋转动力发电。

请再结合图12至图15所示:本实施例中所述的自动注油装置3还包括储油容器32、储油容器固定座33、上罩壳34、底座35、走油通道36、活塞缸37、活塞组件38和传动齿轮组39,所述储油容器32可拆卸式固定连接在储油容器固定座33上,所述储油容器固定座33固定在上罩壳34的顶部,所述走油通道36设置在由上罩壳34与底座35形成的腔体内,活塞缸37固定连接在底座35的底部,走油通道的进油口361与储油容器固定座33的出油孔331相连通,走油通道的出油口362与活塞缸的进油口371相连通;构成活塞组件38的活塞杆381头部穿过底座35位于由上罩壳34与底座35形成的腔体内,所述传动齿轮组39由主动齿轮391和从动齿轮392构成,其中主动齿轮391固定在注油电机的输出轴311上,与主动齿轮391相啮合连接的从动齿轮392与活塞杆381传动连接。在底座35的底部设有线缆接头351。

作为优选方案:

所述走油通道36为设有空腔的螺柱,这样既方便安装和加工,而且同时可用于加固上罩壳34与底座35之间的连接。

所述储油容器固定座33的中心设有用于与储油容器32螺纹连接的螺纹口332,在所述储油容器固定座33的底部中心设有圆锥头333,所述储油容器固定座33的底部以所述圆锥头333为中心对称开设有多个扇形出油孔331(本实施例中示出了4个,但不限定为4个),所述圆锥头333的作用是在储油容器32与螺纹口332螺纹连接到位后,能刺破储油容器32的密封口,使润滑油/液体润滑剂能流出。

为了进一步稳固储油容器32,可在螺纹口332的上方设置紧固组件334(本实施例中所述的紧固组件334是由两个弧形固定条3341及固定耳3342和紧固螺钉3343组成)。

为了保证注油顺畅,可在所述储油容器固定座33上设置空气呼吸器335,所述空气呼吸器335与走油通道的进油口361相连通,以保证内外压相等。

另外,在上罩壳34的顶部设有导油槽341,所述导油槽341的底面与走油通道的进油口361相连通,以利于收集从储油容器固定座33的出油孔331流出的润滑油/液体润滑剂并导入到走油通道的进油口361中。

请再参阅图15所示:当需要加注润滑油/液体润滑剂6时,只需将待加注的储油容器32的口部与储油容器固定座33上的螺纹口332进行螺纹连接(作为优选方案,同时利用紧固组件334对储油容器32进行加固固定);当储油容器32与螺纹口332螺纹连接到位后,储油容器32的密封口即将被设在储油容器固定座33底部中心的圆锥头333自动刺破,然后润滑油/液体润滑剂6将由开设在圆锥头333周侧的出油孔331流出,并汇集到导油槽341中,进而由走油通道的进油口361流入活塞缸37中,当活塞缸37中储满油后,通过启动注油电机31带动主动齿轮391转动,因从动齿轮392与主动齿轮391相啮合连接,因此,在主动齿轮391转动时,可带动从动齿轮392的转动,而从动齿轮392是固定在轴套3811上,因此可带动轴套3811的转动,又由于轴套3811与活塞杆381之间是螺纹连接,从而可通过轴套3811的转动实现活塞杆381的升降运动,进而带动活塞382做上提或下压运动,实现润滑油/液体润滑剂6的加注操作。

作为优选方案,所述活塞缸37的下部设有定量注油腔372,所述定量注油腔372为圆柱形,其内径与活塞382的外径相适配并大于位于其上方的活塞缸内径,通过此巧妙设计,可使活塞382的单次下压行程一定,从而使一次注油量可定量,定量注油腔372的具体容量可根据电机维护规则进行设计,使得加注计量方法非常简单且精确。另外,为避免润滑油/液体润滑剂6中的杂质对轴承12产生不良影响,可通过在所述活塞缸37的出油端设置过滤网373和过滤网压紧盖374,以起到过滤作用。

实施例2

本实施例的目的是提供一种具有具有防爆功能的自动注油装置3,请参阅图16所示,本实施例所述的自动注油装置3,与实施例1中所述的自动注油装置的区别仅在于:所述上罩壳34与底座35之间采用隔爆接合面M1相连接,走油通道36的上部与上罩壳34之间采用隔爆接合面M2相连接,走油通道36的下部与底座35隔爆连接(本实施例中,是通过在螺纹孔352上设内螺纹,在走油通道36的下部设外螺纹,使走油通道36的下部与螺纹孔352之间采用隔爆螺纹W1连接);并且,在活塞杆381上以隔爆螺纹连接有轴套3811(即:轴套3811内设有内螺纹,活塞杆381设有外螺纹,且两者之间的螺纹连接为隔爆螺纹W2连接)。下铜套3813与底座35的连接面采用隔爆接合面M3相连接。因采用上述特殊设计,注油电机31是位于由上罩壳34与底座35形成的隔爆腔内,因而可使所述的自动注油装置3同时实现防爆功能,从而满足有爆炸性气体存在的防爆场所的使用要求。

综上所述可见:本实用新型所提供的智能电机,通过巧妙构造电磁发电结构,利用转轴自身径向旋转动力发电,实现了为自监测系统2、自动注油装置3的自供电,使得自监测系统2能实时持续在线监测电机的运行状态,自动注油装置3能按预先设定的维护周期实现润滑油/液体润滑剂的定期加注自维护;尤其是,当主控单片机1321监测到智能电机出现故障征兆(如:温升过高或/和振动异常),可第一时间自动启动自动注油装置3,通过添加润滑油/液体润滑剂以实时排除故障;若通过注油仍然不能排除温升过高和振动异常,可通过向远程终端发送报警信息,以及时通知后台进行该故障电机的关闭和备用电机的启动切换,以及维护人员到现场进行该故障电机的检测和维修;因此,本实用新型不仅能显著节约能耗和延长电机的使用寿命,而且维护成本低,可为企业的安全生产提供有效保障,能为实现智能制造和智能工厂提供最有力的支持;相对于现有技术,具有显著进步性和工业实用价值。

最后有必要在此指出的是:以上所述仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1